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ABSTRACT: Universal machine learning (ML) interatomic
potentials (IAPs) for saturated, olefinic, and aromatic hydrocarbons
are generated by using the Sparse Gaussian process regression
algorithm. The universal potentials are obtained by combining the
potentials for the previously trained alkane/polyene systems and
the potentials generated with the presently trained cyclic/aromatic
hydrocarbon systems, along with the newly trained cross-terms
between the two systems. The ML-IAPs have been trained using
the PBE + D3 level of density functional theory for the on-the-fly
adaptive sampling of various hydrocarbon molecules and these
clusters composed of small molecules. We tested the ML-IAPs and
found that they correctly predicted the structures and energies of
the β-carotene monomer and dimer. Also, the simulations of liquid ethylene reproduced the molecular volume and the simulations
of toluene crystals reproduced higher stability of the α-phase over the β-phase. These ab initio-level force-fields could eventually
evolve toward universal organic/polymeric/biomolecular systems.
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■ INTRODUCTION

Conventional classical molecular force-fields1−6 have been
widely used for large-scale computational studies of organic/
biomolecular and macromolecular systems including drugs and
polymers which are not easily tractable with first-principles
calculations. Nevertheless, their accuracy has been limited due
to their deficiencies in describing various properties with
correct structures simultaneously. In particular, the potential
energy is expressed in terms of “descriptors” such as bonds,
angles, and so forth which are topology-dependent. Therefore,
their applicability has been limited to nonreactive systems.
Over the past decade, machine learning interatomic

potentials (ML-IAPs) representing ab initio potential energy
surfaces have been introduced based on neural networks
(NNs) and kernel regression methods.7−25 Most of these
potential energies are dependent on the environments of each
atom and so need to be trained at every situation and at every
instant that the atomic environment changes significantly.
Here, we utilize a one-to-one mapping from the coordinate
space to the descriptor space as an only local configuration-
dependent generalized form reflecting many-body correlations
while being invariant with respect to translations/rotations of
the physical system and permutations of identical atoms.26

Sampling by active/on-the-fly learning is conducted by using
a measure for the uncertainty of the model at given input

points. The uncertainty prediction is straightforward with
Bayesian inference methods. Here, the sparse Gaussian process
regression (SGPR) algorithm20,21,24,25 as a Bayesian approach
to regression is implemented for representing the potential
energy surface as well as uncertainty predictions. Using the
SGPR algorithm, the models in this study are generated in total
with around 1000 training samples which are much less than
the initial data needed for generating the seed NNs. Among
Bayesian methods, SGPR scales as n( ), while retaining the
important characteristics of Gaussian process regression
(GPR)8,27,28 having the computational cost of n( )3 with
the size of training data (n). Thus, SGPR is ideal for on-the-fly
sampling of optimal data sets for generating ML-IAPs.
Hydrocarbons are a diverse family of organic molecules

relevant to most of the macromolecules and biological
complexes. Recently, the ML force fields based on GPR have
been developed for predicting the energies and forces of
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alkanes and proteins and performing on-the-fly molecular
dynamics (MD) simulations.29,30 Previously, we considered
ML-IAPs using the SGPR algorithm25 for a large subcategory
of alkane, alkene, and polyene hydrocarbons as an initiative
toward a universal ab initio quality force-field for these
molecules. Here, we consider not only saturated, olefinic, and
aromatic hydrocarbons which include alkane, alkene, alkadiene,
and alkatriene molecules with branches but also cyclic
saturated/unsaturated and aromatic hydrocarbons and further
their combined structures.

■ METHODS

Machine Learning Potentials
A configuration x of N atoms is compiled to a list of descriptors x =
{ρi}i=1

N where ρi is a rotationally invariant descriptor for the local
chemical environment of atom i, which depends only on the relative
coordinates of N − 1 atoms within a cutoff radius. In kernel-based
regression methods, the potential energy becomes

E x K w( ) ( , )
i

N

j

m

i j j
1 1

∑ ∑ ρ χ=
= =

where z = {χj}j=1
m is the set of inducing descriptors, K is a covariance

kernel, and w = {wj}j=1
m is the vector of weights for the inducing

descriptors. The weights, which depend on the regression algorithm,
are obtained such that the potential energy and forces are reproduced
for a set of ab initio data X = {xk}k=1

n . The inducing descriptors are
often subset descriptors extracted from X.
In SGPR,18−21 w = (σ2kmm + knm

T knm)
−1knm

T Y where kmm and knm are
the inter-inducing (z−z) and data-inducing (X−z) covariance
matrices, Y is the data of potential energies (and forces), and σ is
the noise hyperparameter. The noise scale σ and other possible
hyperparameters in kernel K are optimized to maximize the likelihood
of the data energies. For the similarity kernel, we use a variation of the
smooth overlap of atomic positions26 which we have defined in refs 20
and 21. For the existing data, the inducing descriptors are sampled
from the data; otherwise, with on-the-fly learning, both the data and
inducing descriptors are sampled during MD. The uncertainty
prediction and its utilization for the on-the-fly learning algorithm
are discussed in detail in ref 25.

On-the-Fly MD Simulation
To obtain ML potentials, we carried out MD simulations with an
adaptive sampling algorithm.23 It learned the potential energy surfaces
from density functional theory (DFT) calculations which were
performed using the Vienna ab initio simulation package31 with
Perdew−Burke−Ernzerhof (PBE) functionals32 and van der Waals
interactions (D3).33 The projector augmented wave34 pseudopoten-
tials with 400 eV energy cutoff were used. The convergence criterion
for the electronic energy difference was set to 10−4 eV. The molecules
were placed in the center of a cubic cell in which the interlayer
distance between the molecules and the image is 15 Å vacuum, and
the Brillouin zone was sampled using the Γ-point. We considered
various conformers of given molecules and performed NVT MD
simulations using a Nose−́Hoover thermostat and Parrinello−
Rahman dynamics as implemented in the atomic simulation
environment package.35 The MD simulations were run for 3−6 ps
at 300 K with 0.5 fs time step. The coefficient of determination
defined by R2 = 1 − ( f i − fĩ)

2/( f i − f)̅2 is exploited for the test of
reliability of the SGPR-based first-principles potential/forces, where
{f i} are ab initio (PBE + D3) forces, f ̅ is their average, and {fĩ} are ML
forces.25

Owing to the abundance of relevant molecules, trained molecules
are split into several groups, and independent SGPR models are
trained in parallel using the AUTOFORCE package.36 In this study,
we considered expert models for linear or branched systems (C1−C8
alkane, C3−C10 isoalkane, C2−C6 alkene, C3−C6 branched alkene,
C3−C8 alkadiene, and C7−C9 alkatriene), cyclic systems (C3−C10

cycloalkane, C3−C8 cycloalkene, and C4−C10 methyl-/dimethyl-
cycloalkane, bicycloalkane), and aromatic systems (benzene, toluene,
xylene, trimethylbenzene, and mesitylene) to build the universal
model. To consider the intermolecular interactions, expert models for
liquid phases of alkane (methane, ethane, propane, and butane),
alkene (ethylene), and aromatic (benzene) are also trained and
denoted as alkane-inter, alkene-inter, and aromatic-inter, respectively.
The learnt expert models are available in gitlab website.37

■ RESULTS

Training Expert Models

On-the-fly MD simulations are performed for 3−6 ps to train
expert SGPR models for each molecule (see Method). Here,
expert models are newly trained for cyclic hydrocarbons
(cycloalkane, cycloalkene, and bicycloalkane) and aromatic
systems and then are combined with the previously generated
model for alkane, isoalkane, alkene, and alkadiene.25 Each
generated expert model is validated by comparing it with the
DFT calculation results (Table 1).

Rotation of CH3 Group in Ethane

The accuracy of universal ML-IAPs generated by combining
expert models is tested first. As the simplest case, nudged
elastic band calculation is conducted to predict the rotation
barrier of the CH3 group in ethane. The barrier to rotate the
CH3 group by 120° is calculated using universal ML-IAPs and
compared with the PBE + D3 results. As a result, the barrier of
the reaction was predicted to be 0.12 eV which is almost the
same as the PBE + D3 results showing 0.11 eV and with the
barrier of 0.12 eV obtained from the conventional OPLS-AA3

force fields in which the rotational barriers were optimized to
the ab initio computational value.
Dimerization Energy of β-Carotene

The universal ML-IAPs are used to predict the energies of
molecules containing various hydrocarbon groups in their
structure. Here, the structures and energies of the β-carotene
monomer and dimer (Figure 1) are investigated using the
universal potential. β-Carotene is an organic molecule having 8
isoprenes and 2 trimethyl-cyclohexenes in its structure. The
expert models including C−C single bonds, CC double
bonds, and cyclic hydrocarbons are used to construct the
universal model. The relative energies of 20 different
conformers of β-carotene monomer are predicted to be close
to the PBE + D3 results within a low root-mean-squared error
of 0.12 eV. The interaction energy between the two monomers

Table 1. Testing the Expert Models in Their Domainsa

group Ntest

energy MAE
(meV)

force MAE
(eV/Å)

force R2

testing/training

alkaneb 448 4.9 0.076 0.978/0.993
isoalkaneb 308 3.0 0.080 0.977/0.989
alkeneb 142 8.1 0.110 0.966/0.985
alkadieneb 374 5.3 0.110 0.959/0.978
alkatriene 238 3.2 0.108 0.992/0.966
cycloalkane 253 2.3 0.074 0.983/0.990
cycloalkene 77 3.4 0.110 0.963/0.984
methyl/dimethyl-
cycloalkane

946 5.2 0.092 0.970/0.989

bicycloalkane 594 2.1 0.075 0.980/0.987
aromatic 83 2.1 0.074 0.997/0.983
aNtest is the number of test samples and energy is the potential energy
per atom. bData from ref 25.
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in the β-carotene dimer is predicted to be −1.9 eV showing a
strong interaction, consistent with the strong interaction by
PBE + D3 calculation (−1.1 eV). In contrast, the conventional
OPLS-AA3 and AIREBO38 force-fields give only insignificant
interaction energies of −0.02 and −0.2 eV, respectively.
Liquid Ethylene

We predicted the molecular volume of liquid ethylene using
ML-IAPs. The NPT MD simulations of 34 ethylene molecules
are conducted for 30 ps with a constant pressure of 1 bar and a
temperature of 169.5 K. In this case, the volume per molecule
vl is predicted to be 76 ± 6 Å3 in good agreement with the
experimental value39 of 81.5 Å3. Some discrepancy from the
experimental value seems to arise from the inherent
discrepancy in the DFT-D3 calculation.
Toluene Crystal

The prediction of crystal structures is accelerated by using the
ML potential trained with DFT potential energies/forces.
Here, our universal model is employed to predict the stable
structure of the toluene crystal (Figure 2). The α-phase is

predicted to be the most stable state in the crystal, while the β-
phase is the metastable state.40 The predicted total energy of
each system is within 0.5% from the PBE + D3 values, and the
energy difference between the two phases is predicted as 1.89
eV, which is comparable with the PBE + D3 result showing

1.31 eV. The conventional AIREBO-M38 force-field gives an
energy difference of 2.26 eV.

■ DISCUSSION AND CONCLUSIONS

In this work, molecular and crystal structures of hydrocarbons
are predicted by the ML-IAPs obtained using the SGPR
algorithm. The expert models are generated for different
hydrocarbon groups from on-the-fly ML and then are
combined into the universal ML-IAPs. The universal ML-
IAPs which cover most of configurationally important potential
energy surfaces are generated from the expert models which
trained for ∼90 molecules (∼350 conformers) and 5 bulk
phases. It showed excellent transferability for various hydro-
carbon systems. The universal ML-IAPs predicted the
structure of β-carotene dimer with reasonable accuracy in
interaction energy between two monomers. Intermolecular
interactions in universal models adequately described the
molecular volume of liquid ethylene. They were extended to
investigate the phase of the toluene crystal, which showed the
stability of α-phase over β-phase. All these results indicate that
the universal model is generated efficiently from separately
trained atomic potentials for local configurations of various
subgroups. Therefore, this method can be utilized to generate
universal models for various systems consisting of multi-
components, which have not been possible so far for other ML
methods.
This study concludes one of the most extensive explorations

of the phase space of hydrocarbon molecules in which less than
1000 configurations are sampled as support for the SGPR
potential. These configurations are sampled on-the-fly with
MD using a Bayesian criterion, and therefore the config-
urations with redundant information are automatically
discarded. It has been shown that, for transferable ML
potentials, the quality of data in terms of diversity/
completeness is the most important factor rather than
quantity.41 Therefore, the data sampled here can be easily
used with any regression algorithm (kernel- or NN-based) in
order to produce transferable ML potentials. The small size of
ab initio data makes it straightforward to use higher-quality
(better than PBE + D3) first-principles methods in the future.
At last, it has been shown that structural descriptors with n-
body correlations are generally degenerate,42 and significantly
higher accuracy can be achieved with a more complete
descriptor scheme. Aside from including higher order
correlations, an intriguing concept is the development of
“recursively embedded atom NNs”9 in which the local
descriptors are still based on three-body correlations, but
nonlocal correlations (which lift the degeneracies) are
incorporated using local parameters which are linked to the
global structure by a message passing NN. A similar concept
can be explored with kernel-based regression methods such as
SGPR which is a promising direction for future studies.
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Figure 1. Structures of β-carotene monomer (a) and dimer (b).

Figure 2. Crystal structures of (a) α-toluene and (b) β-toluene.
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