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Abstract

Background

Machine learning (ML) algorithms are now increasingly used in infectious disease epidemi-

ology. Epidemiologists should understand how ML algorithms behave within the context of

outbreak data where missingness of data is almost ubiquitous.

Methods

Using simulated data, we use a ML algorithmic framework to evaluate data imputation per-

formance and the resulting case fatality ratio (CFR) estimates, focusing on the scale and

type of data missingness (i.e., missing completely at random—MCAR, missing at random—

MAR, or missing not at random—MNAR).

Results

Across ML methods, dataset sizes and proportions of training data used, the area under the

receiver operating characteristic curve decreased by 7% (median, range: 1%–16%) when

missingness was increased from 10% to 40%. Overall reduction in CFR bias for MAR across

methods, proportion of missingness, outbreak size and proportion of training data was 0.5%

(median, range: 0%–11%).

Conclusion

ML methods could reduce bias and increase the precision in CFR estimates at low levels of

missingness. However, no method is robust to high percentages of missingness. Thus, a

datacentric approach is recommended in outbreak settings—patient survival outcome data

should be prioritised for collection and random-sample follow-ups should be implemented to

ascertain missing outcomes.
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Introduction

Machine learning (ML) algorithms—computer algorithmic techniques that learn patterns in

data—are increasingly used in epidemiology [1, 2] in areas including diagnostics, predictive

analytics, and missing data imputation [1–4]. Forna et al. used Boosted Regression Trees

(BRTs), a ML approach, to impute missing survival outcomes, adjust imputations for model

imperfection and combine the imputations with observed outcomes to re-examine case fatality

ratio (CFR) estimates (i.e. the probability that cases die due to the infection) for the West Afri-

can Ebola epidemic [5]. Those CFR estimates corroborate estimates from Garske et al. where

an overall mean CFR of 62.9% (95% CI: 61.9% to 64.0%) was reported for confirmed cases

with recorded clinical outcomes [6].

ML methods typically achieve encouraging out-of-sample performance levels, often with

minimal data pre-processing [7]. For example, BRTs allow for missingness in predictors, cap-

ture complex nonlinear relationships between outcomes and predictors, and are insensitive to

outliers within the predictors [8]. However, a major challenge is the need skilfully to optimise

hyperparameters to maximise out-of-sample performance. Additionally, it is unclear how data

characteristics, such as the type of missingness, influence the performance of ML algorithms

and the estimates based, in part, on the imputed data.

Thus, we sought ML methods that are resilient to hyperparameter choices. However, the

literature suggests that even when hyperparameters are minimally dependent on data, ML

methods perform best when trained on data for the specific problem for which they are to be

implemented [9, 10]. Beyond the need to optimise ML algorithms before they are fit for pur-

pose [11], practical challenge in the use of ML algorithms for epidemiological analysis remains

how they perform for various outbreak data characteristics, not least, the scale and type of

missingness.

In this simulation study, we characterise the inferential and predictive performance of five

algorithms (i.e., logistic regression (LR), random forest (RF), BRTs, Bayesian Additive Regres-

sion Trees (BART) and Artificial Neural Network (ANN)) to estimate CFR for Ebola virus

disease (EVD) in the presence of missing survival outcome data. Specifically, we vary the simu-

lated size of the outbreak dataset, the type and scale of data missingness, and the model train-

ing/validation ratio. Our aim was not to perform a technical appraisal of ML methods as in

previous studies [1, 12], but rather to demonstrate how different ML methods behave under

different (simulated) infectious disease outbreak data characteristics, focusing on the scale and

type of survival outcome missingness.

Methods

Simulated data

We simulated an outbreak dataset of 12,049 cases (i.e. complete case count of confirmed, prob-

able, suspected cases) to mimic that of the 2013–2016 Ebola epidemic in West Africa [13]. We

included 20 predictors and the survival outcome variable. Predictors included demographic

predictors such as age group, case classification and clinical predictors such as fever occur-

rence and unexplained bleeding (S1 Appendix). We let X = {X1, X2, . . ., X20} be a vector of the

predictors sampled with replacement from the observed dataset such that the distribution of

each simulated predictor is similar to that of its observed progenitor. The survival outcome

variable was simulated such that 76.5% died and 23.5% survived, similar to the pattern

observed in the West African Ebola epidemic dataset [5]. Using the coefficients from a general-

ised linear model, the probability of survival Y was modelled as a function of ten predictors

(Xs� X): age, country, reporting delay, case classification, hospitalisation status, quarter (date

PLOS ONE Comparison of machine learning methods for estimating case fatality ratios

PLOS ONE | https://doi.org/10.1371/journal.pone.0257005 September 15, 2021 2 / 15

Development (Centre funding) - grant number MR/

R015600/1 supported all the authors. Prof Christl A

Donnelly Dr Pierre Nouvellet Dr Ilaria Dorigatti Dr

Alpha Forna The National Institute of Health

Research (NIHR) supports Christl A Donnelly

through two grants: The Vaccine Efficacy

Evaluation for Priority Emerging Diseases

(VEEPED) grant, (ref. NIHR: PR-OD-1017-20002)

The NIHR Health Protection Research Unit in

Emerging and Zoonotic Infections NIHR200907

Imperial College Junior Research Fellowship and a

Sir Henry Dale Fellowship funded by the Royal

Society and Wellcome Trust [grant 213494/Z/18/

Z]. Dr Ilaria Dorigatti.

Competing interests: The authors have declared

that no competing interest exist.

https://doi.org/10.1371/journal.pone.0257005


of reporting aggregated at 3-month intervals), difficulty breathing, fever, fatigue, and anorexia.

The uniform distribution with bounds of 0 and 1 was used to generate the survival probabili-

ties. The generalised linear model could be written as:

gðYÞ ¼ Xsbþ ε

The parameter ε is the error distribution and β are coefficients of the model. β could be written

as a 2×1 matrix as follows:

b ¼
bo

bk

" #

The parameter βo is the coefficient of the intercept and βk are the coefficients of the simulated

predictors.

Thus, βT, the transpose of the 2×1 coefficient matrix for the simulated (i.e., generalised lin-

ear model) model is as follows:

b
T
¼

� 0:13 0:11 0:25 0:31 0:21 0:2 0:13 0:16 0:11 0:13

0:11 0:10 0:05 0:06 � 0:02 0:05 � 0:04 � 0:03 0:01 � 0:03

� 0:11 0:21 0:20 0:20 0:22 0:19 0:21 0:13 0:09 � 0:05

� 0:01 � 0:03

2

6
6
6
6
4

3

7
7
7
7
5

In this matrix, for the categorical predictors, age has 16 levels, country and case classification

have three levels each, quarter has seven levels, and all the other categorical predictors have 2

levels each. Reporting delay is a continuous predictor with mean = 5.68 days and standard

deviation = 8.91 days (S1 Appendix).

To these predictors in the simulated model, we added ten others (Xa� X): unexplained

bleeding, confusion, joint pain, jaundice, conjunctivitis, vomiting, diarrhoea, headache, muscle

pain and chest pain. These added predictors independent from the outcome, were used to fit

the ML models.

Algorithms evaluated in this study

The five algorithms (i.e., LR, RF, BRT, BART, and ANN) used for these experiments are briefly

described in the supplementary information (S1 Appendix). With exception of LR, the algo-

rithms all have tuneable hyperparameters. These tuneable hyperparameters and their purposes

are summarised in Table 1.

We briefly describe the outbreak data characteristics investigated in this simulation study.

Outbreak dataset size

Infectious disease outbreak sizes vary from one outbreak to another. In this simulation study,

to investigate outbreak dataset size, we down sampled the simulated dataset from 100% of

cases (12,049 cases) to 75% (9,037 cases), and 50% (6,025 cases) of cases and tested in each sce-

nario for model performance and CFR estimation.

Type and scale of missingness

Infectious disease outbreak datasets are almost never complete, and this data missingness

can introduce biases in estimating epidemiological parameters (e.g., CFR) from outbreak

data. Data missingness can be classified into three mechanisms: missing completely at ran-

dom (MCAR), missing at random (MAR) and missing not at random (MNAR) [18] MCAR
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means that the data are missing non-systematically and that any sample drawn from the data

is representative of the underlying population [18]. MAR means that the probability of miss-

ingness in a predictor is conditional on predictors (i.e., explanatory predictors) in the data.

Finally, MNAR means that the probability of missingness in a predictor is conditional on the

outcome (i.e., dependent variable). Details of how these different mechanisms were simu-

lated are included in the supplementary information (S1 Appendix). For instance, we con-

firmed missingness was MNAR by ensuring that the missingness in survival outcome was

conditional on the probability of the outcome itself. Our simulation study tests the robust-

ness of the ML algorithms in estimating unbiased CFRs given the mechanism underlying the

missingness.

To investigate the proportion of missingness, we generated 10%, 20% and 40% of each type

of missingness in the survival outcome variable. For each proportion of outcome missingness,

the same proportion of missingness in the predictors is simulated as MCAR (i.e., assuming

that the missingness in all the predictors is MCAR).

Model training/Validation ratio

The training/validation ratio (proportion of training data) has a direct influence on model

hyperparameterisation [19]. In this simulation study, we tested three training/validation splits

of the datasets: (i) 50% data for training and 50% for validation; (ii) 65% data for training and

35% for validation; and (iii) 80% data for training and 20% for validation.

Table 1. Summary of the machine learning algorithms and hyperparameters investigated.

ML algorithms Hyperparameters tuned Function of the hyperparameter in the model Hyperparameter space considered

(lower bound, upper bound)

Logistic Regression (LR) – –

Random Forest (RF) [14] Ntree Number of trees (100,1000)

Mtry Number of predictors randomly selected as candidates for

splitting a node

(3,10)

Nodesize Forest average number of unique data points in a terminal

node

(10,30)

Boosted Regression Trees

(BRTs) [15]

Ntrees Integer specifying the total number of trees to fit (100,2000)

interaction.depth Integer specifying the maximum depth of each tree (i.e., the

highest level of predictor interactions allowed)

(2,10)

bag.fraction Fraction of training dataset observations randomly selected

for each tree. This introduces random variation into the

model fit

(0.5,0.75)

shrinkage (Also known as the

learning rate)

Shrinkage parameter applied to each tree (0.001,0.05)

Bayesian Additive

Regression Trees (BART)

[16]

num_trees The number of trees to be grown in the sum-of-trees model. (5,20)

num_burn_in Number of MCMC samples to be discarded as “burn-in’’ (10,30)

num_iterations_after_burn_in Number of MCMC samples to draw from the posterior

distribution of the fitted function

(100,300)

Beta Power hyperparameter in tree prior distribution for whether

or not a node is nonterminal

(1,2)

Artificial Neural Network

(ANN) [17]

Size Number of units in the hidden layer (5,20)

Decay Parameter for weight decay (10−8,0.002)

Abstol Value below which the modelling fitting is stopped to

prevent overfitting

(0.001,0.002)

Reltol If the optimizer is unable to reduce the fit criterion by a

factor of at least (1–reltol), modelling fitting is stopped

(10−8,10−5)

https://doi.org/10.1371/journal.pone.0257005.t001
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Experimental setup

We simulated the survival outcomes with ten predictors but fitted models with 20 potential

predictors. To investigate whether the methods eliminate the ten irrelevant predictors from

the simulation, we estimated how important individual predictors were by contrasting inferen-

tial performances. Inferential performance, measured as the mean squared error (mse),

characterises the change in performance from permuting the values of each predictor and

comparing those to predictions made on the unpermuted simulated data [20].

In fitting each method to the data, we performed 5-fold cross validation. In cross validation,

the dataset is divided into k sub-samples (in our case k = 5). A single sub-sample is chosen as

testing data, and the remaining k − 1 sub-samples are used as training data. The procedure is

repeated k times, in which each of the k sub-samples is used exactly once as the testing data

[21]. The k results are averaged, and the resulting single estimate is used to evaluate each

method during hyperparameter optimisation.

For each method considered (LR, RF, BRT, BART and ANN), we used the literature to

guide the choice of upper and lower bounds of the hyperparameter values used to optimise

performance (Table 1) [8, 22–25], Conditional upon these bounds, 50 random grid searches

were carried out to identify the optimised hyperparameters for each algorithm. These opti-

mised hyperparameters were then used for model validation (using data held out for model

validation) and CFR estimation based on data with simulated missingness (both predictors

and outcome). For model validation, outcome imputation performance was characterised

using the sensitivity, specificity, percentage correctly classified (PCC) and the area under the

receiver operating characteristic curve (AUC). Each model returned a probability for each

missing outcome. Converting these probabilities into imputed binary values required the iden-

tification of a threshold probability. We selected our threshold to obtain equal sensitivity and

specificity [5].

Within this algorithmic framework, we varied the outbreak dataset size, the type and scale

of data missingness, and the model training/validation ratio for 100 simulations, each time

estimating the model performance and CFR. The true CFR of the simulated dataset was also

calculated each time. A step-by-step detailed description of the algorithmic framework is pro-

vided in the supplementary information (S1 Appendix).

In earlier work, assuming survival outcomes were MAR, Forna et al. adjusted the imputed

CFR to account for imperfect sensitivity and specificity of the BRT method [5]. As a sensitivity

analysis, we adjusted the unadjusted CFR estimates to investigate whether adjusting the

imputed survival outcomes reduces the bias in the true CFR for all methods. The reduction in

bias was calculated as follows:

Unadjusted CFR bias ¼ Unadjusted CFR � True CFRj j

Adjusted CFR bias ¼ Adjusted CFR � True CFRj j

Reduction in bias percentð Þ ¼
Adjusted CFR bias
Undjusted CFR bias

� 100; ð1Þ

The mlr package (version 2.19.0); which provides a unified interface to ML in R was utilised

for fitting the models [26]. The RSurveillance package (version 0.2.1); which adjusts for model

sensitivity and specificity was used for CFR estimation [27]. The ‘optimal.threshold’ function

in the PresenceAbsence (version 1.1.9) package was used to achieve equal sensitivity and speci-

ficity for CFR prediction [28]. R (version 3.6.2) was used for all analyses.
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Algorithms LR and ANN do not allow for missingness in predictors, therefore we imputed

the missing predictor values using the mean observed predictor values to allow all algorithms

to be applied to the same sized datasets.

The simulated outbreak dataset and the algorithmic pipelines used to investigate the differ-

ent ML methods and how they behave under different (simulated) infectious disease outbreak

data scenarios are available on GitHub: https://github.com/Paalpha/ebola_out_simulation.

Results

Fig 1 shows the inferential performances for all 20 predictors and each method. Across meth-

ods, the inferential performance (mse) for the ten predictors included in the simulation pro-

cess was 1% (median, range: 0%–6.7%) higher than that for the other predictors added for

model fitting 0.3% (median, range: 0%–1.5%).

The performance of the models decreased as the data proportion of missingness increased.

For instance, across methods, dataset size and proportion of training data used, the AUC

decreased by 7% (median, range: 1%–16%) when missingness was increased from 10% to 40%

(Fig 2). At 40% missingness, the AUC of BRTs was slightly greater, 2% (median, range: -14%–

16%), compared to the other methods combined (Fig 2). Across methods, the proportion of

missingness and proportion of training data used, the AUC increased by 1% (median, range:

Fig 1. Inferential performances (mean squared error [mse]) for all 20 predictors of Case Fatality Ratio (CFR)

estimated for each method (i.e., LR, RF, BRT, BART, ANN). The dotted horizontal line separates the ten predictors

used in the simulation process from the ten predictors added for model fitting.

https://doi.org/10.1371/journal.pone.0257005.g001
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-4%–6%) when outbreak size was increased from 50% to 100%. The AUC increased by 1%

(median, range: -5%–4%) when the proportion of data used for model training increased from

50% to 80% (Fig 2).

Fig 3 shows performance results for MAR missingness in the survival outcome and MCAR

missingness in the predictors. The performance profile for this scenario is similar to that in the

MCAR simulations.

Fig 2. Survival outcomes and predictors missing completely at random (MCAR): Imputation performance (sensitivity, specificity, percentage

correctly classified [PCC], area under the receiver operating characteristic curve [AUC]) as a function of the proportion of data used for model

training and a) the proportion of outbreak data (p); where p = 1 corresponds to the full dataset of 12,049 cases (100%); b) the proportion of simulated

missingness of 0.1 (10%), 0.2 (20%) and 0.4 (40%). Median and 95% confidence intervals are plotted. (The horizontal axis has been jittered for readability).

https://doi.org/10.1371/journal.pone.0257005.g002
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Below 20% missingness, methods performed consistently better than chance (AUC 62%

(median, range: 53%–68%)), when selecting a probability threshold such that sensitivity equals

specificity (Fig 4). AUC decreased by 12% (median, range: 6%–16%) when the missingness

was increased from 10% to 40% (Fig 4). At 40% missingness, sensitivity, specificity and PCC

and estimates overlapped for most methods, and AUC estimates were only slightly above 50%.

Fig 3. Survival outcome missing at random (MAR) and predictors missing completely at random (MCAR): Imputation performance (sensitivity,

specificity, percentage correctly classified [PCC], area under the receiver operating characteristic curve [AUC]) as a function of the proportion of

data used for model training and a) the proportion of outbreak data (p); where p = 1 corresponds to the full dataset of 12,049 cases (100%); b) the

proportion of simulated missingness of 0.1 (10%), 0.2 (20%) and 0.4 (40%). Median and 95% confidence intervals are plotted. (The horizontal axis has

been jittered for readability).

https://doi.org/10.1371/journal.pone.0257005.g003
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Similar to MCAR, performance for MAR improved with increased outbreak dataset size and,

on average, performance slightly improved with increases in the percentage of data used for

model training.

For all methods considered in these experiments, the bias in CFR increased with increas-

ing proportions of missingness (Fig 5). For MCAR missingness, LR and ANN tended to

Fig 4. Survival outcome missing not at random (MNAR) and predictors missing completely at random (MCAR): Imputation performance

(sensitivity, specificity, percentage correctly classified [PCC], area under the receiver operating characteristic curve [AUC]) as a function of the

proportion of data used for model training and a) the proportion of outbreak data (p); where p = 1 corresponds to the full dataset of 12,049 cases

(100%); b) the proportion of simulated missingness of 0.1 (10%), 0.2 (20%) and 0.4 (40%). Median and 95% confidence intervals are plotted. (The

horizontal axis has been jittered for readability).

https://doi.org/10.1371/journal.pone.0257005.g004
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overestimate the CFR while RF, BRT and BART tended to underestimate the CFR. For MAR

missingness, all models tended to underestimate the CFR, with increasing uncertainty com-

pared to the CFR estimates obtained with MCAR. For MNAR missingness, the bias and

uncertainty in the CFR estimates were comparatively higher. There were no distinguishable

patterns in CFR estimates due to differences in outbreak dataset size. The uncertainty in

CFR estimates usually increases with outbreak size. However, in our simulation this was not

observed. The proportion and type of missingness in survival outcomes are therefore driving

the uncertainty in CFR. Finally, the CFR estimates appeared to be independent of the train-

ing/validation ratio.

Fig 5. The relationship between the unadjusted CFR estimate for each missingness type (MCAR, MAR, MNAR) and the proportion of data used for

model training and a) proportion of outbreak data (p); were p = 1 corresponds to the full dataset of 12,049 cases (100%); b) proportion of simulated

missingness of 0.1 (10%), 0.2 (20%) and 0.4 (40%). The true CFR of the complete simulated data (without simulated missingness) is indicated by the red

dotted horizontal line. Median and 95% confidence intervals are plotted. (The horizontal axis has been jittered for readability).

https://doi.org/10.1371/journal.pone.0257005.g005
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For MAR, the overall reduction in bias across methods, proportion of missingness, out-

break size and proportion of training data was 0.5% (median, range: 0%–11%), while the over-

all reduction in bias for MCAR was 2.25% (median, range: 0%–10%) (Fig 6). MCAR-adjusted

CFRs are upwardly biased when missingness is 20% or 40% but the MAR-adjusted CFRs are

relatively less biased for the same proportions of missingness (Fig 6).

Discussion

ML algorithms are used in various epidemiological applications [29–31]. An increasingly com-

mon application is to obtain and improve estimates of epidemiological parameters of infec-

tious diseases [32]. Our simulation study examined the inferential and predictive performance

of five ML algorithms (i.e., LR, RF, BRT, BART and ANN) to estimate the CFR for Ebola vary-

ing outbreak data characteristics including the outbreak dataset size, the type and magnitude

of data missingness, and the model training/validation ratio.

The inferential performance profile (Fig 1) shows that the methods correctly identified the

ten predictors that largely explained the simulated variance in CFR. RF picks up signals from

predictors not used in the simulation because it is inherently programmed to explore predictors

independent of data during model fitting as a way of increasing model generalisability [19].

Corroborating the existing literature, our simulations demonstrate that ML algorithms per-

form better with large (outbreak) database sizes [33]. Algorithms like ANN usually require

even more data to achieve optimal performance and produce unbiased CFR estimates. The

suboptimal performance for outbreaks of small sizes can be attributed to less information in

small datasets resulting in ML classifiers that are less generalisable. In practice, the amount of

data is an important factor to consider when deciding whether to use ML to impute survival

outcomes.

Fig 6. The unadjusted and adjusted CFR estimates for MAR and MCAR missingness in survival outcomes and predictors Missing Completely at

Random (MCAR). The true CFR of the complete simulated data (without simulated missingness) is indicated by the red dotted horizontal line. Median

and 95% confidence intervals are plotted. (The horizontal axis has been jittered for readability).

https://doi.org/10.1371/journal.pone.0257005.g006
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The type and scale of missingness in the survival outcomes substantially influence the per-

formance of ML algorithms. The performance profile of the methods for MCAR and MAR

missingness is consistent with the published literature [34–36]. For example, missing data han-

dling methods like listwise deletion and multiple imputations have been previously shown to

be unbiased in the presence of MCAR and MAR missingness [34]. In addition, consistent with

published work [34], we found that as the proportion of missingness increased, none of the

ML algorithms performed ideally for survival outcome MNAR missingness. In fact, no infer-

ential method performed particularly well when >20% of outcomes are MNAR. Thus, MNAR

CFR estimates showed more bias and more uncertainty. In instances of>20% missingness in

survival outcomes, at least 50% random follow up of cases could reduce the bias and uncer-

tainty in CFR estimates. For missingness MAR, CFR estimates were below the true CFR. Our

simulations show that for missingness > 10% imputation using ML may bias CFR estimates,

in line with existing literature suggesting that datasets with limited missingness are not influ-

enced to the same extent by data imputation methods as compared to datasets with substantial

levels of missingness [37]. Based on these results, epidemiologists should investigate the scale

and type of missingness (using statistic tests such as Little’s MCAR test [38]) before using ML

algorithms for CFR estimation. For instance, the scale of MNAR missingness would be greater

in the early stages of an epidemic than later as follow-up methods, laboratory testing, reporting

lag and case-identification improve. Thus, key domain knowledge and outbreak context

should drive data analysis and interpretation of results.

We found that model performance increases with increases in model training/validation

ratio. These results suggest that provided the outbreak dataset is sufficiently large, training ML

models on at least half (50%) of the data could optimise performance as techniques like k-fold

cross validation ensure that models are internally validated to prevent overfitting to training

data.

Our results do not investigate the type of missingness in the predictors of survival outcome;

we assumed that the missingness in all predictors was MCAR. We also assume that predictors

are MCAR with the same percentage as the outcome missingness. Thus, these experiments are

a simplification of the possible complexities in observed outbreak data. We investigated the

proportion of missingness in the predictors and imputed the missing values using the mean

before implementing LR and ANN. Imputing for missingness in predictors, at least in part,

could explain the relatively reduced performance of these two algorithms. ANN parameters

usually require expert optimisation which may explain part of the reduction in performance.

RF, BRT and BART algorithms as implemented in our experiments inherently handled the

missingness in the predictors [23, 24]. By resampling with replacement from the 2013–2016

West African Ebola outbreak dataset, these simulation results are only contextually relevant to

an infinite population with the exact characteristics of that dataset.

This work is not a technical appraisal of ML methods, but rather it is meant to guide epide-

miologists in making more informed choices as they consider the use of the available ML tools

for CFR estimation and, more broadly, for infectious disease outbreak analysis.

The ML methods investigated in this paper are not exhaustive. Methods like XGBoost, a

variant of tree ensembled models have shown high performances in previous experiments

[39]. Automated machine learning methods like Tree-based Pipeline Optimization Tool

(TPOT) that do data cleaning, predictor engineering, model selection, and hyperparameter

optimisation in one operation are rapidly been developed and deployed [40]. While these

advanced approaches would ultimately make ML more accessible to epidemiologists, mislead-

ing inferences could also arise without key domain knowledge underpinning the interpreta-

tion of results.
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Conclusions

These scenarios and results illustrate the potential of ML algorithms to describe outbreak pat-

terns, impute survival outcomes and thus improve CFR estimation. We confirm that adjusting

for imperfect sensitivity and specificity reduces the bias in the CFR estimates based, in part, on

imputed data. However, even with the adjustments, no method is robust enough to high per-

centages of missingness. Thus, a datacentric approach is recommended—patient survival out-

come data collection should be prioritised in outbreak settings and random-sample follow-ups

should be implemented to ascertain missing outcomes.
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