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Compact Localized States in 
Engineered Flat-Band PT  
Metamaterials
N. Lazarides   1,2 & G. P. Tsironis1,2

The conditions leading to flat dispersionless frequency bands in truly one-dimensional parity-time (PT ) 
symmetric metamaterials comprised of split‐ring resonators (SRRs) arranged in a binary pattern are 
obtained analytically. In this paradigmatic system, in which the SRRs are coupled through both electric 
and magnetic dipole-dipole forces, flat-bands may arise from tailoring its natural parameters (such as, 
e.g., the coupling coefficients between SRRs) and not from geometrical effects. For sets of parameters 
which values are tailored to flatten the upper band of the spectrum, the solution of the corresponding 
quadratic eigenvalue problem reveals the existence of compact, two-site localized eigenmodes. Numerical 
simulations confirm the existence and the dynamic stability of such modes, which can be formed through 
the evolution of single-site initial excitations without disorder or nonlinearity.

Considerable research effort has focused the last decades in the development and investigation of artificial struc-
tures such as metamaterials1,2 and parity-time ( −PT ) symmetric materials3, which exhibit properties not available 
in natural materials. Inspired by Veselago’s ideas4, Pendry and his collaborators suggested using split-ring resona-
tor (SRR) arrays5 and thin-wire arrays6 to achieve effectively negative dielectric permeability and diamagnetic 
permittivity, respectively, in overlapping frequency bands. The combination of these two subsystems into a single 
artificial structure results in a negative refractive index medium, whose first realization was made in the turn of 
the 21st century7. The PT− symmetric materials originated from the ideas and notions of non-Hermitian 
Quantum Mechanics8, which were later transferred to optical lattices9 and electronic systems10. The application of 
these ideas in electronic circuits has provided easily accessible experimental configurations as well as a link to the 
electrical circuit picture of SRR-based metamaterials; the latter may acquire PT  symmetry which relies on bal-
anced gain and loss11,12. Such PT  metamaterials (PTMMs) may serve as paradigmatic systems that exhibit iso-
lated flat (dispersionless) bands. This is possible because the SRRs in an SRR-based PTMM are coupled together 
both electrically and magnetically through dipole-dipole forces13–15. That key-property, along with the arrang-
ment of the SRRs in a binary pattern, allow for the flattenning of the upper band of the two-band frequency 
spectrum through tailoring the coupling coefficients between SRRs. Clearly, this kind of band-flattening is not due 
to geometrical effects, i.e., the particular lattice structure (one-dimensional binary lattice).

Flat energy bands have been observed long ago in the electronic band structure of semiconductor heterostruc-
tures16 and superconducting cuprates17. Flat-bands were considered in the past as a theoretical convenience useful 
for obtaining exact analytical solutions of ferromagnetism (flat-band ferromagnetism)18. Recently, the possibility 
for dispersionless (diffraction-free in optics) propagation and robust localization in flat-band (FB) systems has 
initiated intensive research on simple crystal structures such as Lieb lattices19–22 as well as Kagomé23, merged24, 
cross-stitch25, Stub26, honeycomb27, rhombic28, sawtooth29, and diamond25,30 lattices that allow for precise FB 
engineering, even in the presence of nonlinearity30 and/or disorder30,31. Flat-band engineering methods have been 
also applied in tetragonal lattices beyond the tight-binding picture32. Analytical and numerical studies of the 
spectrum and localization properties of Lieb, Kagomé, and Stub ribbons reveal that PT  symmetry, relying on 
gain and loss, does not destroy the flat band in the Lieb ribbon (while it destroys the flat-band in the Kagomé and 
Stub ribbons)33. A detailed account on artificial flat band systems and related experiments is given in a recent 
review article34. Furthermore, research on numerus diverse systems such as complex networks35, Weyl semimetal 
superconductors36, organometalic frameworks37, twisted bilayer graphene38, graphene grain boundary39, and 
photonic crystal waveguides40, has also revealed the existence of FBs in their spectrum. Photonic flat bands, which 
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have been reviewed in ref.41 have been designed for slow light propagation42,43. The existence of one or more FBs 
in the spectrum of a particular system is typically associated with the emergence of compact localized eigen-
modes. Recently, the first experimental observation of diffraction-free propagation of such FB modes has been 
reported in Lieb photonic lattices44,45, and later in rhombic28 and Kagomé46 photonic lattices, as well as in bipartite 
optomechanical lattices47.

Here, a truly one-dimensional (1D) PTMM model in which a complete and isolated FB arises from tailoring 
its parameters and not from geometrical effects, is presented. A condition for the existence of a FB is obtained 
analytically, which can be satisfied by realistic parameter sets. In the presence of a FB in the frequency spectrum, 
compact, two-site localized eigenmodes are found by solving the corresponding quadratic eigenvalue problem 
(QEP). The existence and dynamic stability of such modes is confirmed by numerical simulations.

Results
Modelling, Frequency Dispersion, and Flat-Band Condition.  Consider a 1D array of SRRs arranged 
in a binary pattern as in Fig. 1, in which the SRRs have alternatingly loss (blue) and gain (red). In a balanced 
configuration, which is considered here, the amounts of loss and gain are equal. The SRRs shown in Fig. 1 (note 
the mutual orientation of their slits) interact both electrically and magnetically through dipole-dipole forces14,15, 
and can be regarded as RLC circuits, featuring a resistance R, an inductance L, and a capacitance C. Gain can be 
provided to an SRR by, e.g., mounting a negative resistance electronic device to its slit11. Using equivalent circuit 
models, the normalized equations governing the dynamics of the charge qn stored in the capacitor C of the n th 
SRR are obtained as11,48,49

λ λ γ λ λ+ + + + = − +′
+ + + +

′
+̈ ̈ ̈q q q q q q q{ }, (1)M n n M n n n E n E n2 2 1 2 2 2 1 2 1 2 2 2

λ λ γ λ λ+ + − + = − +−
′

+ −
′

+̈ ̈ ̈q q q q q q q{ }, (2)M n n M n n n E n E n2 1 2 2 1 2 2 2 1 2 1

where λE and λM (λ ′
E and λ ′

M) are respectively the electric and magnetic coupling coefficients between SRRs with 
center-to-center distance d (d′), γ is the gain/loss coefficient (γ > 0), and the overdots denote derivation with 
respect to the normalized temporal variable τ ω= tLC , with ω =− LCLC

1 .
By substituting the plane wave solution

κ τ κ τ= − Ω = + − Ω+q A i n q B i nexp[ (2 )], exp[ ((2 1) )] (3)n n2 2 1

into Eqs (1 and 2), where κ is the normalized wavevector and Ω is the frequency in units of ωLC, and requesting 
nontrivial solutions for the resulting stationary problem, we obtain

Ω = − ± −κ a
b b ac1

2
( 4 ), (4)

2 2
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In the exact PT  phase, Eq. (4) gives a gapped spectrum with two frequency bands separated by a gap. The FB 
condition is obtained by requesting κΩ =κd d( )/ 02  for any κ in the first Brillouin zone. After tedious calculations, 
we get
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where

Figure 1.  Schematic of a PT  metamaterial comprising split-ring resonators arranged in a one-dimensional 
binary pattern.
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The values of ′, λE, λM, and γ, for which the expression in the first squared brackets in Eq. (6) equals to zero, 
provide a physically acceptable parameter set which flattens the upper band of the spectrum over the whole 
Brillouin zone. For such a parameter set, the calculated frequency spectrum (from Eq. (4)) contains a completely 
flat, isolated upper band (Fig. 2(a)) with zero group velocity vg for any κ in the first Brillouin zone (inset).

The electric and magnetic coupling coefficients between single SRRs depend crucially on their mutual posi-
tion. In the model adopted here, the SRRs assume planar geometry; even in this case, however, the coupling 
coefficients depend strongly on the mutual orientation of the gaps. For the configuration of Fig. 1, these coeffi-
cients have been calculated accurately and plotted in Fig. 2(a) of ref.15 using the approach presented in ref.50, 
where the effect of retardation has been also taken into account. In these works, single SRRs having typical dimen-
sions have been considered, while the authors have verified that the resonance frequencies of pairs of SRRs cou-
pled with the calculated coefficients match the resonances found by direct numerical simulations using 
commercial software (CST Microwave Studio). This indicates that the calculated coupling coefficients can quan-
titatively describe the near-field interaction between SRRs. According to ref.15, the coupling coefficients used in 
Fig. 2(a) correspond to distances d∼2 and d′∼3.7 between neighboring SRRs in units of their radii, that seems in 
principle feasible. On the contrary, for parameter sets not satisfying Eq. (6), non-flat bands with κ− dependent 
group velocities vg such as those shown in Fig. 2(b) are typically obtained. The band-boundaries (BBs), i.e., the 
extremal frequencies in each band, are shown as a function of the gain/loss coefficient γ in Fig. 2(c). A critical 
value of that coefficint, γ = γc, separates the exact or unbroken from the broken PT  phase. For γ < γc (exact or 
unbroken PT  phase), the BBs of the upper band (red and black dotted curves) practically coincide for a substan-
tial interval of γ indicating zero bandwidth (i.e., a FB), while the width of the lower band (limited by the blue and 
green dotted curves) remains almost constant up to γ = γc. The flatness of the upper band for low γ can be seen 
more clearly in the inset. In Fig. 2(d), the BBs are plotted as a function of ′ ; the width of the upper band (limited 
by the red and black solid curves) consecutively decreases, goes through zero at a critical value of ′  indicated by 
the arrow, and then increases with increasing ′  (see also the inset). At that critical value of ′  the two bands 
coincide with those shown in Fig. 2(a).

Figure 2.  (a) Frequency bands Ωκ(κ) for a PT  metamaterial with γ = 0.003, λE = −0.123952, λM = −0.040128, 
λ ′

E = −0.027, and ′ = .0 92547. The upper band at Ω ∼ .κ 1 03949 (black-solid curve) is flat. Inset: The 
corresponding group velocities vg (=0 for the flat band). (b) Same as in (a) for γ = 0.003, λE = −0.055, 
λM = −0.02, λ ′

E = −0.027, and ′ = .0 92547 . (c) The band-boundaries as a function of γ for the coupling 
coefficients in (a). The vertical segment indicates γ = γc. Inset: Enlargement of the upper band-boundaries for 
low γ. (d) The band-boundaries as a function of ′, with γ, λE, λ′E, and λM as in (a). Inset: Enlargement of the 
boundaries of the upper band around the value of ′ for which the band is flat (shown in (a)).
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The Quadratic Eigenvalue Problem.  Eqs (1 and 2) can be written in matrix form as

= +ˆ ̈ ˆ ˆ QMQ C Q K , (8)1

where = q q qQ [ ]N
T

1 2  is an N− dimensional vector, with N being the total number of SRRs, and the N × N 
matrices M̂ and K̂ are given by
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The N × N matrix Ĉ1 is diagonal, with γ= −Ĉ( ) ( 1)n n
n

1 ,  (n = 1, …, N). By substituting = τΩeQ Qe i  into Eq. (8) 
we get

Ω + Ω + =ˆ ˆ ˆ ˆM C K Q 0{ } , (10)e2

where ≡ˆ ˆiC C1. Eq. (10) is a QEP51 with Ω being the eigenvalue and Qe the corresponding N− dimensional eigen-
vector. It can be solved by standard eigenproblem solvers after its linearization by the classical augmentation pro-
cedure52,53, which transforms square matrices of order N to 2N. Then, Eq. (10) is reduced to a standard eigenvalue 
problem (SEP)

= Ω =




Ω







=




− −







− −
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
zD z z Q

Q
D 0 I

M K M C
, , ,

(11)

e

e 1 1

where Î is the N × N identity matrix and 
−

M̂
1
 the inverse of M̂. In what follows, γ < γc so that the system is in the 

exact (unbroken) PT  phase, and therefore all its eigenvalues are real. A few selected eigenmodes Qe are shown in 
Fig. 3. The eigenmodes from the non-flat (lower) band are all extended, as that shown in Fig. 3(a). The other three 
eigenmodes in Fig. 3 belong to the flat (upper) band, and therefore they correspond to the same frequency eigen-
value Ωκ = ΩFB. Figure 3(b–d) show a partially localized, a highly localized, and a compact two-site localized 
eigenmode, respectively. The insets in Fig. 3(d) enlarge the localization region. The existence of compact localized 
eigenvectors in a class of FB models has been also demonstrated in ref.25. In that work, a model with at least one 
FB was considered, whose eigenvectors in the Bloch representation may be mixed to obtain highly localized FB 
eigenvectors, due to macroscopic degeneracy. While there is not any general theorem which states that among all 
these combinations there will be compact localized eigenvectors, such eigenvectors do exist in several FB models. 
Compact localized states were constructed, which are actually exact FB localized eigenstates, and then classified 
according to the number of unit cells they occupy. Such compact localized states occupying one unit cell form a 
complete and orthogonal basis that makes possible to detangle them from the rest of the lattice. The inversion of 
the detangling procedure provides the most general FB generator having localized eigenstates that occupy one 
unit cell. Such models include cross-stich and diamond chains, both quasi-one dimensional at the single-site level. 
Here, a purely one-dimensional system is considered in the form of a PT  symmetric SRR chain arranged in a 
binary pattern, whose geometry does not in general provides a FB. However, that system does possess a FB when 
the coupling coefficients and the gain/loss factor satisfy the condition Eq. (6). In that case, the resulting QEP is 
directly solved after being transformed into a SEP, demonstrating the existence of a compact localized FB eigen-
state as that shown in Fig. 3(d). In the light of these findings, it would be expected that the PTMM in the exact PT  
phase supports compact localized excitations which in general could be expressed as linear superpositions of a 
small number of eigenmodes.

The existence of localized states or modes in discrete lattices has been investigated intensively in the past. It has 
now been established that it may be due to quenched disorder (random lattices), a phenomenon based on wave 
interference which is known as Anderson localization54. In the presence of randomly distributed impurities in a 
metal, for example, different paths taken by an electron can interfere destructively, leading to localization of its 
wavefunction. The concept of Anderson localization is applicable to, and has actually been observed experimen-
tally in a variety of physical systems. Localization may also appear in nonlinear lattices which are perfectly peri-
odic; this effect is known as intrinsic localization, which leads to localized states of the discrete breather type55. 
Discrete breather excitations can be created in nonlinear lattices from an initially extended state through the 
standard modulational instability mechanism. Such localized states have been also experimentally observed in a 
variety of physical systems. Apart from the case of quenched disorder and nonlinearity, localized states can also 
arise in tight-binding (nearest-neighbor) models from particular lattice geometries in which destructive interfer-
ence leads to the emergence of FBs. FB models typically possess localized eigenstates, although there is no general 
theorem to guarantee their existence. Since in the model considered here, neither disorder nor nonlinearity is 
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present, the apearance of compact localized eigenstates for the PTMM is only due to the existence of the FB in its 
frequency spectrum.

Numerical Simulations.  Eqs (1 and 2), implemented with free-end boundary conditions τ τ= =+q q( ) ( ) 0N0 1 , 
are integrated in time with a standard 4 th order Runge-Kutta algorithm. The initial conditions are single-site excita-
tions of the form

τ

τ

τ

= = = +

= = ≠ +

= = = …


q A n N
q n N
q n N

( 0) for /2 1,
( 0) 0 for /2 1,
( 0) 0 for 1, , , (12)

n

n

n

where typically A = 0.1. For Ne SRRs at each end of the PTMM, gain has been replaced by equal amount of loss, as 
if the PT  metamaterial were embedded into a lossy metamaterial. It is found empirically that this is the most 
effective way to stabilize localized modes in PTMMs, even in the presence of nonlinearity11 (in which case the 
localized modes are of the discrete breather type). The need for introducing these lossy parts at each end of the 
PTMM comes from the fact that the initial condition Eq. (12) is clearly not an exact eigenmode of Eqs (1 and 2). 
However, after long time-integration, that type of initial condition may relax to an exact eigenmode with a lower 
energy than the initial one. During this process, some of the initial energy spreads towards the ends of the PTMM, 
where it is dissipated. Thus, these lossy parts help the excess energy to go smoothly away during the transient 
phase of integration, and allow the formation of a stable compact localized FB state with constant energy. This 
gradual energy removal is clearly observed in Fig. 4(a) discussed below.

The total energy, the (energetic) participation number, and the second moment

∑
ε

ε= + + + =
∑

= −   
ˆE K M P m n nQ Q Q Q Q Q Q Q1

2
{ }, 1 , ( ) ,

(13)
tot

T T T T

n n n
n2 2

2

respectively, where ε= ∑n nn n is the center of energy with ε = E E/n n tot being the energy density, are shown in 
Fig. 4 as functions of τ. The four curves are obtained for parameter sets which satisfy the FB condition; the cou-
pling coefficients have very similar values, while γ increases from 0.03 to 0.12 in steps of 0.03. In all cases, a steady 
FB state is reached at the end of the integration time; however, the transient period is longer and Etot is higher for 
higher γ. In the insets of Fig. 4(a–c), the quantities Etot, P, and m2, respectively, are plotted for the first 25,000 time 

Figure 3.  Real (blue) and imaginary (green) parts of four eigenmodes obtained by solving the quadratic 
eigenvalue problem Eq. (11) for N = 128, γ = 0.01, λE = −0.1200046, λM = −0.0400493, λ ′

E = −0.027, and 
′ = .0 9291948. The eigenfrequency of the flat band is Ω . 1 03740FB . (a) An extended eigenmode from the 
lower (non-flat) band. (b) A partially localized flat-band eigenmode. (c) A highly localized flat-band 
eigenmode. (d) The compact, two-site localized flat-band eigenmode. Insets: Enlargements around the 
localization region.
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units (t.u.). The energy Etot strongly fluctuates, but it remains on average constant until τ∼12,000 t.u. At the same 
time, P increases while fluctuating strongly and reaches P = 6, while m2 increases ∝τ2 indicating ballistic spread-
ing of the initial state. Around τ∼12,000 t.u., the energy which spreads out from the initial state has reached the 
lossy ends of the PTMM where it is dissipated. After that time, Etot, P, and m2 decrease gradually until they satu-
rate to constant values with vanishingly small fluctuations, indicating that a steady state has been reached. The 
constancy of m2, in particular, indicates that energy spreading has been stopped. Part of the initial excitation 
remains localized on two SRRs, as indicated by the value of P = 2 which measures the number of the energetically 
strongest excited sites.

Inspection of the qn(τ) in Fig. 5 reveals that the excitation is localized to only two, neighboring SRRs. The charges 
stored in the capacitors of these SRRs oscillate in anti-phase with frequency ΩFB; charge oscillations in the rest of the 
SRRs seems to have vanishingly small amplitude (see also Fig. 6(a)). Note that if the FB condition Eq. (6) is not satisfied, 
the initial excitations disperse rapidly in the lattice without leaving behind any trace of localization. Compact localized 
excitations, which tails decay as a stretched exponential or superexponential, often appear in discrete systems with 
nonlinear dispersion56. Here, the compact localized states appear solely due to the FB in the absence of nonlinearity or 
disorder, and hence there are significant differences. In Fig. 6(b), the quantity = | | + | | 

−y q qln[ ( )n n n
1
2 2 1 2  is plotted as 

a function of n; the three curves correspond to different integration times, τ0. In obtaining the results in Fig. 6(b), con-
vergence to a steady localized FB state was accelerated by continually eliminating the energy spreading away from the 
localization region during half of the integration time, i.e., for τ0/2 time units. During this time, we set = =q q 0n n  for 

= ... −n N1, , /2 3 and = + …n N N/2 6, , , every 10 periods π= ΩT 2 /FB FB of integration. This does not affect the 
region in which we expect the compact localized FB state to be formed, i.e., the eight sites for 

= − − … + +n 2, 1, , 4, 5N N N N
2 2 2 2

 (localization region). Note that for the chosen initial condition, the compact 
two-site FB localized state is generated at the sites = +n N /2 1 and = +n N /2 2, i.e., in the middle of the localization 
region. For τ τ> /20  the integration proceeds without elimination of the energy for τ0/2 more time units. The almost 
horizontal segments between < <

 

n16 63 and < <
 

n66 112 (i.e., those parts of the lattice which do not belong either 
to the lossy ends nor to the localization region) correpond to the tails of the localized FB states. With increasing τ0, the 
tails become more and more negative until they saturate at ∼ −y 35n  (the limit of double precision arithmetics) at 
τ0 = 2 × 106. In the inset, the yn profile at τ0 = 3 × 106 t.u. (black curve) is fitted by α= + − −y b b c n x( )exp[ ( ) ]n 0 0

2  
(red curve), where x0 = 65.5 and α0 = −2.9887 are taken from the numerical data. The fitting parameters are 

Figure 4.  Total energy Etot (a), energetic participation number P (b), and second moment m2 (c), as functions of 
τ for N = 128, Ne = 16, and γ = 0.003, λE = −0.123952, λM = −0.0400518, ′ = .0 92547 (black); γ = .0 006, 
λ = − .0 120021E , λ = − .0 0400518M , ′ = .0 9288096  (red); γ= .0 009, λ = − .0 1200284E , λ = − .0 0399891M , 

′ = .0 9290096  (green); γ = 0.012, λ = − .0 120122E , λ = − .0 0400118M , ′ = .0 9293204  (blue). Insets: The 
curves for γ = 0.003 (black) and 0.012 (blue) in a short time-scale. In the inset in (c), the curve 4.2 × 10−6τ2 
(green) is also plotted.
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b = −35.684 and c = −0.109955. Using the procedure of energy elimination, the relaxation time towards the formation 
of a compact localized FB state is reduced considerably. For example, after 3 × 106 time units of time-integration, the 
quantities Etot, P, and m2 take respectively the values 2.855 × 10−3, 2.005, and 2.826 × 10−1. In order to reach these values 
without energy elimination, the integration time needed is respectively ∼9.13 × 106, ∼2.82 × 107, and ∼4.62 × 107 time 
units. Note that without energy elimination there are still significant fluctuations around the above values for Etot, P, and 
m2. Thus, the quantities Etot, P, and m2 do not seem to relax at the same rate when they are calculated with and without 
elimination of energy. However, as far as the localization region is concerned, a comparison of the relaxation times for 

.P 2 005, i.e., 3 × 106 and ∼2.82 × 107, indicates a difference of an order of magnitude. Note that .P 2 005 indicates 
that there are only two strongly excited sites in the PTMM.

Conclusion
By tailoring the model parameters of a 1D PTMM comprising SRRs arranged in a binary pattern, an isolated and 
completely FB may appear in its frequency spectrum. The analytical condition, which those parameters have to 
satisfy in order to flatten the upper band, is obtained. The solution of the QEP reveals the existence of compact, 
localized FB eigenmodes, in which most of the energy is concentrated in two neighboring SRRs which are sepa-
rated by distance d′. This is consistent with earlier results on nonlinear binary PTMMs, for which the fundamen-
tal discrete breathers are two-site ones (and not single-site ones)11. The formation of compact, two-site localized 
FB states from single-site initial excitations is numerically confirmed. Since the FB is isolated, these FB states 
could be continued into compact breather-like (nonlinear) excitations. Note that the possibility of flattening one 
of the bands of the spectrum is solely due to model parameter engineering, and not to any geometrical effects. In 
this aspect, the existence of two types of coupling between SRRs, i.e., electric and magnetic coupling, is crucial. 
Note also that similar results would have been obtained for γ = 0, in which case only three parameters, i.e., λE, λM, 
and ′, should be matched to satisfy the corresponding FB condition. However, as it is demonstrated here, the 
band-flattening capability is not harmed by the PT  symmetry, as long as the PTMM is in the exact PT  phase.

Figure 5.  Spatiotemporal diagram of the charges qn after ∼108 time units of integration for γ = .0 01, 
λ = − .0 1200046E , λ = − .0 0400493M , ′ = .0 9291948, =N 128, =N 16e  (Ω . 1 03740FB ). Only part of the 
PT  metamaterial is shown for clarity.

Figure 6.  (a) Charge profile qn at maximum oscillation amplitude. Parameters as in Fig. 5. (b) The function yn 
after integration for τ0 = 1.5 × 106 (black), 2 × 106 (red), 3 × 106 (green), time units. Inset: Fitting of yn with an 
appropriate function (see text).
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