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Abstract: The antihyerlipidemic drug atorvastatin (ATR) is used worldwide as part of the strategy to
prevent cardiovascular events. The high prevalence of patient nonadherence remains an important
challenge which could be addressed efficiently by precision pharmacotherapy based on therapeutic
drug monitoring (TDM). ATR is metabolized to pharmacologically active metabolites, and evidence
shows that the sums of ATR acid and lactone form concentrations (ATR + ATRL), or of ATR and
hydroxylated metabolites (ATR + MET) should be assayed. A method is presented for the analysis of
these substances in serum. Method validation included the estimation of the quantitative relationship
between the concentrations and the standard deviations (SD), which supports the optimal incorpora-
tion of TDM results into nonparametric pharmacokinetic models. The concentrations of the analytes
were evaluated in human subjects receiving ATR. The method’s performance improved by taking the
sums of acid and lactone concentrations into account. The concentration–SD relationship was linear,
and we recommend applying Theil’s regression for estimating the assay error. All analytes could be
detected by 2 h post dose in the samples of human subjects. The changes in metabolite/parent drug
concentration ratios in time depended on the dose. The method is suitable for the TDM of ATR with
a focus on precision pharmacotherapy.

Keywords: atorvastatin; hydroxyatorvastatin; atorvastatin lactone; therapeutic drug monitoring;
pharmacokinetics; individualized drug therapy; precision pharmacotherapy

1. Introduction

Atorvastatin (ATR) is an antilipidemic medication which is among the most pre-
scribed drugs worldwide. It exerts its clinical effects by the competitive inhibition of the
3-hydroxy-3-methylgutaryl coenzyme A reductase (Enzyme Commission number 1.1.1.88)
and, consequently, by blocking de novo cholesterol synthesis. The main challenge regard-
ing ATR therapy is the high prevalence of patient nonadherence, measures against which
are warranted [1–4]. In addition, acute and chronic adverse conditions, notably, statin-
associated muscle symptoms (SAMS), statin-induced autoimmune necrotizing myopathia
and statin-induced diabetes present risks associated with ATR therapy. SAMS conditions
are the most frequent causes of the withdrawal of statins, which lead to a clinically dis-
advantageous rise of cardiovascular risk. While currently not part of routine clinical care,
therapeutic drug monitoring (TDM) of systemic exposure to ATR can be very useful in
revealing if the drug is taken as prescribed.

ATR undergoes extensive metabolism including the formation of 2-hydroxy-atorvastatin
(2OATR) and 4-hydroxyatorvastatin (4OATR), which are responsible for the majority of
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ATR-related clinical effects [5]. After its intake, ATR is present both in its acid and lac-
tonized forms in the gastrointestinal tract as well as in the bloodstream as a result of a
rapid interconversion [6]. This conversion also applies to its pharmacologically active
metabolites (Figure 1) [7]. Consequently, it has been proposed that exposure to ATR is best
characterized by the sums of the concentrations of the acid and lactone forms of the parent
drug (ATR + ATRL), or of ATR, 2OATR and 4OATR (ATR + MET) [8,9].

Figure 1. Overview of atorvastatin metabolism. The production of hydroxylated metabolites is catalyzed by cytochrome
P450 3A isoenzymes. (CYP3A). The acid and the lactone forms of the parent drug and the metabolites are in equilibrium
in serum.

Nonparametric pharmacokinetic modeling (NPK) based on the application of the
nonparametric adaptive grid (NPAG) algorithm has been a popular approach to construct
population models and to target individually established future serum drug concentra-
tions by making adjustments to the dosage regimen. The impact of NPK on precision
pharmacotherapy has been demonstrated with a wide range of drugs including immuno-
suppressants, anti-infective drugs, busulfan, valproate and digoxin [10,11]. However,
multiple sources of error, including the inaccuracy of the recorded time of dose intake and
of sample collection and errors associated with the assay itself should be taken into account
in order to perform weighted nonlinear regression underlying the pharmacokinetic models
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by using optimal weights, i.e., the reciprocal of the variance. Since the sources of error
which occur before the samples arrive at the TDM laboratory cannot be controlled, the
reciprocal of the variance which can be coined to each data point in the model is estimated
by evaluating the SD of the assayed concentrations, and by applying an additive (termed
as lambda) or a multiplicative (termed as gamma) constant for representing the uncontrol-
lable sources of error in the framework of PmetricsTM. Consequently, assay imprecision
corresponding to each measured concentration is a crucial piece of information [12]. It
has been shown that most bioanalytical methods are heteroscedastic, therefore, the as-
say error can be approximated by modeling the quantitative relationship between the
measured drug concentration and the SD associated with it, e.g., as part of method valida-
tion. This eliminates the need for running several repeats of each patient sample which
would be highly impractical and cost intensive [12,13]. It has been demonstrated that the
concentration–SD relationship is linear for most bioanalytical methods based on the use of
liquid chromatography-tandem mass spectrometry (LC-MS/MS), and a methodology has
been elaborated for developing the respective quantitative approximation, i.e., the assay
error equation [14,15].

Recent advancement in the TDM methodology of ATR indicates that ATR + ATRL and
ATR + MET concentrations could be clinically more related to ATR therapy than the levels
of individual ATR-related substances [8,9]. We present a sensitive, high-throughput LC-
MS/MS method for the simultaneous assessment of ATR, ATRL, 2OATR, 2OATRL, 4OATR
and 4OATRL concentrations, compare the goodness of assay error equations established
using parametric weighted and unweighted, as well as nonparametric regression for future
incorporation into NPK models of ATR, and demonstrate the utility of the developed
methodology on serum samples obtained from human subjects having received a single
dose of ATR.

2. Results

Representative ion chromatograms of the 6 analytes and the internal standard (IS),
obtained by running the lowest calibrator sample and blank serum, are shown in Figure 2.
In the product ion spectra, the base peak of the acid forms (ATR, 2OATR and 4OATR)
was m/z = 440, which lent itself to be chosen as the target product ion. Two intensive
ions (m/z = 448 and m/z = 422) were obtained in the case of the lactone forms (ATRL,
2OATRL and 4OATRL), with the former selected arbitrarily as the product ion (Figure 2).
All analytes and the IS were detected with good selectivity, and no carry-over was observed
between samples. ATR-, 2OATR- and 4OATR-related entities were separated well with
retention times of 2.4 min (4OATR), 2.5 min (4OATRL), 3.2 min (2AOTR and 2OATRL),
3.6 min (ATR) and 3.7 min (ATRL), respectively. The acid and lactone forms were not
resolved chromatographically, but the mass differences of 18 units allowed their completely
selective analysis. The limit of detection (LOD) was 0.05 fmol for each analyte. The 6 point
calibration models were linear. None of the calibration points had to be excluded due to a
back-calculated accuracy outside the 85–115% (80–120% at the LLOQ) range. The intercepts
were not tested for the significance of their difference from 0. Detailed information on
3 calibration models obtained on 3 separate days of analysis, evaluated as proposed by the
respective bioanalytical method validation guideline of the European Medicines Agency,
are displayed in Table 1 [16].
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Figure 2. Representative ion chromatograms and product ion mass spectra of the analytes. The product ion mass spec-
tra were recorded between m/z = 50 and m/z = [M + H]+, and the collision energy was −25 V. (A) Atorvastatin (1.79
nmol/L), (B) Atorvastatin lactone (1.85 nmol/L), (C) 2-hydroxyatorvastatin (1.87 nmol/L), (D) 2-hydroxyatorvastatin
lactone (1.80 nmol/L), (E) 4-hydroxyatorvastatin (1.74 nmol/L), (F) 4-hydroxyatorvastatin lactone (1.80 nmol/L), (G)
2H5-atorvastatin (internal standard).
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Figure 3 shows the trends of accuracy in response to increasing concentrations. The accu-
racy of ATR, ATRL, 2OATR, 2OATRL, 4OATR, 4OATRL, ATR + ATRL, 2OATR + 2OATRL,
4OATR + 4OATRL, and ATR + MET results was 68.6–120%, 84.4–157%, 68.6–105%, 60.4–134%,
71.9–125%, 83.4–139%, 84.1–121%, 71.6–113%, 86.0–123%, and 87.6–114%, respectively.
The accuracy obtained for individual analytes was within the 85–115% range accepted by
leading international bioanalytical method validation guidelines at 11–13 of the 20 spiking
levels, depending on the analyte [16]. When the combined concentrations of the acid and
lactone forms were considered, accuracy was within the limits at 16 (2OATR + 2OATRL,
4OATR + 4OATRL) and at 17 (ATR + ATRL) concentration levels. Finally, the accuracy of
ATR + MET results was within the limits of acceptance in all cases. Precision of the assay
regarding individual analytes, the combined acid and lactone forms, and ATR + MET was
2.9–21.6%, 2.6–13.8%, and 2.5–7.0%, respectively. The detailed accuracy and the precision
values are presented in Tables S1 and S2.

Table 1. Calibration curve data obtained on 3 separate days. 6 point calibration was employed using weighted
linear regression with 1/x2-weights. ATR, atorvastatin. ATRL, atorvastatin lactone. 2OATR, 2-hydroxyatorvastatin.
2OATRL, 2-hydroxyatorvastatin lactone. 4OATR, 4-hydroxyatorvastatin. 4OATRL, 4-hydroxyatorvastatin lactone. r2,
determination coefficient.

Day Calibration Curve Data Back-calculated Accuracy (%) Calibrated Concentration Range (nmol/L)
Equation r2

ATR

1 Y = 0.0157x + 0.0042 0.9990 96.1–104 1.79–358
2 Y = 0.0187x + 0.0047 0.9994 98.1–104
3 Y = 0.0149x + 0.0028 0.9970 94.4–107

ATRL

1 Y = 0.0274x + 0.0009 0.9965 90.4–107 1.85–370
2 Y = 0.0273x + 0.0003 0.9988 94.5–102
3 Y = 0.0198x + 0.0000 0.9979 93.5–106

2OATR

1 Y = 0.0109x + 0.0029 0.9999 98.9–102 1.74–348
2 Y = 0.0085x + 0.0012 0.9983 95.6–105
3 Y = 0.0115x + 0.0010 0.9997 97.8–102

2OATRL

1 Y = 0.0226x + 0.0101 0.9999 98.9–102 1.80–359
2 Y = 0.0169x + 0.0012 0.9983 95.6–105
3 Y = 0.0153x + 0.0038 0.9982 97.8–102

4OATR

1 Y = 0.0185x + 0.0037 0.9973 94.4–106 1.74–348
2 Y = 0.0167x + 0.0006 0.9984 96.1–104
3 Y = 0.0141x + 0.0007 0.9990 96.4–104

4OATRL

1 Y = 0.0191x + 0.0014 0.9952 90.6–110 1.80–359
2 Y = 0.0153x + 0.0011 0.9972 92.4–104
3 Y = 0.0120x + 0.0013 0.9970 91.2–104

The mean IS-corrected matrix factors were 95.7–111% and 96.6–110% at the low
(13.9–14.8 nmol/L) and at the high (13–148 nmol/L) spiking levels, respectively, indicating
that the application of 2H5-atorvastatin as the IS allowed for the correction of matrix
effects (Table S3).
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Figure 3. Accuracy of the presented method regarding individual analytes, sums of the concentrations of acid and
lactone forms (ATR + ATRL), and the sums of the concentrations of all analytes (ATR + MET). Results obtained
at 20 spiking levels, and by spiking 20 independent serum samples at each spiking level, are shown. The horizon-
tal lines indicate an accuracy of 100% (black), 85% and 115% (red). (A) Atorvastatin (filled circles) and atorvas-
tatin lactone (hollow circles). (B) Combined concentrations of atorvastatin and atorvastatin lactone (ATR + ATRL).
(C) 2-hydroxyatorvastatin (filled circles) and 2-hydroxyatorvastatin lactone (hollow circles). (D) Combined concentrations
of 2-hydroxyatorvastatin and 2-hydroxyatorvastatin lactone (2OATR + 2OATRL). (E) 4-hydroxyatorvastatin (4OATR) (filled
circles) and 4-hydroxyatorvastatin lactone (4OATRL) (hollow circles). (F) Combined concentrations of 4-hydroxyatorvastatin
and 4-hydroxyatorvastatin lactone (4OATR + 4OATRL). (G) Combined concentrations of all analytes (ATR + MET).

The performance of various linear and nonlinear regression algorithms applied to
estimate the assay error of ATR + ATRL and ATR + MET in a quantitative manner is
detailed in Table 2, while the fitted curves are shown in Figure 4. The NSSR values of
ATR + ATRL were low and fell in a narrow range (3.6669–7.8302, 3.6669–6.5410 by applying
linear regression). The slopes (0.0293–0.0429) and intercepts (0.0000–0.0001) obtained
using unweighted and 1/concentration2-weighted linear least squares, as well as Theil’s
regression without or with the Siegel correction were in good agreement. Concerning
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ATR + MET, fitting an unweighted 2nd-order polynomial yielded an exceptionally high
NSSR (102.3). Various linear regression approaches delivered NSSR’s of 1.5784–5.2886,
slopes of 0.0290–0.0363, and intercepts of 0.0000–0.0017.

Table 2. Coefficients of the calculated assay error equations and the estimators of the goodness of
the fits. ATR, atorvastatin. ATR-L, atorvastatin lactone. 2OATR, 2-hydroxyatorvastatin. 2OATRL,
2-hydroxyatorvastatin lactone. 4OATR, 4-hydroxyatorvastatin. 4OATRL, 4-hydroxyatorvastatin
lactone. NSSR, sums of squared residuals normalized to the predicted standard deviations.

ATR + ATRL ATR + MET

Unweighted linear least squares

Intercept 0.0000 0.0017
Linear coefficient (slope) 0.0293 0.0290

NSSR 6.5410 5.2886

Unweighted second-order least squares

Intercept 0.0001 −0.0004
Linear coefficient 0.0410 0.0434

Second-order coefficient −0.0184 −0.0073
NSSR 3.7376 102.3

Unweighted third-order least squares

Intercept 0.0006 0.0007
Linear coefficient 0.0208 0.0271

Second-order coefficient 0.0659 0.0157
Third-order coefficient −0.0816 −0.0075

NSSR 7.8302 4.4192

1/x2-weighted linear regression

Intercept 0.0000 0.0000
Linear coefficient (slope) 0.0429 0.0363

NSSR 3.6669 1.5784

Theil’s regression

Intercept 0.0001 0.0000
Linear coefficient (slope) 0.0338 0.0327

NSSR 5.4048 2.1529

Theil’s regression with Siegel correction

Intercept 0.0001 0.0000
Linear coefficient (slope) 0.0353 0.0332

NSSR 5.4125 2.1363

All ATR-related analytes were detected in the blood samples of human subjects receiving
their first dose of ATR by 2 h after drug intake (Figure 5). (2OATR + 2OATRL)/(ATR + ATRL)
and (4OATR + 4OATRL)/(ATR + ATRL) concentration ratios obtained at 2 h (Figure 5A,D), 4 h
(Figure 5B,E), and 6 h (Figure 5C,F) postdose are shown. (4OATR + 4OATRL)/(ATR + ATRL)
ratios were statistically higher in subjects taking 40 mg than in those taking 20 mg ATR
at all time points (p = 0.007, p = 0.023 and p = 0.030 at 2 h, 4 h and 6 h, respectively,
Figure 5D–F). The ratios increased with time (p < 0.001 both for 2 h vs. 4 h and for 4 h
vs. 6 h concentrations) when the dose was 20 mg, but not when it was 40 mg (p = 0.419
and p = 0.059, respectively). There was no statistically significant difference between
(2OATR + 2OATRL)/(ATR + ATRL) concentration ratios after taking 20 mg or 40 mg ator-
vastatin at any sampling time (p = 0.286, p = 0.544 and p = 0.312, respectively, Figure 5A–C).
A significant elevation of the ratio over time (p < 0.001 and p = 0.001 for 2 h vs. 4 h and for
4 h vs. 6 h concentrations, respectively) was observed when 20 mg ATR was taken, but not
after administering 40 mg (p = 1.000 and p = 0.059, respectively).
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Figure 4. Scatter plots of the standard deviations (SD) of measurement results as plotted against the
combined nominal concentrations of (A) ATR + ATRL and (B) ATR + MET. ATR, ATRL, 2OATR, 2OA-
TRL, 4OATR and 4OATRL were spiked to 20 independent blank serum samples at 20 spiking levels
(detailed in Supplementary Table S2). Each data point shows the SD of the combined concentrations.
The fitted lines and curves have been obtained by applying various linear and nonlinear regression
algorithms to the data points. Black, unweighted linear least squares regression. Blue, weighted
linear least squares regression with 1/concentration2 weights. Green, Theil’s regression. Red, 2nd-
order unweighted nonlinear least squares regression. Orange, 3rd-order unweighted nonlinear least
squares regression.

Figure 5. Metabolite/parent drug (acid + lactone form) concentration ratios obtained at 2, 4 and 6 h post dose in human
subjects receiving their first 20-mg or 40-mg dose of atorvastatin (n = 29). (2OATR + 2OATRL)/(ATR + ATRL) concentration
ratios are displayed at (A) 2 h, (B) 4 h, and (C) 6 h, and (4OATR + 4OATRL)/(ATR + ATRL) concentration ratios at (D) 2 h,
(E) 4 h, and (F) 6 h. Asterisks indicate the significance of differences: p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***).
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The measured concentrations of ATR and its metabolites were employed for construct-
ing nonparametric population pharmacokinetic models of ATR + ATRL and of ATR + MET.
The individual 24 h posterior ATR + ATRL and ATR + MET pharmacokinetic curves of the
29 subjects included are shown in Figure 6.

Figure 6. Individual 24 h estimated posterior time-concentration curves obtained by constructing nonparametric population
pharmacokinetic models of (A) ATR + ATRL and of (B) ATR + MET using the software package PmetricsTM.

3. Discussion

There is growing interest in precision pharmacotherapy, and clinical laboratories must
adjust their approach to method development and validation in order to be able to support
complex planning and evaluation of TDM more efficiently. Several bioanalytical methods
have been described for the evaluation of the acid and lactone forms of ATR, 2OATR and
4OATR in serum, and these methods have been reviewed recently [17]. In addition to
the validation of the presented method developed for the multiplexed, high-throughput
bioanalysis of ATR and its pharmacologically active metabolites, assay error equations have
been established to provide important quantitative information on method performance
for the construction of nonparametric pharmacokinetic models.

The method proved to be sufficiently selective and sensitive with no interferences
or sample carry-over observed. The calibration models showed good linearity across the
calibrated concentration range. The accuracy of measurements of individual analytes was,
however, not consistently adequate (Figure 3). At low levels, the concentrations of the acid
forms of ATR and 4OATR were in most cases slightly overestimated, while those of 2OATR
were underestimated. At the same time, all acid forms were consistently underestimated at
higher levels. At low levels, lactone forms of ATR and 4OATR delivered similar results
with largely overestimated recoveries in some cases, while those of 2OATR were mainly
under 100%. Nevertheless, all lactone forms had the tendency to be overestimated in
clear contrast to acid forms. When acid and lactone forms were combined, most accuracy
values fell in the range of 85–115%, which is commonly accepted by bioanalytical method
validation guidelines. This also applied generally to the concentration levels below the
lower limit of quantitation. In contrast to individual analytes, no tendency of being over-
or underestimated could be observed for the sums of acid and lactone forms. The sums
of the concentrations of ATR + MET could be quantitated with acceptable accuracy at all
spiking levels.
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The RSD’s of individual analyte concentrations spanned a range considerably wider
than those of the combined acid and lactone forms, and were, in certain cases, unacceptably
large. The RSD’s of the combined acid and lactone forms were acceptable in all cases. The
RSD’s of assayed ATR + MET levels were low, remaining conveniently under the proposed
cut-off of 15%.

These results indicate the occurrence of an interconversion between the acid and
lactone forms in vitro which is difficult to control. Samples were not allowed to stay on the
bench for a prolonged time after spiking the analytes, indicating that the interconversion
had taken place rapidly. Our findings are the opposite of those described by Vethe et al.
who demonstrated that a lactone-to-acid conversion takes place over days [18]. Despite
this paradoxical discrepancy, our results afforded very similar conclusions, that is, the
combined concentrations of the acid and lactone forms should be evaluated instead of
interpreting individual analyte levels considering the fact that the combined levels show
adequate stability and their quantitation can be performed with reliable method perfor-
mance. Interindividual differences in physiological traits and habits (such as nutrition,
smoking etc.) could have an important impact on the variability of the interconversion.

The approach to the assessment of method accuracy and precision proposed by
bioanalytical method validation guidelines has certain limitations. The obtained values
are in fact nothing more than means over nominal concentrations and SD/mean ratios
obtained in a very limited number of experiments. Considerably different values may be
attained in further independent experiments, and there are no proposals for a follow-up
if they do so, with the only aim being to remain within the limits of acceptance. The
incorporation of quantitative information on method performance into pharmacokinetic
models requires, however, the establishment of assay error at all measured concentrations.
Based on statistical theory, the optimal weight for nonlinear least squares regression,
the technique employed for estimating pharmacokinetic parameters, is the reciprocal of
variance, which can be approximated best by estimating the method-specific SD as a
function of the concentration [19]. Regarding the presented approach, the relationship
between the concentrations of ATR + ATRL, of ATR + MET levels and of their SD’s was
linear. The equations and NSSR’s obtained using various linear regression algorithms were
comparable. Since it is the trend of SD’s which needs to be established, Theil’s regression
with the Siegel correction is the proposed approach in this respect due to its robustness
(Figure 4). Table 2 displays the slopes and the intercepts, i.e., the explicit assay error
equations, as well as the NSSR values which serve to describe and compare the sums of the
residual errors obtained using the various types of regression.

In the pilot study conducted with the participation of human subjects, the analytes
were detected already in the blood samples collected 2 h after the first intake of ATR,
indicating that both the absorption and the metabolism of ATR took place rapidly. The
observed ranges of (2OATR + 2OATRL)/(ATR + ATRL) concentration ratios showed no
relationship with the employed dose at 2, 4 and 6 h. In contrast, differences both in the dose
and the time of sampling resulted in differences in (4OATR + 4OATRL)/(ATR + ATRL)
concentration ratios. We assume that the production of 2OATR is limited in rate due to the
extent of the conversion. Since the formation of 4AOTR is much less intensive, it is also
considerably less limited in rate. The dependence of (4OATR + 4AOTRL)/(ATR + ATRL)
concentration ratios on the dose could be important in view of reports suggesting a rela-
tionship between 4AOTRL levels and SAMS [20,21]. It must be noted that the number of
subjects receiving 40 mg ATR was small, posing limitations on our evaluation.

4. Materials and Methods
4.1. Chemicals and Solutions

Atorvastatin, atorvastatin lactone, 2-hydroxyatorvastatin, 2-hydroxyatorvastatin lac-
tone, 4-hydroxyatorvastatin and 4-hydroxyatorvastatin lactone, as well as the internal stan-
dard (IS) 2H5-atorvastatin were purchased from Alsachim SAS (Illkirch, France). LC-MS
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grade acetonitrile, formic acid, methanol and water were delivered by Reanal Labor Kft.
(Budapest, Hungary).

1 mg/mL stock solutions of the analytes and the internal standard were prepared in
methanol. Working solutions were mixes of the analytes at concentrations of 0.04, 0.4, 4 or
40 µmol/L in methanol. The IS working solution contained 2H5-atorvastatin at 18 µmol/L
in methanol. The deproteinizing solution was prepared by adding 70 µL IS working
solution to 50 mL acetonitrile.

4.2. Biological Samples and Study Design

This work was part of an observational study approved by the Regional and Insti-
tutional Committee of Science and Research Ethics, Semmelweis University, Budapest,
Hungary (project identifier: 197/2017, date: 2 October 2017). The study was conducted in
accordance with the guidelines of the Declaration of Helsinki. All participants gave their
informed consent for inclusion prior to beginning their participation. For method devel-
opment, optimization and validation, as well as for establishing the assay error equations
of ATR + ATRL and ATR + MET, residual human serum samples allocated for disposal
were obtained from the Central Laboratory (Pest), Department of Laboratory Medicine,
Semmelweis University, following their irreversible de-identification. No interaction with
patients took place at this stage, no additional blood specimens were collected, and those
obtained were not used for any further purpose. Subsequently, samples were obtained from
29 outpatients reporting at the Unit of Cardiology, 3rd Department of Internal Medicine
(currently: Department of Internal Medicine and Hematology), Semmelweis University
and requiring antihyperlipidemic treatment, but previously not receiving ATR. The subjects
took their first dose of 20 mg (n = 24) or 40 mg (n = 5) based on the therapeutic decision
made by the clinical recruiting team during their scheduled visit. In a standard phle-
botomy process, 2 mL blood was collected from the peripheral vein into native (red-top)
phlebotomy tubes immediately before the administration of ATR, and at 2 h, 4 h and 6 h
following drug intake. Demographic information of the included human subjects who had
given their formal written consent is shown in Table S4.

4.3. Sample Preparation

Sample preparation was performed by adding 200 µL Deproteinizing solution to 50 µL
serum pipetted onto a Phenomenex Impact 96-well protein precipitation plate (Gen-Lab Kft,
Budapest, Hungary), shaking the plate for 10 min at 1100 rpm, forcing the supernatant into
a 96-well deep-well collection plate with (2.2 mL/slot) using positive pressure to obtain
clean solutions, and diluting 150 µL supernatant with 90 µL LC-MS grade water in another
96-well deep well collection plate.

4.4. Analysis

Analysis was performed using liquid chromatography-tandem mass spectrometry.
The analytical system consisted of a Shimadzu Nexera X2 modular ultra-high performance
liquid chromatographic system coupled to a Shimadzu LCMS-8060 triple quadrupole
mass spectrometer (Simkon Kft, Budapest, Hungary). Separation was performed on
a Phenomenex Kinetex XB-C18 (50 × 2.1 mm, 1.7 µm) stationary phase (Gen-Lab Kft,
Budapest, Hungary) thermostated at 40 ◦C. The mobile phases were LC-MS grade water
and methanol, both of which contained 0.1% formic acid. A 1.0 µL sample was injected. The
mass spectrometer was operated using positive electrospray ionization in multiple reaction
monitoring mode. The precursor ions, which were the pseudomolecular ions [M + H]+ in
all cases, as well as the transitions giving rise to the product ions, were selected manually
based on the results of full scans and of product ion scans of the 0.5 µg/mL methanolic
solutions of the analytes and of the IS, and by considering the high relative intensity
of these ions, The optimization of the mass spectrometry settings (quadrupole 1 bias,
collision energy and quadrupole 3 bias) was performed automatically by the instrument
control software. The retention times and the monitored ion transitions were 3.6 min,
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559.1 > 440.1 (target) and 559.1 > 292.1 (qualifier) for ATR, 3.7 min, 540.7 > 448.1 (target) and
540.7 > 422.1 (qualifier) for ARL, 3.3 min, 574.8 > 440.2 (target) and 574.8 > 466.1 (qualifier)
for 2OATR, 3.4 min, 556.7 > 448.1 (target) and 556.7 > 422.1 (qualifier) for 2OATRL, 2.4 min,
574.8 > 440.2 (target) and 574.8>250.1 (qualifier) for 4OATR, 2.5 min, 556.7 > 448.1 (target)
and 556.7 > 422.1 (qualifier) for 4OATRL, and 3.6 min, 564.2 > 440.0 (target) for the IS.
Calibration using samples containing known concentrations of the analytes (1.0, 5.0, 10, 50,
100 and 200 ng/mL, corresponding to 1.74–1.85, 8.70–9.24, 17.4–18.5, 87.0–92.4, 174–185
and 348–370 nmol/L, respectively) was conducted at the beginning of each batch using
pooled blank serum, in which the absence of the analytes had been confirmed. The working
solutions of the analytes were spiked to the blank serum with volumes not exceeding 5%
of that of the serum fraction. Each calibrator and experimental sample was tested in a
single repeat.

4.5. Method Validation

Selectivity of the method was verified by running solvent blanks (water-methanol 1:1)
and the serum specimens subsequently employed for establishing accuracy, precision
and the assay error equations, without spiking the analytes to them. Sample carry-over
was evaluated by comparing peak intensities obtained at the monitored ion transitions
when a blank solution was injected after the highest-level calibrator. The performance
of the calibration curves was tested by calculating the determination coefficients and
the back-calculated accuracies, and by examining the number of calibrators which had
to be omitted from the calibration models on 3 separate days of analysis. No lower
limit of quantification (LLOQ) was defined since a central concept of generating assay
error equations in support of the nonparametric population pharmacokinetic modeling
procedure using the PmetricsTM package of R is to establish the precision of the method all
the way down to zero concentration, as described by Jelliffe et al. [12].

Assay accuracy, assay precision and the assay error equations were established by
spiking serum samples (n = 60) previously screened for the absence of the substances
of interest with the analytes at 4, 6 and 10 different levels on 3 separate days, resulting
in a total of 20 spiking levels (Table S2). Establishing overall assay precision is pivotal
when the aim is to support nonparametric pharmacokinetic modeling. This experimental
design allowed us to add further variability by applying the developed method to different
numbers of serum samples containing the analytes at different concentrations on each
day, thereby modeling the assay performance in a more variable application environment
instead of testing its reproducibility by using the same sets of samples, which is a more
limited approach. Since patient samples are typically assayed once in the clinical laboratory,
the results obtained on the 3 days were combined for evaluation instead of conducting
separate within-run and between-run experiments, as proposed by [22].

Internal standard-corrected matrix factors (IMF) were calculated at two concentra-
tion levels (8.0 and 80 ng/mL corresponding to 13.9–14.8 nmol/L and 139–148 nmol/L
depending on the analyte, respectively) by spiking a methanolic solution containing the
analytes at 336 ng/mL (0.585–0.622 nmol/L) or 3.36 µg/mL (5.85–6.22 nmol/L), as well
as a 2 µmol/L methanolic solution of the IS, 5 µL each, to 140 µL supernatant obtained
following deproteinization of 50 µL blank serum with 200 µL acetonitrile as described
in the sample preparation section. 10 independent serum matrices were used. 140 µL
acetonitrile-water 4:1 (v/v) mixture was spiked in the same manner, and 150 µL of this
mixture was diluted with 90 µL water. The IMF was calculated as shown by Equation (1).

IMF =
peak areaanalyte, serum × peak areaIS, solution

peak areaanalyte, solution × peak areaIS, serum
(1)

4.6. Data Evaluation

Calculations were made in Shimadzu Labsolutions v5.89, Microsoft Excel and in
the R environment [23]. Analyte/IS peak area ratios were calculated for the evaluation
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of concentrations. Calibration was performed by linear regression using 1/x2 weights.
Accuracy was the ratio of the mean measured versus the nominal concentration, expressed
as a percentage. The SD of the assayed concentrations was determined at each spiking
level. Relative standard deviations (RSD) were the ratios of SD and mean measured
concentrations, expressed as a percentage. The establishment of the assay error equation
has been proposed to include the SD’s of concentrations measured in the blank samples,
therefore, these SD’s were also calculated [12,13]. The analyte concentrations measured in
the blanks, as well as those found in samples containing the analytes at a level lower than
that of the lowest calibrator, were estimated by single-point calibration using the lowest
level calibrator.

The ’stats’ package was used for applying various parametric regression algorithms.
Unweighted linear, 2nd- and 3rd-order nonlinear least squares have been employed for
estimating the assay error of automated clinical analyzers and, in one case, of a high-
performance liquid chromatography-ultraviolet absorption detection method [12,13]. Lin-
ear least squares regression with 1/concentration2 weights has been proposed as the best
estimate of the reciprocal of the assay variance, the optimal weight for linear and nonlinear
regression, in bioanalytical applications of LC-MS/MS [14]. The ’mblm’ package of R
was employed for performing Theil’s regression without (Equations (2) and (3)) or with
the Siegel correction (Equations (4) and (5)). Theil’s regression is a nonparametric linear
regression approach having the advantage over parametric algorithms that it is unbiased
across the fitted concentration range, and is very robust, i.e., it displays the linear trend
without being sensitive to the presence of outliers [24,25].

slope = median

[
(SDj − SDi)(

concentrationj − concentrationi
)] (2)

intercept = median (SDi − slope·concentrationi) (3)

where i and j denote the i-th and j-th spiking levels, and j > i.

slope = median

[
median

i 6= j
(SDj − SDi)(

concentrationj − concentrationi
)] (4)

intercept = median

[
median

i 6= j
(concentrationjSDi − concentrationiSDj)(

concentrationj − concentrationi
) ]

(5)

where j 6= i. To obtain the slope, (SDj − SDi)/(concentrationsj–concentrationi) ratios are cal-
culated for each i-th and all other spiking levels, and their median is recorded. The overall
median of the n recorded medians is subsequently calculated. The intercept is calculated
likewise. In Equations (1)–(4) concentrations correspond the nominal concentrations spiked
to the serum samples at each i-th and j-th spiking level.

The goodness of the fit of the regression lines was determined by calculating the sums
of squared residuals normalized to the predicted standard deviations (NSSR), an unbiased
estimator, as shown in Equation (6).

NSSR =
n

∑
i

(
SDobs,i − SDpred,i

)2

SDpred,i
2 (6)

where SDobs,i is the observed SD at the i-th spiking level, and SDpred,i is the SD estimated
by each employed regression algorithm.

5. Conclusions

In conclusion, a novel bioanalytical method has been presented for the quantitation of
ATR and its pharmacologically active metabolites in human serum. Method performance
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proved to be acceptable when the combined concentrations of acid and lactone forms
were evaluated. The described methodology and the assay error equations established
by applying Theil’s regression and the Siegel correction provide an efficient analytical
background for nonparametric population pharmacokinetic modeling and for precision
pharmacotherapy based on the use of pharmacokinetic models.

Supplementary Materials: The following are available online at, Table S1: Accuracy and precision
obtained for the individual analytes in spiked serum samples, Table S2: Accuracy and precision of
the developed method regarding the combined concentrations of the acid and lactone forms of the
analytes (ATR + ATRL, 2OATR + 2OATRL, 4OATR + 4OATRL and ATR + MET) in spiked samples,
Table S3: Internal standard-corrected matrix factors (IMF) influencing the quantitation of the acid and
lactone forms of atorvastatin and its hydroxylated metabolites, Table S4: Demographic information
on the subjects included in the study.
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