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We have reported that the selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, gefitinib (‘Iressa’, ZD1839),
suppressed intrahepatic metastasis of hepatocellular carcinoma CBO140C12 cells. In this study, we focused on the tumour necrosis
factor-a (TNF-a) signalling pathways. Real-time reverse transcription–polymerase chain reaction showed that TNF-a mRNA was
expressed in large quantities in the implanted tumour. Gefitinib inhibited EGF- but not hepatocyte growth factor (HGF)-induced
activation of mitogen-activated protein kinase (MAPK) cascades, suggesting selectivity of the inhibitor. However, gefitinib inhibited the
TNF-a-induced activation of MAPKs and Akt. In addition, TNF-a-induced metastatic properties including adhesion to fibronectin,
mRNA expression of integrin av, production of matrix metalloproteinase-9 and invasion were inhibited by gefitinib without affecting
cell proliferation. Furthermore, the TNF-a-induced responses except for NF-kB activation were blocked by metalloprotease
inhibitors, suggesting that gefitinib inhibited the transactivation of EGFR induced by TNF-a. These results suggest that the TNF-a
signalling pathway is a possible target of gefitinib in suppressing the intrahepatic metastasis of hepatocellular carcinoma.
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High expression of epidermal growth factor receptor (EGFR)
has been observed in a variety of tumours, including the lung
and liver (Ito et al, 2001; Nicholson et al, 2001), which has been
shown to correlate with disease progression, poor survival,
poor response to therapy and the development of resistance to
cytotoxic agents (Arteaga, 2002; Ritter and Arteaga, 2003). Upon
ligand binding, EGFR dimerisation triggers protein kinase activity
of the intracellular tyrosine kinase domain (Baselga, 2002).
Gefitinib (‘Iressa’, ZD1839 (‘Iressa’ is a trademark of the
AstraZeneca group of companies)), an EGFR tyrosine kinase
inhibitor, exhibits a broad antitumour spectrum against
human cancers in vitro and demonstrated therapeutic benefit in
patients with non-small-cell lung cancer (Ciardiello et al, 2000;
Sirotnak et al, 2000; Herbst and Bunn, 2003). There is no
correlation between the antitumour activity of gefitinib and EGFR
expression level; however, recent research revealed that gefitinib-
responsive lung cancers harbour somatic mutations within the
EGFR kinase domain (Lynch et al, 2004; Paez et al, 2004; Sordella
et al, 2004).

Tumour necrosis factor-a (TNF-a) was first identified as the
macrophage-derived product responsible for tumouricidal activity
(Matthews, 1978; Matthews and Watkins, 1978; Pennica et al,
1985). However, extensive research during past years has made it
apparent that TNF-a enhances the incidence of metastasis in

several tumour models (Orosz et al, 1993; Qin et al, 1993; Kitakata
et al, 2002; Mochizuki et al, 2004; Tomita et al, 2004). The role of
endogenous TNF-a in the metastatic process remains to be
clarified; however, TNF-a has been found to increase the
expression of adhesion molecules and invasive molecules, includ-
ing intracellular adhesion molecule-1 (ICAM-1) and matrix
metalloproteinase-9 (MMP-9) (Aggarwal et al, 2002). In addition,
we have recently reported that stimulation of cultured colon 26
cells with TNF-a promotes lung metastasis through the extra-
cellular signal-regulated kinase (ERK) signalling pathway (Choo
et al, 2005).

Epidermal growth factor receptor transactivation by ligand-
independent intracellular signalling mechanisms and metallopro-
tease-mediated processing of the EGF-like ligands has been
investigated in the last couple of years (Fischer et al, 2003).
Recently, the transactivation of EGFR by TNF-a-induced metallo-
protease processing of TGF-a has been demonstrated in hepato-
cytes and mammary epithelial cells (Argast et al, 2004; Chen et al,
2004). These findings raise a possibility that TNF-a signalling
pathways are potential targets for the antitumour activity of
gefitinib.

Recently, we have shown that gefitinib is effective in inhibiting
intrahepatic metastasis of murine hepatocellular carcinoma
CBO140C12 cells by blocking EGFR-dependent metastatic proper-
ties (Matsuo et al, 2003). In this study, we found that gefitinib also
inhibited the TNF-a-induced activation of mitogen-activated
protein kinase (MAPK) cascades and Akt as well as TNF-a-
induced metastatic properties in vitro possibly by inhibiting EGFR
transactivation.
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MATERIALS AND METHODS

Reagents

Gefitinib was kindly provided by AstraZeneca (Macclesfield, UK).
It was dissolved in DMSO for the in vitro study. Recombinant
murine EGF were purchased from Upstate Biotechnology and
murine hepatocyte growth factor (HGF) and human TNF-a were
purchased from Genzyme/Techne. Metalloprotease inhibitors,
GM6001, GM6001 negative and TAPI-1, were purchased from
Calbiochem, Darmstadt, Germany.

Intrahepatic metastasis model by orthotopic implantation

Female 5-week-old specific pathogen-free B6C3F1 mice were
purchased from Japan SLC (Hamamatsu, Japan). The mice were
maintained under specific pathogen-free conditions and used
according to institutional guidelines. Orthotopic implantation of
CBO140C12 tumour fragments into mouse liver was performed as
described previously (Sawada et al, 2001; Matsuo et al, 2003). The
mice were killed on day 14 and total RNA was prepared from the
liver and primary tumour mass, and then subjected to real-time
reverse transcription –polymerase chain reaction (RT–PCR) as
described below.

Reverse transcription – polymerase chain reaction

Total RNA from CBO140C12 cells was extracted using the RNeasy
Mini Kit (QIAGEN, Hilden, Germany). First strand cDNA was
prepared from the total RNA (1mg) using oligo(dT) primer and
SuperScript II reverse transcriptase (Invitrogen, Carlsbad, USA).
The cDNA was conducted in a 25ml final volume mixture containing
primer, probe and TaqMan Universal PCR Master Mix. Probes were
labelled with fluorescent reporter dye at the 50-end (glyceralde-
hydes-3-phosphate dehydrogenase (GAPDH): VIC; TNF-a: FAM;
MMP-9: FAM) and a quencher dye at the 30-end (GAPDH: TAMRA;
TNF-a: MGB; MMP-9: MGB). Plates were analysed on a TaqMan
ABI Prism 7700 Sequence Detector (Applied Biosystems, Carlsbad,
USA). Cycling parameters were: 501C for 2 min, 951C for 10 min, 40
cycles for GAPDH and TNF-a, 50 cycles for MMP-9 at 951C for 15 s
and 601C for 1 min. Cycle threshold detection was converted into
number of cDNA contents in the starting material and a standard
curve was constructed using the known amounts of cDNA. Test
gene mRNA values were extrapolated from the standard curve and
expressed in arbitrary units.

Amplification of integrin av subunit mRNA was performed by
standard RT–PCR using specific oligonucleotide primers and an EX
Taq PCR kit (Takara-bio Co., Ltd., Shiga, Japan). The sequences of
the primers were as follows: integrin av, 50-CAAGCTCACTCCCAT
CAC-30 and 50-GGGTGTCTTGATTCTCAAAGGG-30; GAPDH,
50-GGTGAAGGTCGGTGTGAACGGATTT-30 and 50-GATGCCAAA
GTTGTCATGGATGACC-30. Polymerase chain reaction was pre-
formed in a thermocycler for specified cycles of denaturation (941C,
30 s), annealing (601C, 60 s) and extension (721C, 90 s). The PCR
products were electrophoresed on 1.2% agarose gels and detected by
ethidium bromide staining.

Cell culture

The CBO140C12 murine hepatocellular carcinoma cell line was
kindly provided by Dr K Ogawa (Asahikawa Medical College,
Japan) and maintained in DMEM : F-12 supplemented with 10%
FCS, 320 mg l�1

L-glutamine. A549 cells were maintained in DMEM
supplemented with 10% FCS.

Cell proliferation assay

Cells (1� 104 cells well�1) were seeded in 100ml of medium
containing 0.5%. FCS in 96-well plates and allowed to adhere for

24 h. After preincubation with 90 ml of medium containing gefitinib
(final concentration 1 mM) for 15 min, cells were stimulated with
10 ml of medium containing TNF-a (final concentration 10 ng ml�1)
for 12 or 72 h. Cell proliferation was determined by using a cell
counting kit (Dojindo).

Western blot analysis

Cells were cultured in a medium containing 0.5% FBS for 24 h.
After indicated treatment, cell lysates were prepared with sample
buffer (25 mM Tris-HCl (pH 6.8), 5% w v�1 glycerol, 1% w v�1 SDS,
0.05% w v�1 bromophenol blue) and were subjected to sodium
dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–
PAGE) and transferred to Immobilon-P membranes (Millipore).
Blots were probed using primary antibodies described above and
horseradish peroxidase-conjugated secondary antibodies (DAKO,
Glostrup, Denmark) followed by enhanced chemiluminescence
(Amersham, Piscatway, USA). Antibodies against EGFR and
phospho-EGFR, phospho-ERK, phospho-c-Jun-N-terminal kinase
(JNK), phospho-Akt, phospho-p38 and phospho-p65 were pur-
chased from Cell Signaling Technology, Beverly, USA and anti-p38,
JNK, p65 and Akt antibodies were obtained from Santa Cruz
Biotechnology, California, USA.

Adhesion assay

Cells in 0.1% BSA medium were pretreated with gefitinib for
15 min and then stimulated with TNF-a for 12 h. In all, 2� 104 cells
were seeded on to the 96-well plate precoated with 1 mg of
fibronectin. After incubation for 25 min, attached cells were
stained with 0.5% crystal violet. The cells were lysed with 30%
acetic acid, and the absorbance was measured at 590 nm.

Invasion assay

The invasion assay was performed using Transwell culture chambers
(Corning Costar). Polyvinylpyrrolidone-free polycarbonate filters
with an 8.0mm pore size (Neuclepore) were precoated with 1mg of
fibronectin on the lower surface, and then 5mg of Matrigel was
applied to the upper surface of the filter. Cells in 0.1% BSA medium
were pretreated with gefitinib for 15 min, and then stimulated with
TNF-a for 12 h. In all, 3� 104 cells were added to the upper
compartment of the chamber and incubated for 6 h at 371C. The cells
were stained with haematoxylin and eosin and were counted using
the mean of five windows (� 400 magnification) per filter.

Gelatin zymography

Gelatin zymography was performed as previously described
(Matsuo et al, 2003) with some modifications. Briefly, the
conditioned media was concentrated using Centricon (Millipore)
according to the manufacturer’s instructions and applied to 7.5%
SDS– polyacrylamide gels copolymerised with gelatine (0.1%
w v�1) and incubated at 371C for 24 h. Enzyme-digested regions
were quantified by the Chemi Doc XRS system (Bio-Rad).

Statistical analysis

The significance of differences between groups was determined by
applying Student’s two-tailed t-test.

RESULTS

Enhanced expression of TNF-a mRNA in tumour-
implanted liver

We have previously reported that gefitinib inhibits the sponta-
neous intrahepatic metastasis of hepatocellular carcinoma by
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blocking the EGFR-mediated metastatic properties (Matsuo et al,
2003). Here, we focused on the TNF-a signalling pathway. It has
been demonstrated that inflammatory cytokines including TNF-a
play critical roles in tumour metastasis. Therefore, we first tried to
detect mRNA expression of TNF-a in the intrahepatic metastasis
model using real-time RT– PCR (Figure 1). High-level expression
could be detected in the primary tumour mass. In contrast, mRNA
expression of TNF-a in the liver around the tumour was
comparable with normal and sham-operating liver. These results
confirm tumour-induced inflammatory reactions in the implanted
primary tumour.

Effects of gefitinib on EGF-, HGF- and TNF-a-induced
signalling pathways

Gefitinib is known as a selective EGFR tyrosine kinase inhibitor.
In fact, gefitinib inhibited EGF-induced EGFR autophosphoryla-
tion (Tyr-1068) as well as the downstream signalling pathways
including Akt, ERK, JNK and p38 MAPK in CBO140C12
cells (Figure 2). In contrast, HGF-induced activation of these
kinases was not affected by gefitinib (Figure 2). The selectivity of
the signalling pathways was correlated with our previous results,
which showed that gefitinib inhibited EGF- but not HGF-induced
chemotactic migration of CBO140C12 cells (Matsuo et al, 2003).

The signalling molecules tested above are also involved in the
TNF-a signalling, therefore, we next examined the effects of
gefitinib on the TNF-a-induced responses. Interestingly, TNF-a-
induced activation of MAPKs was significantly inhibited by
gefitinib in CBO140C12 cells (Figure 3A). Phosphorylation of Akt
was not affected by TNF-a and gefitinib (data not shown). It
should be noted that the inhibition was more potent compared
with the inhibitory activity against EGF-induced MAPK activation.
Gefitinib completely inhibited TNF-a-induced activation of ERK
and JNK at 0.1 mM (Figure 3A); however, only a slight inhibition
was observed in EGF-induced MAPK activation at the same
concentration (Figure 2). In addition, activation of MAPK and Akt
was impaired in the presence of gefitinib in human cancer cell
lines, A549 (Figure 3B). In contrast, TNF-a-induced phosphoryla-
tion of NF-kB p65 subunit at Ser-536, an essential event for
activation of NF-kB (Sakurai et al, 1999), was not affected by

gefitinib in these cell lines (Figure 3A and B), indicating that
gefitinib did not block the TNF-a responses at the receptor level.

Effects of gefitinib on TNF-a-induced metastatic properties

It has been reported that TNF-a induces hepatocyte proliferation
(Argast et al, 2004). We examined the effect of TNF-a on the
growth of CBO140C12 cells. Stimulation with TNF-a for 72 h
slightly increased cell proliferation (Figure 4B). We have
previously reported that gefitinib inhibits cell proliferation along
with caspase-3 activation in CBO140C12 cells (Matsuo et al, 2003).
The apoptotic activity of gefitinib was also detected even in the
presence of TNF-a (Figure 4B). However, neither gefitinib nor
TNF-a affected the growth during a 12-h incubation period
(Figure 4A).

Adhesion to the extracellular matrix and invasion across the
matrix and basement membrane are the critical steps in tumour
metastasis. CBO140C12 cells were stimulated with TNF-a for 12 h
prior to the adhesion assay. TNF-a stimulated cell adhesion to
fibronectin and the increased adhesion was blocked by gefitinib
(Figure 5A). This is correlated with the inhibition of TNF-a-
induced mRNA expression of integrin av subunit, a counterpart
of fibronectin, by gefitinib (Figure 5B). In addition, gefitinib
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Figure 1 mRNA expression of TNF-a in the liver and tumour tissues
from the B6C3F1 mouse. B6C3F1 mice were given implantation with a
tumour fragment of CB140C12 cells, sham operation. Normal mice were
given no operation. Total RNAs were prepared from primary tumors, liver
tissues around the tumour, the sites of sham operation and normal livers,
and real-time RT–PCR was performed for quantification of relative mRNA
expression of TNF-a and GAPDH. All data are represented as mean7s.d.
of three mice.
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Figure 2 Selective inhibition of EGF-induced signalling pathways by
gefitinib in CBO140C12 cells. Serum-starved CBO140C12 cells were
pretreated for 15 min with the indicated concentrations (mM) of gefitinib,
followed by the stimulation with 10 ng ml�1 EGF, or 10 ng ml�1 HGF for
5 min. Phospho-EGFR, phospho-Akt, phospho-ERK, phospho-JNK and
phospho-p38 were determined by Western blotting using phospho-EGFR
(Tyr1068), phospho-Akt (Ser473), phospho-ERK (Thr202, Tyr204),
phospho-JNK (Thr183, Tyr185) and phospho-p38 (Thr180, Tyr182)
antibodies, respectively.
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inhibited TNF-a-induced mRNA expression (data not shown) and
the gelatinase activity (Figure 5D) of MMP-9 as well as TNF-a-
induced invasion of CBO140C12 cells (Figure 5C).

Effects of metalloprotease inhibitors on TNF-a-induced
cellular responces

To elucidate the possibility that responses to TNF-a in CBO140C12
cells are mediated by EGFR transactivaton, effects of metallopro-
tease inhibitors were examined. GM6001, a broad metalloprotease
inhibitor, blocked TNF-a-induced phosphorylation of ERK1/2
(Figure 6A). Activation of JNK and p38 was also inhibited by
GM6001 (data not shown), whereas phosphorylation of NF-kB p65
at Ser-536 was not inhibited (Figure 6A). In contrast, NegGM, a
structurally similar compound without metalloprotease inhibitory
activity, did not inhibit TNF-a-induced phosphorylation of ERK1/2
as well as phosphorylation of NF-kB (Figure 6A). It has recently
been demonstrated that shedding of EGFR ligands is mediated by
some members of the ADAMs family of metalloproteases,
especially ADAM17 (Hinkle et al, 2004; Sahin et al, 2004). We
therefore examined the effect of TAPI-1, an ADAMs inihibitor.
TNF-a-induced phosphorylation of ERK1/2 was inhibited by TAPI-
1 (Figure 6B). Both GM6001 and TAPI-1 did not inhibit EGF- and
HGF-induced phosphorylation of ERK1/2 (Figure 6C and data not
shown), indicating that these inhibitors selectively blocked the
TNF-a-induced signalling pathways. Moreover, TNF-a-induced
metastatic properties including the cell adhesion to fibronectin
(Figure 6D) and mRNA expression of integrin av (Figure 6E) were
inhibited by GM6001. The selective inhibiton by metalloprotease
inhibitors was similar to the inhibitory effects of gefitinib on the
TNF-a-induced cellular responces.

DISCUSSION

Epidermal growth factor receptor is a promising target for cancer
therapy and a number of anti-EGFR agents have been developed

(Blackledge and Averbuch, 2004). Preclinical investigations and
clinical studies of gefitinib have shown the benefits of anti-EGFR
therapy (Herbst and Bunn, 2003). It has recently been demon-
strated that TNF-a induces EGFR transactivation via metallopro-
teinase-dependent release of EGFR ligands. Therefore, we have
tired to examine the effects of gefitinib on the TNF-a-induced
cellular responces.

There has been accumulating evidence that inflammatory
mediators such as TNF-a promote malignant cell growth and
metastatic potential (Kitakata et al, 2002; Lozano et al, 2003).
Tumour metastasis is a complex process involving the release of
tumour cells from a primary tumour, entering of the vascular or
lymphatic circulation and extravasation to specific sites distant
from original tumour. These processes require tumour cell
attachment, migration, and invasion. In several tumour cell lines,
TNF-a induced the expression of several different adhesive
molecules including several integrin subunits, ICAM-1 and
VCAM-1 (Orosz et al, 1993; Qin et al, 1993; Choo et al, 2005).
Tumour necrosis factor-a also induced the activation of MAPKs,
which has been shown to be involved in MMP-9 expression and
invasion. In this study, we found that gefitinib inhibited not only
EGF-induced but also TNF-a-induced activation of MAPKs and
metastatic properties including adhesion and invasion. In addi-
tion, we have previously demonstrated that gefitinib inhibited
intrahepatic metastasis of CBO140C12 cells (Matsuo et al, 2003).
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Figure 3 Inhibition of TNF-a-induced MAPK activation by gefitinib in (A)
CBO140C12 and (B) A549 cells. Cells were treated with the indicated
concentrations (mM) of gefitinib for 15 min, followed by the stimulation with
10 ng ml�1 TNF-a for 10 min. Phospho-ERK, phospho-JNK, phospho-p38,
phospho-Akt and phosphor-NF-kB p65 (Ser-536) were determined by
Western blotting.
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Figure 4 Effects of gefitinib and TNF-a on cell proliferation.
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12 h (A) or 72 h (B), and cell proliferation was determined by WST-1
assay. *Po0.05, **Po0.01.
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Abundant expression of TNF-a mRNA in primary tumour of
orthotopically implanted CBO140C12 cells in the liver support the
idea that TNF-a-meidated cellular activities are potential targets
for the antimetastatic activity of gefitinib. Moreover, TNF-a is one
of the angiogenic factors associated with tumour-induced neovas-
cularisation (Wu et al, 2000) and gefitinib has been shown to
inhibit EGFR-mediated migration and tube-like formation of
human microvascular endothelial cells (Hirata et al, 2002). These
results suggest that gefitinib affected TNF-a signalling pathways in
both tumour and endothelial cells. In our previous observation,
gefitinib inhibited the incidence of metastasis as well as the growth
of primary tumour (Matsuo et al, 2003). Therefore, antiangiogenic
activity by blocking the EGF- and TNF-a-induced reactions may be
one way gefitinib exerts its antitumour activity.

Recently, TNF-a and EGF signalling pathways have been found
to play a physiological function in TNF-a signalling (Hirota et al,
2001). It has been suggested that proteolytic release of transform-
ing growth factor-a, one of the EGFR ligands, is one possible
mechanism of EGFR transactivation by TNF-a (Argast et al, 2004;
Chen et al, 2004). Argast et al proved that MMPs, especially
ADAM17, is responsible for the transactivation of EGFR by TNF-a.
Here we confirmed that an ADAMs inhibitor TAPI-1 inhibited the
activation of TNF-a-induced MAPK activation. In addition, TNF-

a-induced metastatic properties in vitro such as adhesion were also
inhibited by a broad MMP inhibitor GM6001. These results
demonstrated that TNF-a-induced metastatic properties were
mediated via MMP activities. The fact that gefitinib inhibited the
TNF-a-induced cellular responses suggested the TNF-a-induced
EGFR transactivation by shedding EGFR ligands. Identification of
the ligands and MMPs will provide more information for the
mechanism of anti-TNF-a activity of gefitinib.

Tumour necrosis factor-a triggers several intracellular signalling
pathways, in which MAPK cascades and NF-kB are the main
pathways. In contrast to MAPK cascades, phosphorylation of NF-
kB p65 was not inhibited by both gefitinib and MMP inhibitors.
This is correlated with the finding that AG1478, an EGFR inhibitor,
did not inhibit TNF-a-induced phosphorylation of IkBa, another
event essential for activation of NF-kB, in hepatocytes (Argast
et al, 2004). In addition, it has been reported that TNF-a-induced
expression of chemokine RANTES, one of the NF-kB target genes,
was not blocked by the EGFR-neutralizing monoclonal antibody
225 in mammary epithelial cells (Chen et al, 2004). Collectively,
our observations support the proposed model that TNF-a-induced
NF-kB activation is independent of EGFR (Argast et al, 2004; Chen
et al, 2004).

In summary, we have demonstrated that gefitinib shows
antimetastatic activity using an intrahepatic metastasis model, in
which TNF-a-induced EGFR signalling are the possible targets.
Recent genome-wide approaches identified genes that may be
associated with sensitivity to gefitinib (Zembutsu et al, 2003; Lynch
et al, 2004; Paez et al, 2004). The accumulating evidence of
biochemical and genetic characterisation for the mechanism of
action will provide more information for the effective clinical use
of gefitinib.
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*Po0.05, **Po0.01.

p-ERK

ERK

p-p65

p65

NegGM :
GM6001 :

TNF-�

TNF-�

TNF-�

TNF-�
10 30

10

TAPI-1 :
GM6001 :

EGF

p-ERK

ERK

+
+

TAPI-1 :

p-ERK

ERK

p-p65

p65

3 10

Integrin �v

GAPDH

NegGM :
GM6001 :

0

0.2

0.4

0.6

0.8

1.0

A
bs

or
ba

nc
e ∗

−
−

− −
− − −

−

+
+− −

− − −
−

− − − −
− − −

NegGM :
GM6001 : +

+− −
− − −

−

A B

C

E

D

Figure 6 Effects of MMP inhibitors on TNF-a-induced MAPK activation
and adhesion. Cells were pretreated with the indicated concentrations (mM)
of GM6001, GM6001 negative (NegGM) or TAPI-1 for 30 min, followed by
stimulation with TNF-a (A, B) for 10 min, or EGF for 5 min (C). Phospho-
ERK and phosphor-NF-kB p65 were determined by Western blotting. (D)
Cells treated with 10 mM GM6001/NegGM and TNF-a for 12 h were tested
in adhesion assay. (E) RT–PCR was performed using cells treated with
10mM GM6001/NegGM and TNF-a for 6 h. *Po0.01.

Selective inhibition of TNF-a-induced activation

Y Ueno et al

1694

British Journal of Cancer (2005) 92(9), 1690 – 1695 & 2005 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



ACKNOWLEDGEMENTS

We are grateful to AstraZeneca for the supply of gefitinib. This
study was supported in part by a Grant-in-Aid for Young Scientists

(B) (No. 15790040), Grant-in-Aids for Cancer Research (No.
16022224 and 16023225) and a Grant-in-Aid for the 21st Century
COE Program from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.

REFERENCES

Aggarwal BB, Shishodia S, Ashikawa K, Bharti AC (2002) The role of TNF
and its family members in inflammation and cancer: lessons from gene
deletion. Curr Drug Targets Inflamm Allergy 1: 327 – 341

Argast GM, Campbell JS, Brooling JT, Fausto N (2004) Epidermal growth
factor receptor transactivation mediates tumor necrosis factor-induced
hepatocyte replication. J Biol Chem 279: 34530 – 34536

Arteaga CL (2002) Epidermal growth factor receptor dependence in human
tumors: more than just expression? Oncologist 7(Suppl 4): 31 – 39

Baselga J (2002) Why the epidermal growth factor receptor? The rationale
for cancer therapy. Oncologist 7(Suppl 4): 2 – 8

Blackledge G, Averbuch S (2004) Gefitinib (‘Iressa’, ZD1839) and new
epidermal growth factor receptor inhibitors. Br J Cancer 90: 566 – 572

Chen WN, Woodbury RL, Kathmann LE, Opresko LK, Zangar RC, Wiley
HS, Thrall BD (2004) Induced autocrine signaling through the epidermal
growth factor receptor contributes to the response of mammary
epithelial cells to tumor necrosis factor a. J Biol Chem 279: 18488 – 18496

Choo MK, Sakurai H, Koizumi K, Saiki I (2005) Stimulation of cultured
colon 26 cells with TNF-a promotes lung metastasis through the
extracellular signal-regulated kinase pathway. Cancer Lett (in press)

Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, De Placido S,
Bianco AR, Tortora G (2000) Antitumor effect and potentiation of
cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an
epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin
Cancer Res 6: 2053 – 2063

Fischer OM, Hart S, Gschwind A, Ullrich A (2003) EGFR signal
transactivation in cancer cells. Biochem Soc Trans 31: 1203 – 1208

Hinkle CL, Sunnarborg SW, Loiselle D, Parker CE, Stevenson M, Russell
WE, Lee DC (2004) Selective roles for tumor necrosis factor a-converting
enzyme/ADAM17 in the shedding of the epidermal growth factor
receptor ligand family: the juxtamembrane stalk determines cleavage
efficiency. J Biol Chem 279: 24179 – 24188

Herbst RS, Bunn Jr PA (2003) Targeting the epidermal growth factor
receptor in non-small cell lung cancer. Clin Cancer Res 9: 5813 – 5824

Hirata A, Ogawa S, Kometani T, Kuwano T, Naito S, Kuwano M, Ono M
(2002) ZD1839 (Iressa) induces antiangiogenic effects through inhibition
of epidermal growth factor receptor tyrosine kinase. Cancer Res 62:
2554 – 2560

Hirota K, Murata M, Itoh T, Yodoi J, Fukuda K (2001) Redox-sensitive
transactivation of epidermal growth factor receptor by tumor necrosis
factor confers the NF-kB activation. J Biol Chem 276: 25953 – 25958

Ito Y, Takeda T, Sasaki Y, Sakon M, Yamada T, Ishiguro S, Imaoka S,
Tsujimoto M, Higashiyama S, Monden M, Matsuura N (2001) Expression
and clinical significance of the erbB family in intrahepatic cholangio-
cellular carcinoma. Pathol Res Pract 197: 95 – 100

Kitakata H, Nemoto-Sasaki Y, Takahashi Y, Kondo T, Mai M, Mukaida N
(2002) Essential roles of tumor necrosis factor receptor p55 in liver
metastasis of intrasplenic administration of colon 26 cells. Cancer Res 62:
6682 – 6687

Lozano JM, Collado JA, Medina T, Muntane J (2003) Protection against
liver injury by PGE1 or anti-TNF-a is associated with a reduction of TNF-
R1 expression in hepatocytes. Scand J Gastroenterol 11: 1169 – 1175

Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan
BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani
DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal
growth factor receptor underlying responsiveness of non-small-cell lung
cancer to gefitinib. N Engl J Med 350: 2129 – 2139

Matsuo M, Sakurai H, Saiki I (2003) ZD1839, a selective epidermal growth
factor receptor tyrosine kinase inhibitor, shows antimetastatic activity
using a hepatocellular carcinoma model. Mol Cancer Ther 2: 557 – 561

Matthews N (1978) Tumour-necrosis factor from the rabbit. II. Production
by monocytes. Br J Cancer 38: 310 – 315

Matthews N, Watkins JF (1978) Tumour-necrosis factor from the rabbit. I.
Mode of action, specificity and physicochemical properties. Br J Cancer
38: 302 – 309

Mochizuki Y, Nakanishi H, Kodera Y, Ito S, Yamamura Y, Kato T, Hibi K,
Akiyama S, Nakao A, Tatematsu M (2004) TNF-a promotes progression
of peritoneal metastasis as demonstrated using a green fluorescence
protein (GFP)-tagged human gastric cancer cell line. Clin Exp Metastasis
21: 39 – 47

Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J
Cancer 37(Suppl 4): S9 – S15

Orosz P, Echtenacher B, Falk W, Ruschoff J, Weber D, Mannel D (1993)
Enhancement of experimental metastasis by tumor necrosis factor. J Exp
Med 177: 1391 – 1398

Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye
FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers
WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung
cancer: correlation with clinical response to gefitinib therapy. Science
304: 1497 – 1500

Pennica D, Hayflick JS, Bringman TS, Palladino MA, Goeddel DV (1985)
Cloning and expression in Escherichia coli of the cDNA for murine tumor
necrosis factor. Proc Natl Acad Sci USA 82: 6060 – 6064

Qin Z, Krasagakes S, Kunzendorf U, Hoch H, Diamantstein T, Blankenstein
T (1993) Expresion of tumor necrosis factor by different tumor cell lines
results either in thmor suppression or augmented metastasis. J Exp Med
178: 355 – 360

Ritter CA, Arteaga CL (2003) The epidermal growth factor receptor-
tyrosine kinase: a promising therapeutic target in solid tumors. Semin
Oncol 30(Suppl 1): 3 – 11

Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J,
Hartmann D, Saftig P, Blobel CP (2004) Distinct roles for ADAM10 and
ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:
769 – 779

Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W (1999) IkB kinases
phosphorylate NF-kB p65 subunit on serine 536 in the transactivation
domain. J Biol Chem 274: 30353 – 30356

Sawada S, Murakami K, Yamaura T, Sakamoto T, Ogawa K, Tsukada K,
Saiki I (2001) Intrahepatic metastasis by orthotopic implantation of a
fragment of murine hepatoma and its related molecules. Tumour Biol 22:
154 – 161

Sirotnak FM, Zakowski MF, Miller VA, Scher HI, Kris MG (2000) Efficacy of
cytotoxic agents against human tumor xenografts is markedly enhanced
by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine
kinase. Clin Cancer Res 6: 4885 – 4892

Sordella R, Bell DW, Haber DA, Settleman J (2004) Gefitinib-sensitizing
EGFR mutations in lung cancer activate anti-apoptotic pathways. Science
305: 1163 – 1167

Tomita Y, Yang X, Ishida Y, Nemoto-Sasaki Y, Kondo T, Oda M, Watanabe
G, Chaldakov GN, Fujii C, Mukaida N (2004) Spontaneous regression of
lung metastasis in the absence of tumor necrosis factor receptor p55. Int
J Cancer 112: 927 – 933

Wu W, Murata J, Murakami K, Yamaura T, Hayashi K, Saiki I (2000) Social
isolation stress augments angiogenesis induced by colon 26-L5
carcinoma cells in mice. Clin Exp Metastasis 18: 1 – 10

Zembutsu H, Ohnishi Y, Daigo Y, Katagiri T, Kikuchi T, Kakiuchi S,
Nishime C, Hirata K, Nakamura Y (2003) Gene-expression profiles of
human tumor xenografts in nude mice treated orally with the EGFR
tyrosine kinase inhibitor ZD1839. Int J Oncol 23: 29 – 39

Selective inhibition of TNF-a-induced activation

Y Ueno et al

1695

British Journal of Cancer (2005) 92(9), 1690 – 1695& 2005 Cancer Research UK

T
ra

n
sl

a
ti

o
n

a
l

T
h

e
ra

p
e
u

ti
c
s


