
Artificial-intelligence-driven discovery of prognostic
biomarker for sarcopenia

Heewon Chung1 , Yunju Jo2,3 , Dongryeol Ryu2,3 , Changwon Jeong3,4 , Seong-Kyu Choe3,5*

& Jinseok Lee1*

1Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea; 2Department of Molecular
Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea; 3Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan,
Republic of Korea; 4Medical Convergence Research Center, Wonkwang University, Iksan, Republic of Korea; 5Department of Microbiology, and Institute of Wonkwang
Medical Science, Wonkwang University School of Medicine, Iksan, Jeonbuk, Republic of Korea

Abstract

Background Sarcopenia is defined as muscle wasting, characterized by a progressive loss of muscle mass and function
due to ageing. Diagnosis of sarcopenia typically involves both muscle imaging and the physical performance of people
exhibiting signs of muscle weakness. Despite its worldwide prevalence, a molecular method for accurately diagnosing
sarcopenia has not been established.
Methods We develop an artificial intelligence (AI) diagnosis model of sarcopenia using a published transcriptome
dataset comprising patients from multiple ethnicities. For the AI model for sarcopenia diagnosis, we use a
transcriptome database comprising 17 339 genes from 118 subjects. Among the 17 339 genes, we select 27 features
as the model inputs. For feature selection, we use a random forest, extreme gradient boosting and adaptive boosting.
Using the top 27 features, we propose a four-layer deep neural network, named DSnet-v1, for sarcopenia diagnosis.
Results Among isolated testing datasets, DSnet-v1 provides high sensitivity (100%), specificity (94.12%), accuracy
(95.83%), balanced accuracy (97.06%) and area under receiver operating characteristics (0.99). To extend the number
of patient data, we develop a web application (http://sarcopeniaAI.ml/), where the model can be accessed
unrestrictedly to diagnose sarcopenia if the transcriptome is available. A focused analysis of the top 27 genes for their
differential or co-expression with other genes implied the potential existence of race-specific factors for sarcopenia,
suggesting the possibility of identifying causal factors of sarcopenia when a more extended dataset is provided.
Conclusions Our new AI model, DSnet-v1, accurately diagnoses sarcopenia and is currently available publicly to assist
healthcare providers in diagnosing and treating sarcopenia.
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Introduction

Ageing involves progressive changes in an individual’s physi-
ology. Sarcopenia, defined as muscle loss, is a leading cause
of frailty in the elderly1,2 and hence affects human health

by potentiating disease occurrence leading to type 2
diabetes,3 heart and respiratory diseases and insufficiency
in mechanical support.3–6

The pathogenesis of sarcopenia is associated with ageing,
which may impede either anabolic signalling to build
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components of the muscle, regenerative activity to repair
damaged tissues, intricate circuits to deliver nervous signals
in and out of the muscle, or cellular surveillance to maintain
energy flexibility of the body.7–10 In addition, malnutrition
and immobility affect the onset and degree of
sarcopenia.11–13 Such phenomena may occur individually or
simultaneously to induce muscle atrophy when imbalanced
or out of control, thereby resulting in causal complexity and
difficulty in treating sarcopenia.2 Currently, no efficient drug
for treating sarcopenia is available,2,7 although efforts have
been expended to identify biomarkers for early diagnosis to
develop preventive medicines or alleviate sarcopenia. A re-
cent study using multi-ethnic aged muscle biopsies exem-
plifies the nuclear-encoded mitochondrial genes as a typical
gene set that can be applied across ethnicities.14 In addition,
serum biomarkers that can reliably predict sarcopenia has
been reported.15 Candidate biomarkers were selected from
the literature, followed by comparative biochemical analyses
of sera between sarcopenia and normal elderly groups. Four
combined biomarkers indicated higher diagnostic accuracy
for sarcopenia than individual biomarkers, thereby
re-emphasizing the causal complexity contributing to
sarcopenia. Therefore, the identification of additional bio-
markers that reliably reflect sarcopenia may warrant early di-
agnosis to facilitate the deployment of preventative medicine
and early intervention therapy.16

In this study, we aimed to develop an artificial intelligence
(AI) model for sarcopenia diagnosis using a previously pub-
lished transcriptome dataset that contain differentially
expressed genes in muscle biopsies from patients with
sarcopenia and age-matched healthy individuals across three
ethnic groups. The AI model developed in this study yielded a
diagnostic accuracy of >94%, which is an unprecedented
level. To the best of our knowledge, our current study is
the first attempt to develop an AI model to diagnose
sarcopenia based on a transcriptome dataset only.

Materials and methods

Datasets

We used a published transcriptomic dataset deposited in the
Gene Expression Omnibus of the National Center for Biotech-
nology (https://www.ncbi.nlm.nih.gov/geo/) under accession
number GSE111017.14 (Table S1) summarizes the subject in-
formation from the dataset. A total of 118 subjects (mean
age, 73.34 ± 5.43) participated in this study, of whom 86 were
healthy and 32 were sarcopenic. Subjects of three different
races from different studies participated in the study: 40 sub-
jects from the Hertfordshire sarcopenia study (HSS; 36
healthy vs. 4 sarcopenic), 39 from the Jamaica sarcopenia
study (JSS; 30 healthy vs. 9 sarcopenic) and 39 from the

Singapore sarcopenia study (SSS; 20 healthy vs. 19
sarcopenic). Transcriptome analysis includes 17 339 genes,
which can be potential biomarkers for the diagnosis of
sarcopenia (Data S1).

For hold-out validation, we segmented the data into train-
ing (80%) and testing (20%) datasets in a stratified manner
based on both the race (HSS, JSS, and SSS) and outcome (nor-
mal and sarcopenic). Accordingly, we used 94 subjects as the
training dataset (69 normal and 25 sarcopenic) and 24 data as
the testing dataset (17 normal and 7 sarcopenic). The testing
dataset was isolated and used only to evaluate the perfor-
mance of the proposed AI model. For box or scatter plots,
data are shown as median ± interquartile. *P < 0.05,
**P < 0.01, ***P < 0.001; P values calculated using either
two-tailed Wilcoxon rank sum test or two-way ANOVA
followed by Tukey’s multiple comparisons test as described.
This study was approved by Institutional Review Board
Wonkwang University (WKIRB-202108-SB-060).

Preprocessing

In the dataset, each of the 17 339 genes can be the feature
for the AI model. Some features (gene information) were
missing from the training and testing datasets (Supporting
information, Figure S1). To manage the missing features, we
calculated the mean value from the training dataset for each
feature and replaced the missing feature with the mean value
in both the training and testing datasets. Subsequently, we
standardized the dataset, which is a typical requirement for
machine learning algorithms. The standardization changes
the data distribution of each feature with a mean of zero
and a standard deviation of one.

Datastandard ¼ Data � mean trainð Þ
SD trainð Þ ; (1)

where mean(train) and SD(train) are the mean and standard
deviation values, respectively, for each feature from the train-
ing dataset. Standardization was applied to both the training
and testing datasets.

Feature selection

To select important features that affect clinical severity, we
investigated the contribution of each of the 17 339 input
variables on sarcopenia diagnosis via feature importance
analysis using a random forest (RF),17 extreme gradient
boosting (XGBoost),18 and adaptive boosting (AdaBoost)19,20

algorithms.
By repeating the five-fold cross-validation 10 times, we ob-

tained the best hyperparameters. For AdaBoost, we set the
hyperparameters as follows: number of tree estimators,
200; learning rate, 0.2. For the RF, we set the number of tree
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estimators to 100, maximum depth to four and maximum
features to five. For XGBoost, we set the maximum depth
to four, learning rate to 0.1, number of tree estimators to
100, regularization parameter α to 1.0, fraction of observa-
tions to 0.9 and fraction of columns to 0.9.

Based on the resultant 50 sets of feature importance
values for each classifier (AdaBoost, RF and XGBoost), we av-
eraged the values and normalized them such that the impor-
tance values from each classifier ranged from zero to one.
Next, we averaged the importance values for the final ranked
feature importance values. Finally, we determined the opti-
mal number of top features to be incorporated into the AI di-
agnosis model based on the cross-validation results.

Development of artificial intelligence model based
on deep neural network

A deep neural network (DNN) was used to develop the final
AI model for sarcopenia diagnosis. In the DNN approach, we
investigated up to five hidden layers, and each layer depth
(node) up to the previous layer depth (node). For the input
layer, we first ranked the features based on their importance
and increased the number of top features used in the input
layer. Accordingly, we used the top 27 features as input
layers. For the fully connected (FC) layers as hidden layers,
we applied dropouts by changing the dropout rate from 0

to 0.5, at increments of 0.1. The last FC layer was fed into a
sigmoid layer, which is an output layer that provides the
probabilities of patient severity. We trained the models using
the ADAM optimizer and binary cross-entropy cost function
with a learning rate of 0.0001 and a batch size of 64.

For each set of top features, we obtained the best
cross-validation accuracy using two metrics, that is, the area
under the curve and the balanced accuracy (Equation 2).

Balanced Accuracy ¼ Sensitivity þ Specificity
2

(2)

Based on the cross-validation accuracy analysis, we modelled
a four-layer DNN using the top 27 features, as shown in
(Figure 1). The four-layer DNN comprised an input layer, two
FC layers as hidden layers, and an output layer. The input layer
was fed into a series of two FC layers comprising 27 and 8
nodes, respectively. In the two FC layers, we used a dropout
rate of 0.5. Subsequently, the last FC layer was fed into the sig-
moid layer. Our proposed DNN model was named DSnet-v1,
which represents the DNN for sarcopenia diagnosis version 1.

Implementation

We implemented and trained the DNN using TensorFlow
(version: tensorflow-gpu 2.0), whereas we used NumPy (ver-
sion: 1.16.4), Pandas (version: 0.25.3), Matplotlib (version

Figure 1 Proposed DSnet-v1 with four-layer deep neural network (DNN) for the diagnosis of sarcopenia.
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3.1.2) and Scikit-learn (version 0.22.1) to build the model and
analyse the results. We trained the models using the ADAM
optimizer and the binary cross-entropy cost function shown
in Equation 3 by adjusting the learning rate to 0.0005 and
0.0001 and using a batch size of 64 on an NVIDIA GeForce
GTX 1080 Ti GPU.

BCE xð Þ ¼ �1
N

∑
N

i¼1
yilog p yið Þð Þ þ 1 � yið Þlog 1 � p yið Þð Þ;

(3)

where yi is the label (1 for sarcopenia and 0 for normal) and
p(yi) is the classified probability of each subject being
sarcopenic for a batch size comprising N patients.

Performance evaluation of AI models

To evaluate the performance of DSnet-v1 for the diagnosis of
sarcopenia, we used accuracy metrics of sensitivity, specific-
ity, accuracy, balanced accuracy and area under the receiver
operating characteristics (AUROC).

In the training dataset, our DSnet-v1 was evaluated based
on 5-fold stratified cross-validation. Subsequently, the diag-
nostic performance was evaluated independently using an
isolated testing dataset. To compare the performance of
DSnet-v1 with those of other external AI models, we sepa-
rately trained the models of RF, XGBoost and AdaBoost, each
of which was evaluated with hyperparameter search.

Box plots, correlation and network analysis

The evaluation and visualization of gene expression
(boxplots), Spearman’s correlation (correlogram matrices),
and gene network for 27 AI-featured genes and their associ-
ated genes were conducted using R packages ggpubr,
ggplot2, igraph, ggraph, egg, corrr, corrplot, dplyr, tidyverse,
and reshape (https://www.r-project.org). The network visual-
ization of human phenotype ontology was assessed using
Enrichr.21

Public website deployment

We deployed DSNet-v1 on a public web server (http://
sarcopeniaAI.site/) through Amazon Web Services (AWS),
which provides secure, durable and scalable service. After
accessing the website, a user enters the 27 genes, which
are encoded to the website server and can immediately ob-
tain the diagnosis result of sarcopenia. There is no need to
enter any private information other than gene information,
and the entered information is immediately deleted when
the diagnosis result is derived, so there is no risk of informa-
tion exposure.

Results

Feature selection and cross-validation

(Table 1) summarizes the results of the ranked feature impor-
tance from the RF, XGBoost, and AdaBoost, as well as their
combination: We ranked the top 27 features based on the
combination among the 17,339 features. The RF results indi-
cated that GRTP1-AS1 possessed the highest importance
value, followed by SUMO1P3, TEX261, SMIM26, and H4C3.
The XGBoost results indicated that H4C3 possessed the
highest importance value, followed by PSMA6, AC002070.1,
PCK1, and CENPC. The AdaBoost results indicated that
TSPY26P possessed the highest importance value, followed
by STAG3L3, CRHR2, PEF1, and FKBP1C. By averaging the
values obtained from the three models, H4C3 exhibited the
highest importance value, followed by PSMA6, TSPY26P,
CRHR2, and GRTP1-AS1. The full list of ranked feature impor-
tance values is summarized in (Data S2).

We investigated the cross-validation performance using
metrics of sensitivity, specificity, accuracy, balanced accuracy,
and AUROC. (Figure 2) shows the values of accuracy, bal-
anced accuracy, and AUROC based on each number of se-
lected top features. Detailed results are summarized in
(Table S2). For the accuracy metrics, we identified the opti-
mal DNN, including the hyperparameters for each selected
feature. The results show that all the accuracy metrics, that
is, accuracy, balanced accuracy and AUROC, increased as the
number of selected features increased until 27. As the num-
ber of selected features exceeded 27, all accuracy metrics de-
creased as the number of selected features increased. For the
top 27 features, we obtained a sensitivity of 0.88, specificity
of 0.97, accuracy of 0.95, balanced accuracy of 0.93, and
AUROC of 0.97.

(Table 2) summarizes the comparison of the
cross-validation accuracy. The results show that DSnet-v1
provided the highest values of all accuracy metrics.

Performance of proposed DNN

Using the isolated testing dataset (n = 4), DSnet-v1 showed a
sensitivity of 1.00, specificity of 0.94, accuracy of 0.96, bal-
anced accuracy of 0.97, and AUROC of 0.99. (Table 3) shows
the diagnostic performances of various AI models; as shown,
our proposed four-layer DNN provided a higher accuracy,
more balanced accuracy, and higher AUROC values than the
other external AI models: the RF, XGBoost, and AdaBoost.
(Figure S2) shows the ROC curves for model comparison.

The web application provides the probability of
sarcopenia, as shown in (Figure 3). A user inputs his or her
quantized gene information (as shown in Figure 3A), and
the diagnosis results are presented (as shown in Figure 3B).
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Biological relevance of 27 AI-featured genes

We evaluated the gene expression of 27 selected features
(genes) in patients with sarcopenia (green box) and in
age-matched healthy individuals (white box) (Figure 4A).
The gene expression of each individual for the three races

(HSS, JSS and SSS) is indicated by red, blue and green dots, re-
spectively. As shown in (Figure 4), the expression of seven
genes (PCK1, AC116913.1, CENPC, KAT2A, RASSF1, PSMA6
and PEF1) was elevated in the sarcopenic muscle, whereas
10 genes (SNX12, TEX261, H4C3, PFKFB4, SUMO1P3, SMIM26,
MYF5, AC002070.1, GRTP1-AS1 and CRHR2) showed reduced

Table 1 Feature importance

Rank Feature name Gene name/ensembl gene ID
Random
forest XGBoost AdaBoost Mean

1 H4C3 H4 clustered histone 3 0.5715 1.0000 0.2857 0.6191
2 PSMA6 Proteasome subunit alpha 6 0.2263 0.8000 0.4286 0.4850
3 TSPY26P Testis specific protein, Y-linked 26, pseudogene 0.0000 0.0667 1.0000 0.3556
4 CRHR2 Corticotropin releasing hormone receptor 2 0.0943 0.2000 0.7143 0.3362
5 GRTP1-AS1 Growth hormone regulated TBC protein 1-antisense 1.0000 0.0000 0.0000 0.3333
6 SUMO1P3 SUMO1 Pseudogene 3 0.9620 0.0000 0.0000 0.3207
7 STAG3L3 Stromal antigen 3-like 3, transcribed_unprocessed_pseudogene 0.0000 0.0000 0.8571 0.2857
8 KAT2A Lysine acetyltransferase 2A 0.4174 0.0000 0.4286 0.2820
9 PEF1 Penta-EF-hand domain containing 1 0.0000 0.0667 0.7143 0.2603
10 SMIM26 Small integral membrane protein 26 0.5975 0.1333 0.0000 0.2436
11 FKBP1C FKBP prolyl isomerase family member 1C 0.0000 0.0000 0.7143 0.2381
12 TEX261 Testis expressed 261 0.7084 0.0000 0.0000 0.2361
13 PFKFB4 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 0.2055 0.3333 0.1429 0.2272
14 AC116913.1 No NCBI gene ID yet, novel noncoding transcript,

antisense to MAP 2 K1 and SNAPC5/ENSG00000261351
0.2651 0.4000 0.0000 0.2217

15 TBC1D8 TBC1 domain family member 8 0.0690 0.0000 0.5714 0.2135
16 MYF5 Myogenic factor 5 0.0000 0.3333 0.2857 0.2063
17 TPSAB1 Tryptase alpha/beta 1 0.1825 0.0000 0.4286 0.2037
18 AC002070.1 LOC105370027/ENSG00000248636 0.0000 0.4667 0.1429 0.2032
19 RASSF1 RAS association domain family member 1 0.3554 0.2000 0.0000 0.1851
20 AC006971.1 No NCBI gene ID yet, novel noncoding transcript,

ARHGAP5 pseudogene/ENSG00000218586
0.0000 0.2667 0.2857 0.1841

21 SNX12 Sorting nexin 12 0.4790 0.0000 0.0000 0.1597
22 ANKRD23 Ankyrin repeat domain 23 0.0000 0.3333 0.1429 0.1587
23 AC104564.5 No NCBI gene ID yet, novel noncoding transcript/ENSG00000265625 0.0430 0.0000 0.4286 0.1572
24 LINC00893 Long intergenic non-protein coding RNA 893 0.0430 0.0000 0.4286 0.1572
25 PCK1 Phosphoenolpyruvate carboxykinase 1 0.0000 0.4667 0.0000 0.1556
26 CENPC Centromere protein C processed_pseudogene 0.0000 0.4667 0.0000 0.1556
27 VPS35L VPS35 endosomal protein sorting factor like 0.1680 0.0000 0.2857 0.1512

Figure 2 Accuracy, balanced accuracy and area under the receiver operating characteristics (AUROC) according each different number of selected top
features.
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Table 2 Comparison of cross-validation evaluation metrics (mean ± standard deviation)

Model

Cross-validation results

Sensitivity Specificity Accuracy Balanced accuracy (%)

RF 0.7448 ± 0.15832 0.8790 ± 0.1441 0.8503 ± 0.0.096 0.8119 ± 0.0813
XGBoost 0.7162 ± 0.1866 0.86485 ± 0.1415 0.8292 ± 0.1153 0.7905 ± 0.1014
AdaBoost 0.7848 ± 0.1705 0.8971 ± 0.0674 0.8719 ± 0.0487 0.8418 ± 0.0593
DNN 0.8772 ± 0.1072 0.9825 ± 0.0317 0.9583 ± 0.0439 0.9286 ± 0.0596

DNN, deep neural network; RF, random forest.

Table 3 Comparison of prediction performances among prediction models in test dataset

Model TN FP FN TP Sensitivity Specificity Accuracy Balanced accuracy AUROC

RF 13 4 1 6 0.8571 0.7647 0.7917 0.8109 0.7479
XGBoost 12 5 1 6 0.8571 0.7059 0.7500 0.7815 0.7563
AdaBoost 14 3 1 6 0.8571 0.8235 0.8333 0.8403 0.8319
DNN 16 1 0 7 1.0000 0.9412 0.9583 0.9706 0.9916

AUROC, area under the receiver operating characteristics; DNN, deep neural network; RF, random forest.

Figure 3 Developed AI model (DSNet-v1) was successfully deployed on a public website (http://sarcopeniaAI.ml/)
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Figure 4 The visualization of expression and correlation of 27 AI-featured gene. (A) Boxplots showing the relative expression of each gene in the
healthy (white box) and sarcopenic elderly (green box). Yellow (HSS), pink (JSS) or blue (SSS) dots represent the gene expression of each individual
subject in three races. Data are median ± interquartile. *P < 0.05, **P < 0.01, ***P < 0.001; P values calculated using two-tailed Wilcoxon rank
sum test. (B) Correlogram matrices display Spearman’s rho between the genes facing each side of the square. The depth of the shading at the corre-
lation matrices indicates the magnitude of the correlation as shown in the scale.
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expression. The remaining 10 genes did not show statistical
differences between patients with sarcopenia and
age-matched healthy individuals. Twenty-seven AI-featured
genes were positively (blue) or negatively (red) correlated
with each other (the depth of colour for Spearman’s rho be-
tween 0.0 and 0.5) (Figure 4B).

For a better understanding, we performed a
transcriptome-wide co-expression analysis. We selected the
top five correlative transcripts from each of the 27 featured
genes and visualized them using a correlogram matrix
(Figure 5A) and a gene network (Figure 5B). Three distin-
guishable groups (α, β and γ) were generated from
Spearman’s rank correlation coefficient (rho). Groups α and
β generated geologically confined regions from other genes
with a high positive correlation in each group (Spearman’s
rho between 0.5–1.0). Although group γ failed to form a
highly associated cluster, unlike groups α and β, it was nega-
tively associated (red edges) in both groups. Furthermore,

three groups (Figure 5A,B) were generated via network
analysis. Finally, the human phenotype ontology (HPO)
(https://hpo.jax.org/) assay revealed the physiological and
pathological relevance of the three groups (Figure 5C). The
genes assigned to group α were linked to the HPO of
exercise-induced myalgia (HP:0003738), exercise
intolerance (HP:0003546), exercise-induced muscle cramps
(HP:0003710), amyloidosis (HP:0011034), lactic acidosis
(HP:0003128), axonal loss (HP:0003447), respiratory
failure (HP:0002878) and mitochondrial respiratory chain
(HP:0008972). Group β was associated with the HPO of rhab-
domyosarcoma (HP:0002859), neoplasm of striated muscle
(HP:0009728) and autosomal recessive inheritance
(HP:0000007). Group γ comprised genes associated with the
HPO of acanthosis nigricans (HP:0000956), oesophageal neo-
plasm (HP:0100751), gastrointestinal stromal tumour
(HP:0100723), abnormality of eosinophils (HP:0001879),
hypertriglyceridemia (HP:0002155), neoplasm of the small

Figure 5 Co-expression and human phenotype ontology assay categorizing 27 artificial intelligence (AI)-featured genes into three groups related with
skeletal muscle function, metabolism and diseases. (A) Correlogram matrices display Spearman’s rho of two genes facing each side of the square. The
shading intensity of the correlation matrices displays Spearman’s Rho as presented in the scale (left-hand side of the correlogram). The red, yellow and
green triangles on the correlogram tie group α, β and γ, respectively. (B) Gene network showing co-expression of group α, β and γ. The Spearman’s rho
of two node (gene) generates the colour and depth of each edge. The colour (pink, yellow and green) of node indicates each group (group α, β and γ).
The gene symbols are indicated in Figure S2. (C) Three networks generated by Enrichr showing Human Phenotype Ontology that associated with each
group. The colour of nodes (HPO terms) indicates each group and the edge means sharing common genes.
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intestine (HP:0100833), large hands (HP:0001176), neoplasm
of the small intestine (HP:0100833), neoplasm of the head
and neck (HP:0012288) and neoplasm of the peripheral
nervous system (HP:0100007). The seemingly separated
group γ from groups α and βmight be due to either a variable
clinical history of sarcopenia patients or an as-yet unknown
biological interaction affecting sarcopenia pathogenesis.
Further studies based on an extended dataset will be
necessary to understand the co-expression gene features
comprehensively.

Discussion

Our proposed AI model, DSNet-v1, successfully diagnosed
sarcopenia accurately (100% sensitivity, 94.12% specificity,
95.83% accuracy, 97.06% balanced accuracy, and 0.99
AUROC). This model presents several unique characteristics.
First, our model was developed based on subjects across
three different continents: Europe, Africa and Asia. Second,
our AI diagnosis model was developed using a vast amount
of gene information (i.e. 17 339 genes), and feature impor-
tance analysis was performed to identify genes associated
with sarcopenia. Finally, we created a web application
(http://sarcopeniaAI.ml/) to access the model. We believe
that allowing the public to access the AI model will facilitate
the validation and improvement of the model.

We observed that the expression patterns of several genes
varied among the three races (Figure 4A). For instance, the
CENPC expression was elevated in the sarcopenia of SSS
and HSS, but not in that of JSS. The expression of TEX261
reduced significantly in the sarcopenia of HSS and JSS, but
not in that of SSS. This implies that regardless of race, certain
factors might contribute to or be related to sarcopenia.
Additionally, some other factors may be race-specific
sarcopenic factors. Indeed, we observed a race-specific alter-
ation of 27 genes in sarcopenic muscle compared to the
healthy (Figure S3). For instance, AC104564.5, TPSAB1,
PFKFB4 and GTTP1-AS1 were altered only in the HSS.
AC116913.1 (a.k.a. Lnc-SNAPC5-1), RASSF1, PSMA6 and
CRHR2 were changed only in the JSS, whereas CENPC, KAT2A,
PEF1, VPS35L, H4C3 and SUMO1P3 were altered only in the
SSS. Although it might imply that there is a race-specific pa-
thology in sarcopenia, the power (n) might be not enough
to lead to a clear conclusion. In the case of PCK1, it failed
to generate a statistical significance in the HSS. However,
the mean expression was escalated. Because PCK1 is known
to be expressed in only gluconeogenic or glyceroneogenic tis-
sues such as the liver, kidney, intestine and fat cells (https://
www.gtexportal.org/), the altered expression of PCK1 might
imply the anatomical loss of muscle and gain of adipocytes.
Besides, Migliavacca et al. clearly demonstrated that gene
sets associated with mitochondrial function and NAD+ biosyn-

thesis pathway were tightly associated with the develop-
ment/progression of sarcopenia.14 Although our AI-featured
27 genes did not include a gene directly involved mitochon-
drial and NAD+ biosynthesis metabolism, several genes could
be associated indirectly with two pathways (i.e. mitochondria
and NAD+ biosynthesis). For instance, it is well demonstrated
that NAD+ biosynthesis and mitochondria function are tightly
associated with sirtuin, a NAD+-dependent protein
deacetylase22,23 and the protein acetyltransferase could be
a count partner.24 KAT2A is one of the well-defined count
partners of Sirtuins25 and a very recent study proposed that
KAT2A regulates muscle integrity.26 In addition, the
gene-regulating glycolysis displayed altered gene expression.
An additional intensive study of these 27 genes featured by
our AI algorithm will expand our understanding of muscle
ageing and sarcopenia.

Using Spearman’s correlation assay, we identified three
functional groups that were highly associated with 27
AI-featured genes (Figure 5). Interestingly, groups α and β
were associated with HPO terms of skeletal muscle function
(e.g., exercise, lactate metabolism and abnormal mitochon-
drial function) and diseases with muscular symptoms (e.g.,
amyloidosis, axonal loss and rhabdomyosarcoma). Sarcopenia
is often associated with physical frailty,23 reduced muscle
function,27 and mitochondrial dysfunction.14 In addition, re-
cent studies revealed that amyloidosis in skeletal muscle is
associated with mitochondrial dysfunction28,29 and muscle
diseases including inclusion body myositis,30,31 indicating that
both mitochondrial dysfunction and amyloidosis may trigger
sarcopenia. In group γ, which generated a negative cluster
against both groups α and β, most of the HPO terms were re-
lated to neoplasms. One HPO term was hypertriglyceridemia
(HPO:0002155), which is known to be associated with
sarcopenic obesity.32

Our study has several limitations. First, to find the 27
genes, we used the three machine learning algorithms such
as RF, XGBoost and AdaBoost, which result in opposing fea-
ture importance values for some genes. To improve general-
ization performance, we used an ensemble approach, which
combines machine learning techniques into one stable model
by reducing variance and bias. To investigate the effective-
ness, we compared the performance when the selected fea-
tures are obtained from RF, XGBoost, AdaBoost and their
ensemble in Table S3. The results show that the ensemble ap-
proach provided the highest accuracy metrics. It implies that
the ensemble may help to improve generalization perfor-
mance. However, for the combination, we equally weighted
the feature importance values. In the future work, we will
further investigate the ways to combine the values more effi-
ciently and accurately. Second, our proposed AI diagnosis
model was validated using an isolated test dataset (n = 24),
which was a dataset segregated from an entire dataset. It
may be necessary to validate our AI model using external
datasets, such as prospectively collected data. In addition,

2228 H. Chung et al.

Journal of Cachexia, Sarcopenia and Muscle 2021; 12: 2220–2230
DOI: 10.1002/jcsm.12840

http://sarcopeniaAI.ml/
https://www.gtexportal.org/
https://www.gtexportal.org/


we plan to further develop DSnet-v1 and change its name to
DSnet-v2 and DSnet-v3. To update the model, we will use our
developed web application to acquire additional data and
validate the model. Currently, the application does not store
any information entered by users. However, we plan to store
information entered by users upon agreement to improve the
AI model via a real-time learning process. Third, our data
included only three subjects of different races. In future
studies, we will train and apply our AI model to more
datasets comprising more diverse subjects.

Conclusion

Our AI model with 27 selected genes diagnosed sarcopenia
accurately. We believe that it can facilitate healthcare pro-
viders in treating patients with early-stage sarcopenia.
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