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While diabetes is characterized by hyperglycemia, nutri-
ent metabolic pathways like amino acid and tricarboxylic
acid (TCA) cycle are also profoundly perturbed. As gly-
cemic control alone does not prevent complications, we
hypothesized that these metabolic disruptions are re-
sponsible for the development and progression of di-
abetic cardiovascular autonomic neuropathy (CAN). We
performed standardized cardiovascular autonomic re-
flex tests and targeted fasting plasma metabolomic
analysis of amino acids and TCA cycle intermediates
in subjects with type 1 diabetes and healthy control
subjects followed for 3 years. Forty-seven participants
with type 1 diabetes (60% female and mean 6 SD age
356 13 years, diabetes duration 136 7 years, and HbA1c

7.9 6 1.2%) had lower fumarate levels and higher thre-
onine, serine, proline, asparagine, aspartic acid, phenyl-
alanine, tyrosine, and histidine levels compared with
10 age-matched healthy control subjects. Higher base-
line fumarate levels and lower baseline amino acid levels—
asparagine and glutamine—correlate with CAN (lower
baseline SD of normal R-R interval [SDNN]). Baseline
glutamine and ornithine levels also associated with the
progression of CAN (lower SDNNat 3 years) and change in
SDNN, respectively, after adjustment for baseline HbA1c,
blood glucose, BMI, cholesterol, urine microalbumin-to-
creatinine ratio, estimated glomerular filtration rate, and
years of diabetes. Therefore, significant changes in the
anaplerotic flux into the TCA cycle could be the critical
defect underlying CAN progression.

Cardiovascular autonomic neuropathy (CAN) is a widely
prevalent chronic diabetes complication that is character-
ized by impaired autonomic control of the cardiovascular
system (1). Although the initial prevalence of CAN in
patients newly diagnosed with type 1 diabetes is low, later
prevalence after 15 years of diabetes increases to 35% in
patients with type 1 diabetes and 60% in patients with
type 2 diabetes (1–4). CAN is an independent predictor of
chronic kidney disease progression and of cardiovascular
disease morbidity and mortality in patients with diabetes
(5–8). CAN is also associated with an increased risk of
cardiac arrhythmias, silent myocardial ischemia, myocar-
dial dysfunction, and sudden death (1,2,4,5,8). The earliest
clinical manifestations of CAN are insidious and include
reduced heart rate variability (HRV) at rest and during
several challenges such as standing, deep breathing, and
the Valsalva maneuver. Currently, objective measures of
HRV using recommended standard cardiovascular auto-
nomic testing for research studies or clinical care remain
the gold standard diagnostic (1). Given the critical prog-
nostic consequences of CAN, its targeted and timely di-
agnosis is paramount. However, the current cardiovascular
autonomic testing and other tests such as the baroreflex or
imaging studies remain both cumbersome and expensive.

Several risk factors play essential roles in the develop-
ment of CAN including chronic hyperglycemia, diabetes
duration, hypertension, hyperlipidemia, chronic inflam-
mation, oxidative stress, and, more recently, glucose
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variability (1,2,4,9). While CAN progression is prevented
with tight glucose control in type 1 diabetes (2,9) and
possibly with combined multifactorial interventions in
type 2 diabetes (10), to date there are no specific disease-
modifying therapies for CAN. Thus, a deeper understand-
ing of the mechanisms that modulate CAN development
and progression is crucial for both risk assessment and
therapeutic interventions.

In addition to the changes in carbohydrate metabolism,
diabetes is characterized by profound alterations in amino
acid and lipid metabolism. In fact, elevated levels of
branched-chain amino acids (BCAAs) are a well-characterized
risk predictor of future type 2 diabetes risk and insulin
resistance (11–13). While glycemic control as documented
by hemoglobin A1c (HbA1c) has been the primary goal for
diabetes management, a broader understanding of nutri-
ent metabolism can offer a potential mechanistic risk
modifier in the care of patients with diabetes. Indeed,
microvascular complications like neuropathy, diabetic kid-
ney disease, and retinopathy are also associated with
increased oxidative stress and alterations in the levels
of intermediary metabolites (14). There are tissue-specific
patterns of altered metabolic flux through the glycolytic
and tricarboxylic cycles in diabetic mouse models (15,16).
Importantly, diabetic neuropathy and retinopathy show
a distinctly different metabolic signature compared with
diabetic kidney disease in animal models (14,16,17). Re-
cent advancement in mass spectrometry techniques—
both targeted and untargeted approaches—have made
simultaneous large-scale assessments of various metabolic
pathways possible. Many studies have demonstrated that
these intermediary metabolites can predict the progression
and severity of disease in type 1 and type 2 diabetic kidney
disease (16,18–20) and diabetic retinopathy (21). These
studies have clarified the pathophysiological mechanisms,
highlighted biomarkers, and identified potential therapeu-
tic targets. However, such targeted metabolomic profiling
has not been used to characterize the metabolic perturba-
tions associated with CAN in diabetes. Therefore, the
primary objective of this study was to evaluate the asso-
ciation between perturbations in metabolic intermediates
(tricarboxylic acid [TCA] cycle metabolites and amino
acids) and measures of CAN in subjects with type 1 di-
abetes. The discovery of a distinct metabolomic biomarker
signature associated with CAN may provide insight into
the pathogenic pathways that are currently unknown and
may allow for the clinical stratification of these patients
early in the course of the disease so that interventions can
be targeted to specific vulnerable subjects.

RESEARCH DESIGN AND METHODS

Subjects
Forty-seven subjects with type 1 diabetes and 10 age-
matched healthy control subjects were enrolled in
a 3-year longitudinal observational study. Main inclusion
criteria for subjects with diabetes were age 18–65 years;
presence of type 1 diabetes, with a minimum of 5 years’

diabetes duration; and no signs of microvascular compli-
cations or uncontrolled hypertension at baseline. All sub-
jects had normal resting electrocardiogram and normal
exercise treadmill test results before enrolling in the study.
Patients with a history of cardiovascular disease were
excluded from the study. Healthy control subjects were
age matched with normal weight, normal glucose toler-
ance, and normal blood pressure (BP). Forty subjects with
type 1 diabetes completed the study. Demographic and
anthropometric measures were collected through ques-
tionnaires and physical examination; fasting blood and
urine samples were obtained for the measurement of
various metabolic parameters including HbA1c, lipid panel,
and renal function tests. The University of Michigan In-
stitutional Review Board approved the study, and written
informed consent was obtained from all subjects.

CAN Assessments
Standardized CAN evaluations were performed on all sub-
jects after an overnight fast. Subjects were asked to avoid
caffeine and tobacco products for 8 h before testing and to
hold any medication (except for basal insulin) until CAN
testing was completed. Subjects who experienced a hypogly-
cemic episode after midnight (blood glucose #50 mg/dL
[2.77 mmol/L]) before the testing were rescheduled. The
electrocardiogram recordings were obtained in the supine
position using a physiologicmonitor (Nightingale PPM2; Zoe
Medical), and data were collected during a resting study
(5 min) and during several standardized cardiovascular
autonomic reflex tests obtained under paced breathing
(R-R response to deep breathing, Valsalva maneuver, and
postural changes). Indices of CAN were derived using the
ANX 3.1 (ANSAR Medical Technologies) as previously de-
scribed (22). All CAN variables were assessed for the entire
cohort at baseline and for 40 subjects with type 1 diabetes
(out of 47) who completed the study at 3 years of follow-up.

CAN Outcome Measures
The followingmeasures of CANwere predefined as outcomes
of interests and analyzed: SD of normal R-R interval (SDNN),
root-mean square differences of successive R-R intervals
(RMSSD), expiration-to-inspiration (E:I) ratio during deep
breathing, Valsalva ratio (average of two measures), 30:15
ratio, low-frequency (LF) power (0.04–0.15 Hz), high-
frequency (HF) power (0.15–0.4 Hz), and LF/HF at rest
and during cardiovascular autonomic reflex tests.

Metabolite Measurements
Amino acids were measured after purification and de-
rivatization of 100-mL samples of plasma via gas
chromatography–mass spectrometry (Agilent 6890N Gas
Chromatograph coupled to 5973MSDMass Spectrometer)
using a modified EZ:faast kit (Phenomenex); norvaline was
used as an internal standard (16,20). TCA metabolites
were extracted from 100 mL plasma with a mixture of
methanol, chloroform, and water (8:1:1) containing 13C
isotope–labeled internal standards for citrate, succinate,
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fumarate, malate, a-ketoglutarate, lactate, and pyruvate.
Liquid chromatography–mass spectrometry analysis was
performed on an Agilent system consisting of a 1260
ultraperformance liquid chromatography module coupled
with a 6520 quadrupole time-of-flight mass spectrometer
(Agilent Technologies, Santa Clara, CA). Data were pro-
cessed using MassHunter Quantitative Analysis, ver-
sion B.07.00. Metabolites were normalized to the nearest
isotope-labeled internal standard and quantitated using
a linear calibration curves (16).

Statistical Analysis

Data Integrity Check
Metabolomic variables were examined for evidence of
problematic signal detection based on principal compo-
nent analysis–based inspection of metabolite-level and
subject-level outliers, batch effect, and detectability. All
variables were checked for normality, and appropriate data
transformation (natural log transformation or another
scale) was performed to satisfy the assumption of nor-
mality for the various statistical techniques used. Optimal
data normalization and scaling were performed to ensure
the appropriate data format for the subsequent statistical
analysis.

Analysis Plan
The differences in clinical characteristics, CAN measures,
TCA cycle metabolites, and amino acid levels between
subjects with type 1 diabetes and the healthy control
subjects were analyzed by using Student t test or Fischer

exact test for continuous variables and x2 test for categorical
variables. Bonferroni correction was applied to account for
multiple comparisons. Pearson correlation coefficient was
used to assess the relationship between the metabolic
intermediates (TCA cycle metabolites and amino acids)
and CAN parameters to detect strong trends in a biological
context that were confirmed with subsequent regression
models that account for the effects of clinical variables.
Linear regression was used to predict the association with
baseline metabolites and baseline CAN parameters and
predict CAN measures at the 3-year follow up. Dimension
reduction with principal component analysis was used to
account for the high correlation between biologically re-
lated metabolites, and the principal component accounting
for the most variance was used for further analysis. All
statistical analysis was performed using the software SPSS
(version 24; IBM Corp.).

Data and Resource Availability
The data sets generated during and/or analyzed during the
current study are available from the corresponding author
on reasonable request. No applicable resources were gen-
erated or analyzed during the current study.

RESULTS

Baseline Clinical Characteristics, MetaboliteMeasures,
and CAN Measures in All Participants
Table 1 shows the baseline clinical characteristics of this
cohort, with comparison of the 47 subjects with type 1
diabetes (61% female, 4% current smokers, and mean 6 SD

Table 1—Clinical characteristics of subjects with type 1 diabetes and healthy control subjects

Subjects with type 1
diabetes (N = 47)

Healthy control
subjects (N = 10) P value

Type 1 diabetes (N = 40)

P valueBaseline Follow-up

Age, years 34 6 13 34 6 12 0.85 35 6 13 38 6 13 —

BMI, kg/m2 26 6 5 23 6 3 0.08 27 6 5 27 6 4 0.89

Systolic BP, mmHg 116 6 11 115 6 8 0.63 117 6 11 117 6 11 0.99

Diastolic BP, mmHg 72 6 8 69 6 8 0.29 73 6 8 69 6 11 0.08

Heart rate, bpm 67 6 10 71 6 8 0.16 67 6 10 67 6 11 0.97

HbA1c, % 8.0 6 1.2 5.4 6 0.3 ,0.0001 8 6 1 8 6 1 0.99

Total cholesterol, mg/dL 166 6 28 162 6 30 0.66 165 6 29 173 6 27 0.98

LDL-c, mg/dL 89 6 23 86 6 23 0.7 89 6 24 90 6 21 0.81

HDL-c, mg/dL 64 6 19 58 6 13 0.37 64 6 20 67 6 19 0.42

Triglycerides, mg/dL 70 6 31 87 6 33 0.12 67 6 33 78 6 41 0.24

LF power 2.96 6 3.01 2.72 6 2.59 0.81 3.23 6 3.27 2.35 6 4.05 0.07

HF power 2.95 6 3.47 2.05 6 2.02 0.44 2.85 6 3.39 3.25 6 7.38 0.68

LF:HF ratio 2.08 6 1.89 1.43 6 0.24 0.29 2.32 6 2.03 2.65 6 3.57 0.62

Valsalva ratio 1.36 6 0.27 1.36 6 0.20 0.99 1.35 6 0.31 1.34 6 0.33 0.81

30:15 ratio 1.24 6 0.15 1.23 6 0.17 0.9 1.22 6 0.15 1.21 6 0.14 0.93

E:I ratio 1.23 6 0.12 1.25 6 0.13 0.71 1.23 6 0.13 1.21 6 0.14 0.29

SDNN, ms 53 6 21 54 6 31 0.87 51 6 19 43.62 6 22 0.02

RMSSD, ms 40 6 27.6 39 6 31 0.91 36 6 24 34 6 31 0.47

Data are means 6 SD. HDL-c, HDL cholesterol; LDL-c, LDL cholesterol.
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age 34 6 13 years, diabetes duration 13 6 6 years, and
HbA1c 8 6 1.2%) and the age- and sex-matched healthy
control subjects. There were no significant differences in
the baseline characteristics between patients with type
1 diabetes and healthy control subjects except for fasting
blood glucose (153.7 6 76 vs. 86.2 6 14 mg/dL, re-
spectively; P = 0.007) and HbA1c, which were the criteria
used to define the group with type 1 diabetes. The
subjects with type 1 diabetes were slightly heavier,
with no evidence of microvascular or macrovascular
complications at baseline (no retinopathy, normal serum
creatinine, or microalbuminuria as per study design).
While the healthy control subjects were not on medica-
tion, all subjects with type 1 diabetes were on insulin,
and among these 24 (51%) were using continuous sub-
cutaneous insulin infusion via a pump, 7 (15%) were on
statins, 5 (11%) were on ACE inhibitors (despite no prior
history of diabetic nephropathy), and none were on
b-blockers. There were no differences in any CAN mea-
sures between the subjects with type 1 diabetes subjects
and healthy control subjects at baseline (Table 1).

Forty subjects with type 1 diabetes returned at the end
of 3 years for follow-up CAN and laboratory measures
(Table 1). During the follow-up, there were no significant

changes to glycemic control or changes to their BP, BMI, or
lipid control. However, there was a significant decline in the
SDNN, indicating worsening CAN (P , 0.05). As shown in
Table 2, at baseline amino acids threonine, serine, proline,
asparagine, aspartic acid, phenylalanine, tyrosine, and his-
tidine were elevated in the subjects with type 1 diabetes as
compared with their healthy counterparts. Among the TCA
cycle metabolites, fumarate was lower in subjects with
type 1 diabetes (Table 2). We stratified our cohorts based
on the highest daily insulin requirements and found no
differences in the levels of BCAA or CAN measures be-
tween these subgroups (Supplementary Table 1).

Correlation of Metabolites With Measures of CAN in
Type 1 Diabetes at Baseline and 3-Year Follow-up
Table 3 and Fig. 1 show the Pearson correlations between
measures of CAN and baseline metabolites levels in par-
ticipants with type 1 diabetes. Figure 2 shows the Pearson
correlations between the baseline metabolite levels and
change in CAN measures at baseline and at 3-year
follow-up of significant metabolites in a pathway-specific
pattern. As observed, higher levels of baseline fumarate
were associated with worsening baseline CAN parameters
(SDNN, r =20.46, P = 0.003; RMSSD, r =20.40, P = 0.01;

Table 2—Baseline TCA cycle intermediates and amino acids in study participants

Variable
Subjects with type 1
diabetes (n = 47)

Healthy control
subjects (n = 10) P value q value

Amino acids
Alanine 433.0 6 181.1 361.9 6 94.2 0.48 0.58
Glycine 321.4 6 124.3 266.4 6 55.4 0.21 0.32
Threonine 186.1 6 71.2 127.9 6 34.8 0.01 0.05
Serine 197.6 6 77.0 127.1 6 20.6 0.0015 0.02
a-Aminoisobutyric acid 22.9 6 9.6 22.6 6 9.3 0.97 0.97
Valine 242.1 6 76.1 204.4 6 54.5 0.20 0.32
Leucine 103.2 6 43.8 102.6 6 32.4 0.80 0.84
Isoleucine 72.2 6 22.8 62.5 6 21.2 0.17 0.31
Phenylalanine 58.6 6 17.1 40.5 6 10.0 0.0007 0.02
Tyrosine 51.2 6 21.4 35.8 6 13.2 0.015 0.05
Tryptophan 49.5 6 18.7 44.3 6 14.2 0.49 0.58
Asparagine 75.5 6 25.9 53.6 6 11.9 0.01 0.05
Aspartic acid 6.2 6 3.5 3.9 6 1.0 0.11 0.22
Glutamic acid 55.4 6 30.6 66.6 6 28.4 0.18 0.31
Glutamine 1002.7 6 537.0 597.9 6 191.1 0.02 0.07
Ornithine 48.2 6 24.7 54.1 6 25.3 0.40 0.53
Proline 213.6 6 69.8 162.8 6 54.2 0.01 0.05
4-Hydroxyproline 19.9 6 12.2 14.3 6 7.4 0.07 0.17
Lysine 224.3 6 93.3 182.8 6 51.2 0.30 0.42
Histidine 86.5 6 25.6 67.5 6 19.2 0.01 0.05

TCA metabolites
Citrate/isocitrate 19.50 6 3.72 21.09 6 3.12 0.04 0.19
a-Ketoglutarate 1.80 6 0.25 1.78 6 0.14 0.57 0.88
Succinate 2.87 6 0.66 2.84 6 0.54 0.85 0.88
Fumarate 0.46 6 0.04 0.54 6 0.04 <0.0001 <0.0001
Malate 2.07 6 0.62 2.02 6 0.35 0.88 0.88
Lactate 180.17 6 82.31 204.52 6 57.17 0.61 0.88
Pyruvate 3.91 6 1.58 4.43 6 1.72 0.44 0.88
Flavin adenine dinucleotide 0.46 6 0.001 0.46 6 0.001 0.73 0.88

All data are presented as means 6 SD and in mmol/L. Boldface type indicates P , 0.05 and q , 0.05.
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pNN50, r = 20.45, P = 0.003). Similarly, higher baseline
citrate levels were associated with worse baseline CAN
parameters (RMSSD, r = 20.51, P = 0.003) (Table 3).
Meanwhile, lower levels of both amino acids asparagine
(SDNN, r = 0.42, P = 0.007) and glutamine (SDNN, r =
0.51, P = 0.001) were positively correlated with baseline
SDNN. The correlation of the entire metabolite panel
and all baseline CAN measures are represented in Supple-
mentary Table 2. Baseline estimated glomerular filtration
rate (eGFR) and urine microalbumin-to-creatinine ratio
have no relationship with baseline, year 3, or change in
CAN measures.

Baseline glutamine and ornithine levels were also cor-
related with SDNN at the 3-year follow-up (glutamine, r =
0.60, P = 0.005; ornithine, r = 0.45, P = 0.005) (Table 3 and
Fig. 1). The association of baseline glutamine levels with
baseline SDNN and 3-year follow-up remained significant
even after adjustment for years of diabetes, history of
smoking, baseline HbA1c, blood glucose, BMI, total cho-
lesterol, urine albumin-to-creatinine ratio, and eGFR (P =
0.014 and P = 0.005, respectively). In other words, in-
creased citrate and fumarate levels and decreased gluta-
mine and asparagine levels at baseline were associated with
lower SDNN levels at baseline, indicating worsening CAN.

Table 3—Correlation between baseline and 3-year CAN parameters with baseline metabolites and principal components

SDNN (r) RMSSD (r)

Baseline 3-year Difference Baseline 3-year Difference

Metabolites
Fumarate 20.38 20.18 0.2 20.32 20.2 0.06
Pyruvate 20.34 20.19 0.19 20.31 20.19 0.08
Citrate/isocitrate 20.28 20.06 0.3 20.43 20.24 0.2
a-Ketoglutarate 20.26 20.09 0.21 20.14 20.04 0.09
Asparagine 0.44 0.3 20.04 0.21 0.19 0.1
Glutamine 0.52 0.6 0.16 0.26 0.24 0.1
Ornithine 0.11 0.45 0.37 0.24 0.44 0.47

Principal components
Glutamine–asparagine–a-ketoglutarate 0.44 0.62 0.02 0.32 0.4 0.08
Ornithine-glutamine 0.38 0.61 0.31 0.3 0.41 0.34
a-Ketoglutarate–fumarate–citrate 20.38 20.14 0.3 20.37 20.2 0.15

Values represent r values of Pearson correlation. Boldface type indicates P , 0.05. Italic type indicates P , 0.001.

Figure 1—Correlation of baseline SDNN with baseline glutamine levels (A), asparagine levels (B), and fumarate levels (C). Correlation of
3-year SDNNwith baseline glutamine levels (D) and baseline ornithine levels (E). Panel F demonstrates the correlation between the change in
SDNN over 3-year follow-up with baseline ornithine levels. All metabolite levels in mmol/L and SDNN in seconds. Pearson correlation
represented as r. yr, year. *P value ,0.05.
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The relationship with baseline glutamine and ornithine
with SDNN was maintained at 3-year follow up. The
correlation of the entire metabolite panel and 3-year
CAN measures are represented in Supplementary Table 3.

As observed in Table 3, lower levels of baseline orni-
thine were associated with worsening of several CAN
parameters from baseline to 3-year follow-up (SDNN,
r = 0.37, P = 0.024; RMSSD, r = 0.466, P = 0.003; HF
power, r = 0.342, P = 0.036; 30:15 ratio, r = 0.353, P = 0.03;
E:I ratio, r = 0.365, P = 0.024). The association of baseline
ornithine levels with change in RMSD, 30:15 ratio, and
E:I ratio over 3 years remained significant even after ad-
justment for age, years of diabetes, history of smoking,
BMI, baseline HbA1c, blood glucose, cholesterol, urine
microalbumin-to-creatinine ratio, and eGFR). The corre-
lation of the entire metabolite panel and change in CAN
measures are represented in Supplementary Table 4.

To account for the close correlation between many of
the metabolites, we reduced the dimensions of groups
of similar metabolites based on biological context using
principal component analysis. We found that the princi-
pal component representing glutamine, asparagine, and
a-ketoglutarate (anaplerotic pathway/gluconeogenesis)
and the principal component representing glutamine
and ornithine (ornithine synthesis) both positively corre-
lated with baseline SDNN and 3-year SDNN, indicating
worsening CAN measures (Table 3). Similarly, the principal

component representing the altered TCA metabolites cit-
rate, a-ketoglutarate, and fumarate negatively correlated
with baseline SDNN. Hence, the metabolite changes asso-
ciated with CAN parameters are pathway specific and
reveal systematic changes in metabolite patterns (Fig. 2).

DISCUSSION

This is the first study to explore the association between
the CAN and intermediates of central carbon metabolism
(TCA cycle metabolites and amino acids) using a targeted
metabolomics approach. In this study, we demonstrate
that subjects with type 1 diabetes had baseline perturba-
tions in levels of several amino acids and lower fumarate
levels in the plasma compared with the healthy control
subjects. Higher baseline levels of TCA cycle metabolites
such as fumarate and citrate were also associated with
lower SDNN measures in type 1 diabetes, indicating wors-
ening CAN measures. Furthermore, lower baseline gluta-
mine levels associated with lower SDNN measures at
baseline and at 3-year follow-up, indicating worsening
CAN measures after adjustment for other traditional
risk factors. Similarly, baseline ornithine levels are asso-
ciated with changes in SDNN and RMSDDmeasured at the
3-year follow-up after adjustment of clinical variables.

The metabolic profiles linked with diabetes risk and
diabetes itself include metabolites beyond glucose metab-
olism. Type 1 diabetes risk is traditionally associated with

Figure 2—A: Schematic diagram of the altered metabolites that associate with CAN parameters. Metabolites highlighted in red ovals are
increased in subjects with type 1 diabetes and positively related to baseline SDNN and RMSSD, those in green-filled ovals are decreased in
subjects with diabetes and positively related to SDNN and RMSSD at baseline and follow-up [r values by Pearson correlation to baseline CAN
parameters, represented in parentheses as (SDNN/RMSSD)], and those in yellow-filled ovals are decreased in subjects with diabetes and
positively related to SDNN and RMSSD at follow-up and the difference in SDNN and RMSSD from baseline and follow-up [r values by
Pearson correlation to 3-year follow-up CAN parameters, represented in parentheses as (SDNN/RMSSD)]. OAT, ornithine amino transferase;
P5CS, pyrroline 5-carboxylate synthetase.
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autoimmunity, and lysophosphatidylcholine (18:0/0:0),
BCAA, and glutamic acid are increased along with de-
creased glutamine and methionine levels before and after
seroconversion with autoantibodies (23,24). Type 2 diabe-
tes risk is associated with insulin resistance (25) and with
elevated amino acids isoleucine, leucine, valine, tyrosine,
and phenylalanine and decreased asparagine, glycine, and
glutamine levels (25,26). Although this study only included
participants with type 1 diabetes, given the contemporary
changes in the phenotypes of patients with type 1 diabetes
and that insulin resistance may be present in some par-
ticipants, we stratified our cohorts based on highest daily
insulin requirements and found no differences between
these subgroups. In C-peptide–negative patients with type
1 diabetes, levels of leucine, isoleucine, valine, phenylala-
nine, and tyrosine are increased, whereas levels of glycine,
glutamate, and threonine are decreased compared with
both matched control subjects and insulin-treated patients
(27); However, treatment with insulin with a euglycemic
clamp removed these metabolic differences. Thus, the
metabolome is very sensitive to the presence or absence
of insulin in type 1 diabetes, and this could be the driving
force for diabetes complications. In this study, subjects
with type 1 diabetes demonstrated increased levels of
threonine, serine, proline, histidine, asparagine, aspartic
acid, phenylalanine, and tyrosine compared with healthy
control subjects. Aromatic amino acids phenylalanine and
tyrosine have previously been associated with insulin re-
sistance, obesity, and future diabetes risk along with in-
creased BCAA levels (25). The increase in these glucogenic
amino acids compared with control subjects raises the
possibility of altered metabolism of the metabolites in
type 1 diabetes despite control of diabetes.

Our work on the db/db mouse model of diabetes dem-
onstrated tissue-specific metabolic reprogramming and
mitochondrial dysfunction that are associated with micro-
vascular diabetes complications (16). Peripheral nerves are
dependent on glycolysis independent of insulin action.
However, diabetic db/db mice demonstrated decreased
glucose metabolic flux and increased fatty acid oxidation
in peripheral nerves (16,28). In a similar type 2 diabetes
mouse model, decreased glycolytic and TCA intermediates
in sural, sciatic, and dorsal root ganglion were observed
(14). In contrast, other animal models of diabetic neurop-
athy reported a striking upregulation of mitochondrial
oxidative phosphorylation and perturbation of lipid me-
tabolism in the distal sciatic (29). While these studies
indicate the perturbed metabolism in diabetic peripheral
nerves in mouse models, there is no prior evidence linking
changes in metabolomic profiles with the development or
progression of CAN that involves deficits of the autonomic
nervous system. Our data in circulating plasma levels in
direct contradiction to the peripheral nerves in animal
models of diabetes indicate elevated TCA metabolites
and decreased glutamine, ornithine, and asparagine levels
associated with worsening CAN measures. The data sug-
gest anaplerotic flux into the TCA cycle in patients with

worsening CAN, which needs to be confirmed with more
definitive metabolic flux studies.

Diabetic retinopathy, a closely related microvascular
complication, has elevated serum tryptophan metabolites:
kynurenine, kynurenic acid, and 3-hydroxykynurenine
(21). Diabetic kidney disease also demonstrates perturbed
metabolic signatures (18–20). Serum leucine and phos-
pholipids are altered in diabetic kidney disease compared
with levels in subjects with diabetes and healthy control
subjects (30). Elevated amino acid–derived acyl-carnitines,
essential amino acids, and their derivatives are associated
with progression to end-stage renal disease in patients
with type 2 diabetes over many decades (20). Similarly,
serum levels of seven modified amino acids (C-glycosyl
tryptophan, pseudouridine, O-sulfo tyrosine, N-acetyl
threonine, N-acetyl serine, N6-carbamoyl threonyl aden-
osine, and N6-acetyl lysine) were associated with renal
function decline independent of the relevant clinical cova-
riates in type 1 diabetes (19). In our study, lower levels of
glutamine, asparagine, and ornithine associated with wors-
ening CAN measures. In addition to amino acids, several
TCAmetabolites are increased in the urine of patients with
type 2 diabetes, and urinary fumarate levels predicted
chronic kidney disease progression in men (15). Mouse
models also support the influence of higher fumarate levels
in the kidney and urine as a result of NADPH oxidase 4
(NOX4) activity leading to decreasing renal function (31).
In line with these changes in other diabetes complications,
high circulating fumarate, citrate, and a-ketoglutarate
levels were associated with low SDNN, indicating worsen-
ing CAN in our study.

Hyperglycemia is generally acknowledged as the driving
factor for most of the diabetes complications. In our study,
the metabolite associations with the CAN measures
remained unaffected by the concurrent blood glucose in
the same sample and long-term blood glucose control in
the form of HbA1c. Increased glucose flux can result in the
downstream production of advanced glycation end prod-
ucts, polyol, hexosamine, protein kinase C, and poly(ADP-
ribose) polymerase pathways. Oxidative stress, apoptosis,
and inflammation are also the consequences of the above-
increased flux (32). Diabetic glucotoxicity along with these
altered TCA metabolites can contribute to protein mod-
ifications that include glycation, carbonylation, nitration,
cysteine S-nitrosylation, acetylation, sumoylation, ADP-
ribosylation, O-GlcNAcylation, and succinylation (33). In
addition to this, succinate and other TCA derivatives act on
specific receptors and pathways to effect oxidative stress
and inflammation (34,35). Hence, the preserved Krebs
cycle intermediates that negatively associate with CAN
measures might be driving altered posttranslational pro-
tein modifications, binding to receptors, oxidative stress,
and inflammation in type 1 diabetes.

Glutamine is the most abundant amino acid in the
circulation, and both glutamine and asparagine depending
on conditions can feed into or be derived from the TCA
cycle metabolites a-ketoglutarate and oxaloacetate (3).
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Certain cells rely solely on glutamine for critical cellular
functions, and other metabolic inputs are unable to replace
them. Glutamine itself is the source of many metabolites
including glucose, a-ketoglutarate, glutamate, ornithine
(and therefore arginine, urea, and nitric oxide production),
and glutathione (3). Glutamine is responsible for gluco-
neogenesis and ammonia production in the kidney and
liver, neurotransmitter synthesis in the brain (g-amino
butyrate [GABA]), NADPH, antioxidant defenses, and
DNA and protein synthesis in cells of the immune system
(3). In our study, lower levels of amino acids glutamine,
asparagine, and ornithine were positively related to wors-
ening CAN parameters SDNN and RMSD both at baseline
and at follow-up. Glutamine metabolism is known to be
perturbed in diabetes, and increased glutamine levels are
associated with decreased risk of both type 2 diabetes and
coronary artery disease; in addition, glutamine levels are
also increased with rosiglitazone treatment in these
patients (36,37). Glutamine supplementation was benefi-
cial in preventing neuronal loss and development of ex-
perimental diabetic cardiomyopathy (38,39). Similarly,
glutamine was shown to increase insulin sensitivity and
cause overnight hypoglycemia postexercise in adolescents
with type 1 diabetes by decreasing glucose production (40).
Thus, glutamine and glutamine metabolism play crucial
roles in the cardiovascular burden, insulin sensitivity, and
microvascular complications in diabetes, and data from
our study indicate that glutamine and its metabolism are
central to CAN progression in type 1 diabetes. Glutamate
product GABA acts on GABA receptors present in sympa-
thetic ganglia, causing diminished ganglion blockade; thus,
glutamate by-products could influence the autonomic ner-
vous system (41). Similarly, ornithine, a product of glu-
tamate, plays a central part of the urea cycle, polyamine
synthesis, and collagen formation. Ornithine supplemen-
tation promotes weight loss in rats by increasing sympa-
thetic nerve activity in white and brown adipose tissue and
modulating lipid metabolism (42). Therefore, the relation-
ship between decreased ornithine levels in our study and
changes in CAN measures at 3-year follow up is possibly
due to the modulation of autonomic nerve activity.

High baseline fumarate and citrate levels along with low
glutamine levels are linked to worse baseline CAN mea-
sures indicating breaks in the citric acid cycle in CAN. In
diabetic nephropathy, NADPH oxidase 4–induced decrease
in kidney fumarate hydratase levels (the enzyme that
converts fumarase to malate) caused increased urinary
fumarate levels (31). Fumarate levels in the diabetic kidney
stimulated endoplasmic reticulum stress, matrix gene ex-
pression, and expression of hypoxia-inducible factor-1a
and transforming growth factor-b. So, oxidative stress
could reduce fumarate hydratase levels, leading to fuma-
rate accumulation (31). Inherited fumarate hydratase de-
ficiency results in increased fumarate levels along with
severe neurological deficits and failure to thrive. Therefore,
it is possible that the increased oxidative stress associated
with CAN could decrease fumarate hydratase levels and

increase fumarate levels, leading to neurotoxicity. How-
ever, there is no published connection linking fumarate
levels to neuropathy. Fumarate levels and glutamine levels
are also linked via the urea cycle. Glutamate generates
carbamoyl phosphate from ammonia as the first step of the
urea cycle, while fumarate is a product of the urea cycle.
Clearly, quantifying the entire plasma metabolome, in-
cluding the metabolites of the urea cycle, will uncover
the possible link between these metabolites.

Both SDNN and RMSSD are indices of heart rate
variability over time. Though correlated, these indices
provide information on different aspects of autonomic
modulation. It is widely accepted that SDNN is a broad
measure of both the sympathetic and parasympathetic
modulation of HRV, while the RMSSD mainly character-
izes the parasympathetic effect (43). In diabetic CAN, the
interactions between the sympathetic/parasympathetic
tone and function are complex and the changes in various
indices may not be fully synchronized, with alterations in
some measures preceding others. SDNN and RMSSD are
very early indicators of CAN, and changes in these indi-
cators usually precede manifest forms of CAN by many
years. Given that the participants enrolled in this obser-
vational study had no evidence of complications at baseline
(as per study design), and thus are in a very early, pre-
clinical stage of CAN, it is conceivable to observe selectivity
in the relationship between certain HRV indices and
specific metabolites. Our findings could also suggest dif-
ferentiated mechanisms contributing to the modulation of
various aspects of the autonomic nervous system in early
stages of disease that could be targeted.

Lower baseline glutamine and higher baseline fumarate,
citrate, and pyruvate levels are related to worse CAN
measures at baseline and possibly related autonomic nerve
dysfunction. Ornithine levels are associated with worsen-
ing CAN measures at follow-up, possibly indicating an
early deficiency associated with causation. This distinct
metabolite pattern may underlie unique aspects of the
pathophysiology of the presence and development of CAN.
Additionally, these metabolites could serve as a biomarker
for autonomic dysfunction in patients with type 1 diabetes
and as an outcome in exploratory trials of therapies for
early CAN. Although these patterns are very informative,
these findings need to be confirmed in a larger, adequately
powered, independent cohort.

CAN is an independent predictor of progression of
diabetic kidney disease, and patients with more advanced
chronic kidney disease are also more likely to have CAN
(5–7). Per study design, none of the patients had evidence
of diabetic kidney disease as evidenced by normal creat-
inine and absence of microalbuminuria. Also, there were
no relationships of the baseline eGFR or urine micro-
albumin-to-creatinine ratio with CANmeasures at baseline
or year 3 or with change in CAN during the follow-up period.
Neither eGFR nor urine microalbumin-to-creatinine ratio
diminished the relationship between baseline metabolites
and CAN measures. Therefore, we can reasonably conclude
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that the relationship of these metabolites and CAN
measures is independent of renal function.

In summary, this study elucidates specific patterns
among TCA metabolites and amino acids that associate
with baseline CAN and changes in CAN measures. Specif-
ically, lower levels of a-ketoglutarate amino acids aspar-
agine and glutamine, that feed into and/or can be
synthesized from oxaloacetate and a-ketoglutarate of
the TCA cycle, are associated with CAN measures (Fig.
2). This pattern might indicate a block in the flux of these
metabolites out of the TCA cycle and/or increased flux in
synthesizing other downstream derivatives. The data pro-
vided are derived from use of only static metabolomic
analysis, and metabolic flux can only be inferred. For
accurate flux analysis, isotopically labeled tracers docu-
menting the flux of nutrients along various pathways need
to be followed to estimate metabolic fluxes. Our cohort
lacked information on diet and physical activity, but
smoking status did not influence the relationship of the
metabolites with the CAN measures in our models. The
sample size was also limited, and we are unable to pinpoint
the origin of the circulating markers without tissue-specific
metabolomics; thus, the study is underpowered to detect
many strong correlations. Our findings need to be followed
up by larger, well-powered studies for confirmation. How-
ever, the strengths of this study include standardized,
accurate, and repeated CAN measures and associated
metabolomic profiling. For mitigation of the diurnal var-
iation of the metabolites in relation to the circadian
rhythm, mealtime, and physical activity (44,45), only
fasting samples obtained in a standardized fashion were
used in this study. Day-to-day metabolite variation in
fasting samples is consistent with variation in plasma
glucose in healthy subjects, and our analysis included
adjustment for blood glucose at the time of the sample
collection (46). In conclusion, we present a novel study
profiling the metabolic perturbations associated with type
1 diabetes and progression of CAN measures. These find-
ings, when expanded to a larger cohort, will test the
biomarker potential of these altered metabolites and po-
tentially open therapeutic avenues for the prevention of
CAN. Furthermore understanding these alterations will
shed light on the pathways involved in CAN development
and progression.
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