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Abstract 

Background:  Approximately two thirds of stroke survivors maintain upper limb (UL) impairments and few among 
them attain complete UL recovery 6 months after stroke. Technological progress and gamification of interventions 
aim for better outcomes and constitute opportunities in self- and tele-rehabilitation.

Objectives:  Our objective was to assess the efficacy of serious games, implemented on diverse technological 
systems, targeting UL recovery after stroke. In addition, we investigated whether adherence to neurorehabilitation 
principles influenced efficacy of games specifically designed for rehabilitation, regardless of the device used.

Method:  This systematic review was conducted according to PRISMA guidelines (PROSPERO registration number: 
156589). Two independent reviewers searched PubMed, EMBASE, SCOPUS and Cochrane Central Register of Con-
trolled Trials for eligible randomized controlled trials (PEDro score ≥ 5). Meta-analysis, using a random effects model, 
was performed to compare effects of interventions using serious games, to conventional treatment, for UL rehabilita-
tion in adult stroke patients. In addition, we conducted subgroup analysis, according to adherence of included studies 
to a consolidated set of 11 neurorehabilitation principles.

Results:  Meta-analysis of 42 trials, including 1760 participants, showed better improvements in favor of interventions 
using serious games when compared to conventional therapies, regarding UL function (SMD = 0.47; 95% CI = 0.24 to 
0.70; P < 0.0001), activity (SMD = 0.25; 95% CI = 0.05 to 0.46; P = 0.02) and participation (SMD = 0.66; 95% CI = 0.29 to 
1.03; P = 0.0005). Additionally, long term effect retention was observed for UL function (SMD = 0.42; 95% CI = 0.05 to 
0.79; P = 0.03). Interventions using serious games that complied with at least 8 neurorehabilitation principles showed 
better overall effects. Although heterogeneity levels remained moderate, results were little affected by changes in 
methods or outliers indicating robustness.

Conclusion:  This meta-analysis showed that rehabilitation through serious games, targeting UL recovery after stroke, 
leads to better improvements, compared to conventional treatment, in three ICF-WHO components. Irrespective of 
the technological device used, higher adherence to a consolidated set of neurorehabilitation principles enhances 
efficacy of serious games. Future development of stroke-specific rehabilitation interventions should further take into 
consideration the consolidated set of neurorehabilitation principles.
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Background
Each year more than 1 million Europeans suffer from 
stroke and approximately two-thirds of survivors main-
tain upper limb (UL) paresis [1]. This number is expected 
to rise by 35% in upcoming years [2] leading to addi-
tional rehabilitation needs. To this date, few people attain 
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complete UL recovery 6  months after stroke [3]. New 
interventions targeting the UL aim for better outcomes 
in activities of daily living (ADL), functional independ-
ence and quality of life. Alongside conventional thera-
pies, recent developments offer possibilities in self- and 
tele-rehabilitation [4] which could help manage, cost-effi-
ciently [5], increasing rehabilitation demands.

Technological improvements in robot assisted therapy 
(RAT) and virtual reality (VR) systems (VRS) enhance 
patient care and facilitate therapist assistance during UL 
rehabilitation [6, 7]. First, RAT promotes the use of the 
affected limb, intensifies rehabilitation through task rep-
etition and offers task-specific practice [7]. Effectiveness 
of RAT is established for UL rehabilitation after stroke [8, 
9]. Secondly, VRS provide augmented feedback, preserve 
motivation and are becoming cost-efficient [5]. Recent 
meta-analyses suggest a superior effect of VR-based 
interventions compared to conventional treatment on UL 
function and activity after stroke, especially if developed 
for this specific purpose [10–12]. Authors attributed 
these findings to the fact that VRS specifically developed 
for rehabilitation, as opposed to commercial video-games 
(CVG), fulfil numerous neurorehabilitation principles.

Typically, a common denominator of VRS and RAT is 
playful interventions by means of serious games [13, 14]. 
A serious game is defined as a game that has education 
or rehabilitation as primary goal. These games combine 
entertainment, attentional engagement and problem 
solving to challenge function and performance [15, 16]. 
Moreover, they comply with several motor relearning 
principles that constitute the basis of effective interven-
tions in neurorehabilitation [11, 16]. For example, some 
devices adapt game difficulty to stimulate recovery and 
maintain motivation [15]. Others incorporate functional 
tasks mimicking ADL in virtual environments and pro-
vide performance feedback during and/or after task 
completion [17]. Characteristics of serious games differ 
depending on targeted rehabilitation purposes and tech-
nical specificities of the system they are implemented on.

Previous work on the efficacy of VR-based interven-
tions indicated that serious games may enhance UL 
recovery after stroke [11, 12, 18]. However, why such 
interventions, specifically developed for rehabilitation 
purposes and implemented on various types of devices 
(such as robots, smartphones, tablets, motion capture 
systems, etc.), may constitute effective therapies for UL 
rehabilitation after stroke needs to be further investi-
gated. Recent theoretical research proposed consolida-
tion of commonly acknowledged neurorehabilitation 
principles [16]. Usually, serious games comply with sev-
eral of these principles which creates an opportunity to 
evaluate clinical applicability of the consolidated set of 
principles. To this day, it remains unclear whether higher 

adherence to this consolidated set of neurorehabilitation 
principles enhances efficacy of interventions. In addition, 
it is not well known whether adherence to specific prin-
ciples influences efficacy. Finally, rehabilitation effects on 
participation outcomes remain relatively unexplored. In 
this context, efficacy of interventions should be addressed 
in terms of all components of the World Health Organi-
zation’s International Classification of Function, Disabil-
ity, and Health (ICF-WHO) model [19].

The main objective of this systematic review and 
meta-analysis was to address the following question in 
PICOS form: in adults after stroke (P), do serious games, 
implemented on various technological systems (I), show 
better efficacy than conventional treatment (C), to reha-
bilitate UL function and activity, and patient’s participa-
tion (O)? A secondary objective was to assess whether 
higher adherence to a consolidated set of neurorehabili-
tation principles enhances efficacy of games specifically 
designed for rehabilitation, irrespective of the technolog-
ical device used.

Methods
Design
This systematic review followed the Preferred Report-
ing Items for Systematic Reviews and Meta-Analysis 
(PRISMA) guidelines [20]. The protocol was registered in 
International Prospective Register of Systematic Reviews 
(PROSPERO 2020, registration number: 156589).

Identification and study selection
A search strategy looking for relevant literature was 
developed for PubMed and adapted for the other data-
bases, namely Scopus, Embase and Cochrane Library 
(Additional file 1). Authors received help from a profes-
sional librarian to set up the search strategy. Two inves-
tigators (GE and ID) independently retrieved studies. All 
references were stored in reference management software 
EndNote X9. After removal of duplicates, remaining ref-
erences were first screened based on titles and abstracts.

Study eligibility was assessed according to the following 
criteria: (a) design of randomized controlled trials (RCT) 
(b) participants were adults undergoing stroke rehabili-
tation (c) the intervention consisted of games developed 
for neurorehabilitation purposes and implemented in the 
following technological devices: robotic systems, VRS, 
tablets, smartphones and motion capture systems (d) rel-
evant outcomes were employed to assess UL function, 
UL activity and participation (e) studies were published 
in French or English before May 5th, 2020. All studies 
using additional therapeutic modalities such as brain 
stimulation, electrical stimulation or invasive treatments 
were excluded.
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Systematic reviews assessing effectiveness of VR-based 
rehabilitation and RAT in stroke recovery were also 
hand-searched looking for relevant references. Finally, a 
selection based on full-text was conducted by the same 
two reviewers. Disagreements were resolved through 
discussion.

Quality and risk of bias assessment
The PEDro checklist was used for methodological qual-
ity assessment of trials [21]. In addition, the Cochrane 
Collaboration’s Risk of Bias (RoB) tool was employed to 
conduct a critical appraisal of each trial’s internal validity 
[22].

Data extraction
The following data concerning patients, interventions, 
control groups and outcomes were extracted from each 
study: number of patients enrolled in each group, mean 
time since stroke, corresponding stroke stage classifica-
tion (subacute: 7 days to 6 months after stroke, chronic: 
more than 6 months after stroke) [23], dosage and dura-
tion of the intervention, technological device used, type 
and duration of treatment for the control group, presence 
of a follow-up assessment and outcomes assessed in each 
timepoint evaluation.

Studies were also assessed in terms of the number of 
neurorehabilitation principles their intervention fulfilled 
as described in the review of Maier et  al. [11]. These 
authors described a total of 11 principles presented in 
Table  1. The two reviewers, independently, investigated 
whether interventions of included studies fulfilled each 

one of the neurorehabilitation principles. For each clearly 
identified principle, one point was attributed to the study. 
In case available information was vague, missing or did 
not match the neurorehabilitation principle descriptive’ 
(as mentioned in Table 1), no point was accorded. Then, 
we calculated a total score out of 11 for each included 
study.

Outcome measurements
Outcome measures were selected in accordance to the 
ICF-WHO model [19]. In each category, assessment 
scales were chosen based on recent literature recom-
mendations [24, 25]. The Fugl-Meyer Assessment (FMA) 
[26] was used for the body function domain. The Action 
Research Arm Test (ARAT) [27], the Box and Block Test 
(BBT) [28] and the Wolf Motor Function Test (WMFT) 
[29] were used for the activity domain. The social partici-
pation subscale of the Stroke Impact Scale (SIS) [30] was 
used for the participation domain.

When available, mean improvements in terms of 
change-from-baseline and their standard deviation 
(SD) were extracted for each time point. If not avail-
able, authors were contacted via email. In case of non-
response, the mean improvement was calculated through 
subtraction between post-intervention mean score and 
pre-intervention mean score. Then, the SD was estimated 
by using a formula according to the Cochrane Handbook 
for Systematic Reviews of Interventions [31]. The value 
of the correlation coefficient was imputed by using data 
from other studies [17, 32, 33] included in the meta-
analysis. Lastly, when only median and quartiles were 

Table 1  List of neurorehabilitation principles with description established by Maier et al. [11, 16]

All studies, 42 included in meta-analysis

 + , studies with SMD in favour of the experimental group for main outcomes regarding upper limb function

 = , studies with SMD in favour of the control group for main outcomes regarding upper limb function

*Statistically significant difference (p < 0.05) in Fischer’s exact test

Neurorehabilitation principle Description Fulfilled in studies (%)

All studies  +   = 

Massed practice Tasks aiming to increase the number of repetitions performed 81 79 85

Dosage Intensive training: more than a daily session of 60 min on every weekday 52 59 38

Structured practice Training that includes periods of rest 26 31 15

Task-specific practice Functional training relevant to ADL 100 100 100

Variable practice Training that includes different types of tasks 98 97 100

Multisensory stimulation Training that provides more than two types of sensory feedback 83 90 69

Increasing difficulty Complexity of tasks changes depending on participants’ ability, performance or time 76 76 80

Explicit feedback Training that provides information about the patient’s performance at the end of the task 79 93 46*

Implicit feedback Training that delivers information about the performance in real time such as visualization 
of movement or other kinematic properties

74 83 54

Avatar representation Embodied training by representation of a human or body part 38 41 31

Use of the paretic limb Promoting the use of the paretic limb 76 76 80
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available, the mean and SD were approximated using the 
method proposed by Wan et  al. [34]. For studies using 
follow-up evaluations at least one month after the inter-
vention, mean improvements in terms of change-from-
baseline were calculated in order to assess long-term 
effect retention.

Data and statistical analysis
Articles scoring below 5/10 on the PEDro scale were 
excluded due to overall poor methodological quality 
[35]. In addition, only trials that described conventional 
therapy used in the comparison group as including occu-
pational, physical or self-therapy were considered for 
statistical analysis. Statistical analyses were performed 
using the RevMan 5.3 software [36]. Since different rating 
scales were used for studied outcomes and results were 
reported in various ways, standardized mean difference 
(SMD) and 95% confidence interval (CI) were calculated. 
This method allowed standardization of results across 
studies. A random effects meta-analysis model was used 
for all analyses and statistical significance level was set at 
P < 0.05 [37]. Heterogeneity across trials was estimated 
using the I2 test. Heterogeneity was not considered to be 
significative for a I2 < 30% [30].

Subgroup analysis was conducted for RCT whose 
intervention met at least 8/11 neurorehabilitation princi-
ples compared to RCT whose intervention fulfilled less. 
Another subgroup analysis was performed according to 
stroke stage, comparing effects of interventions using 
serious games on subacute and chronic stroke patients. 
Subgroup analysis were only considered when at least 
two trials in each subgroup reported a given domain. 
Furthermore, long-term effect retention for trials that 
measured outcomes at follow-up was evaluated.

Publication bias was evaluated visually through fun-
nel plot graphic representation. Sensitivity analyses was 
conducted to verify results robustness in case of funnel 
plot asymmetry, heterogeneity or presence of outliers. 
Additional sensitivity analyses were conducted using two 
different values for correlation coefficient [30]. GRADE-
pro program was used to assess the strength of the body 
evidence [38].

Finally, a Fischer’s exact test was used to compare dif-
ferences in proportions among studies, depending on 
their results, regarding adherence to each neurorehabili-
tation principle.

Results
Study selection
A total of 8141 trials were identified through search 
across all databases and 165 additional records through 
other sources. After removal of duplicates, 5131 arti-
cles were screened based on titles and abstracts. Among 

these, 5049 were excluded and 82 full-text articles were 
assessed for eligibility. 51 RCT were included in the 
qualitative synthesis. Finally, after quality assessment 
was performed, 42 RCT were considered for quantita-
tive synthesis. Further details are illustrated in the study 
PRISMA flow chart (Fig. 1).

Study characteristics
A total of 2083 participants with a mean age ranging from 
49.3 to 76.0 years were included in the qualitative synthe-
sis. For each included study, we identified the mean age 
of the participants, the stroke stage classification and the 
type of device used for intervention (Table  2). Approxi-
mately one third (31%) of studies included stroke patients 
at subacute stage and two-thirds (69%) at chronic stage. 
Across trials, serious games were implemented on dif-
ferent types of devices: 26 (51%) used a motion capture 
system among which many low-cost systems (such as 
Microsoft Kinect for example), 10 (19%) used an end-
effector type robot, 5 (9%) used motion capture gloves, 
3 (7%) a robotic exoskeleton, 3 (6%) an immersive-VR 
system, 2 (4%) a smartphone or tablet, 1 (2%) a sur-
face EMG-controlled sensor and 1 (2%) an arm support 
system.

For each trial, total treatment duration in terms of min-
utes per session, number of sessions per week and total 
number of weeks was identified. In addition, whether 
intervention and control groups were time-matched 
regarding these characteristics was verified (Table  3). 
Total number of weeks of treatment varied from 2 to 
12  weeks with a mean of 5  weeks among trials. Daily 
duration of therapy varied widely among studies ranging 
from 30 to 225 min. In most trials (85%), total treatment 
duration was matched between the intervention and con-
trol groups (Table 3).

The number of neurorehabilitation principles fulfilled 
by serious games were identified through content analy-
sis. This number varied from 4 to 11 (Table 3). For a total 
of 11 neurorehabilitation principles, 32 (63%) interven-
tions met 8 or more, 17 (33%) met between 5 and 7 and 2 
(4%) interventions met less than 5. Table 1 illustrates the 
percentage of studies included in meta-analysis that com-
plied with each neurorehabilitation principle. In addition, 
Table  1 displays differences in adherence to each neu-
rorehabilitation principle between studies with overall 
positive or negative results (based on each study SMD in 
quantitative synthesis results). Statistically significant dif-
ferences were observed regarding the principle of explicit 
feedback. Indeed, the group of studies with overall posi-
tive results adheres more to this principle than the other 
group.

Regarding main outcomes, 44 trials (87%) assessed 
UL motor function, 30 (59%) assessed UL activity and 
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9 (17%) assessed participation (Table  3). Most tri-
als (60%) reported significantly superior results in at 
least one ICF-WHO component in favour of interven-
tions using serious games compared to conventional 
treatment.

Methodological quality and risk of bias assessment
PEDro scores of 51 included studies ranged from 5 to 
8 with a mean (SD) of 6.33 (1.15) indicating an over-
all moderate to high methodological quality (Table 2). 
Detailed PEDro scale scoring for each trial is illus-
trated in Additional file  1: Table  S1. In addition, the 
detailed analysis using the Cochrane Collaboration 
RoB tool is presented in Additional file 1: Fig. S1.

Effect of rehabilitation through serious games on UL motor 
function
In total, rehabilitation using serious games led to signifi-
cantly better improvements, of moderate effect size, in 
UL motor function compared to conventional treatment 
(SMD = 0.47; 95% CI = 0.24 to 0.70; P < 0.0001) (Fig.  2). 
Subgroup analysis highlighted differences between 
results of trials using serious games fulfilling 8 or more 
neurorehabilitation principles and those that did not 
(P = 0.003). Indeed, only interventions that met 8 or 
more principles showed significant impact of moderate 
effect size on upper limb motor function (SMD = 0.62; 
95% CI = 0.33 to 0.92; P = 0.0001). Although total results 
indicated considerable heterogeneity between studies 
(I2 = 76%), analysis using the GRADE approach led to a 

Fig. 1  Flow chart (PRISMA) of the selection process
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Table 2  Characteristics of included studies

Author Participantsa Ageb Stroke stage Type of device PEDro score

Adomaviciene [51] 42 64.6 Subacute Motion capture system, LCD monitor 5

Ang [52] 21 54.2 Chronic Haptic Knob robotic system, LCD monitor 6

Aprile [53] 224 69.5 Subacute 4 different robotic devices 6

Askin [54] 38 55.0 Chronic Motion capture system, LCD monitor 6

Brunner [40] 120 62.0 Subacute Motion capture gloves, LCD monitor 7

Cameirao [55] 19 61.0 Subacute Motion capture system, data gloves, LCD monitor 5

Cameirao [56] 44 62.0 Chronic Motion capture system, data gloves, LCD monitor 6

Cho [57] 38 60.0 Chronic End-effector robot, LCD monitor 8

Choi [58] 24 61.0 Subacute Smartphone and tablet computer 6

Crosbie [59] 18 60.0 Chronic Immersive VR motion tracking system 8

Dehem [14] 45 67.3 Subacute End-effector robot, LCD monitor 7

Duff [60] 21 68.5 Chronic Motion capture system, LCD monitor 5

Henrique [61] 31 76.0 Chronic Immersive VR motion tracking system 5

Housman [62] 28 55.0 Chronic Robotic exoskeleton, LCD monitor 5

Hung [13] 33 58.5 Chronic Motion capture system, LCD monitor 7

Jang [63] 10 57.1 Chronic Motion capture system, LCD monitor 5

Jo [64] 29 64.0 Chronic Motion capture system, LCD monitor 5

Kim [65] 23 53.5 Subacute Motion capture system, LCD monitor 8

Kiper [66] 80 64.0 Subacute Motion capture system, LCD monitor 5

Kiper [67] 44 64.3 Subacute Motion capture system, LCD monitor 5

Kiper [46] 136 63.9 Subacute Motion capture system, LCD monitor 6

Klamroth-Marganska [68] 73 56.5 Chronic Robotic exoskeleton, LCD monitor 8

Kottink [32] 18 61.5 Chronic Motion capture system, LCD monitor 6

Kwon [69] 26 57.5 Subacute Motion capture system, LCD monitor 5

Laffont [44] 51 58.0 Subacute Touchscreen interface, computer monitor 8

Lee [70] 26 67.5 Chronic Motion capture system, LCD monitor 8

Lee [71] 18 71.1 Chronic Motion capture system, LCD monitor 6

Lee [72] 30 51.0 Chronic End-effector robot, LCD monitor 6

Levin [73] 12 58.5 Chronic Motion capture system, LCD monitor 6

Liao [74] 20 54.5 Chronic End-effector robot, LCD monitor 7

Mugler [75] 32 58.0 Chronic Surface EMG-controlled sensor, computer monitor 6

Nijenhuis [76] 19 60.0 Chronic Arm support system 6

Norouzi-Gheidari [39] 18 49.9 Chronic Motion capture system, LCD monitor 7

Ogun [77] 65 60.6 Chronic Immersive VR motion tracking system 6

Oh [17] 31 55.0 Chronic 3-D manipulator, computer monitor 7

Park [33] 25 52.5 Chronic 2-D planar motion handlebar, LCD monitor 7

Piron [78] 36 65.2 Chronic Motion capture camera, computer monitor 7

Piron [47] 47 60.5 Chronic Motion capture system, LCD monitor 8

Prange [79] 68 59.1 Subacute Arm support system, computer monitor 7

Rogers [80] 21 64.4 Subacute Touchscreen mega-tablet 6

Schuster-Amft [81] 54 61.3 Chronic Motion capture gloves, LCD monitor 8

Shin [82] 16 49.3 Subacute Motion capture system, LCD monitor 5

Shin [83] 32 54.0 Chronic Motion capture system, LCD monitor 6

Shin [84] 46 58.5 Chronic Motion capture gloves, LCD monitor 7

Subramanian [85] 32 61.0 Chronic Motion capture system, LCD monitor 7

Thielbar [86] 14 56.5 Chronic Pneumatically actuated motion capture gloves 6

Thielbar [87] 20 59.7 Chronic Motion capture system, LCD monitor 5

Tomic [88] 26 57.4 Subacute End-effector robot, LCD monitor 7

Wolf [89] 99 56.9 Chronic End-effector robot, computer touch screen 7

Yin [90] 23 58.3 Subacute Motion capture system, computer monitor 6

Zondervan [91] 17 59.5 Chronic Motion capture gloves, computer monitor 6
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moderate certainty of evidence (Additional file 1: Fig. S2 
illustrates detailed summary of findings).

Additional subgroup analysis was conducted based on 
the stroke stage of included participants across studies 
(Fig.  3). Results suggest that interventions using serious 
games were effective in improving UL motor function 
in both subacute (SMD = 0.35; 95% CI = 0.10 to 0.59; 
P = 0.006) and chronic stage after stroke (SMD = 0.57; 
95% CI = 0.19 to 0.95; P = 0.003). Differences among sub-
groups did not reach statistical significance (P = 0.33).

Finally, in order to address heterogeneity, sensitivity 
analyses were performed in two ways. A first analysis was 
conducted by excluding outliers identified through fun-
nel plot graphic representation (Additional file 1: Fig. S3). 
Then, a second analysis was carried out by using a dif-
ferent correlation coefficient value. In both cases, results 
indicate no significant differences in total estimates when 
compared to initial findings (Additional file  1: Figs.  S4 
and S5).

Effect of rehabilitation through serious games on UL 
activity
In total, rehabilitation using serious games led to sig-
nificantly better improvements, of low effect size, in 
upper limb activity compared to conventional treatment 
(SMD = 0.25; 95% CI = 0.05 to 0.46; P = 0.02) (Fig. 4). In 
a similar way to results regarding UL function, subgroup 
analysis showed significantly better improvements, of 
moderate effect size, only for interventions that fulfilled 
8 or more neurorehabilitation principles (SMD = 0.42; 
95% CI = 0.12 to 0.72; P = 0.006). Differences among 
subgroups were statistically significant (P = 0.01). Total 
results indicated moderate heterogeneity between studies 
(I2 = 56%). Additional subgroup analysis based on stroke 
stage did not reach statistical significance for neither 
subacute or chronic stage after stroke (Additional file 1: 
Fig. S6).

Effect of rehabilitation through serious games 
on participation
In total, rehabilitation using serious games led to signifi-
cantly better improvements, of large effect size, in partici-
pation compared to conventional treatment (SMD = 0.66; 
95% CI = 0.29 to 1.03; P = 0.0005) (Fig. 5). No significant 
heterogeneity was present (I2 = 0%). All trials included in 
this analysis used a serious game that complied with 8 or 
more neurorehabilitation principles.

Analysis of follow‑up data
Separate analyses were conducted regarding follow-up 
data for each ICF-WHO component. Only half of the 
studies included in the quantitative synthesis (50%) per-
formed follow-up evaluations. Among them, length of 
follow-up period ranged from 1 to 6 months with a mean 
(SD) of 2.3  months (1.86). An overall tendency towards 
improvement for interventions using serious games 
regarding all ICF-WHO components was observed 
(Additional file  1: Figs.  S7, S8 and S9). Total estimates 
concerning UL function indicate effect retention to fol-
low-up in favour of the experimental group of moderate 
effect size (SMD = 0.42; 95% CI = 0.05 to 0.79; P = 0.03). 
Results did not reach statistical significance regarding UL 
activity and participation.

Discussion
Main results
This systematic review and meta-analysis showed results 
in favour of rehabilitation using, purpose-built, serious 
games on UL motor function, UL activity and participa-
tion after stroke compared to conventional treatment. 
Moreover, long term effect retention was significantly 
maintained regarding UL function. Irrespective of the 
technological device used, serious games that complied 
with more than 8 out of 11 neurorehabilitation principles 
showed better overall effects.

Previous studies on effectiveness of VRS/CVG for UL 
rehabilitation after stroke
Previous work on the use of VRS and CVG for UL reha-
bilitation after stroke demonstrated similar results [11, 
17]. Yet, to date, usage and efficacy of game-based inter-
ventions for UL rehabilitation after stroke remain con-
troversial [38–40]. Initially, a meta-analysis by Saposnik 
et  al., combining observational studies and RCT, sug-
gested improvements in UL strength and motor function 
after stroke [41]. However, this review focused on vari-
ous VRS, including CVG designed by the entertainment 
industry, not specifically developed for rehabilitation. 
In addition, no statistically significant differences were 
observed concerning UL activity outcomes and no anal-
ysis was conducted regarding ICF-WHO participation 
component due to limited available data.

Two other groups conducted systematic reviews on a 
similar topic [42, 43]. However, both reviews included 
studies concerning not only UL rehabilitation but also 

Table 2  (continued)
LCD monitor, liquid–crystal display monitor; 3-D, 3-Dimensional; 2-D, 2-Dimensional
a Participants: number of total participants in study
b Age: mean age in years estimated for total number of participants included in each study
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Table 3  Duration, matched groups, outcome measurements, overall findings, number of included neurorehabilitation principles

Authors and publication year Durationa Matched 
groupsb

UL function UL activity Participation Overall 
findingsc

Principlesd

Adomaviciene, 2019 [51] 2 ✓ FMA-UE BBT  +  4

Ang, 2014 [52] 6 ✓ FMA-UE  =  5

Aprile [53] 6 ✓ FMA-UEs ARAT​s  =  10

Askin, 2018 [54] 4 X FMA-UEm, s BBTm, s  +  6

Brunner, 2017 [40] 4 ✓ ARAT​s, BBT  =  4

Cameirao, 2011 [55] 12 ✓ FMA-UE  +  6

Cameirao, 2012 [56] 4 ✓ FMA-UE BBT  +  6

Cho, 2019 [57] 6 ✓ FMA-UE ARAT, BBT  +  6

Choi, 2016 [58] 2 ✓ FMA-UE s  +  8

Crosbie, 2012 [59] 3 ✓ ARAT s  =  6

Dehem, 2019 [14] 9 ✓ FMA-UE BBT SIS  +  9

Duff, 2013 [60] 4 ✓ FMA-UEm, s WMFTm, s SIS  =  9

Henrique, 2019 [61] 12 ✓ FMA-UE  +  9

Housman, 2009 [62] 9 ✓ FMA-UE  +  5

Hung, 2019 [13] 12 ✓ FMA-UEm, s WMFTm, s  =  8

Jang, 2005 [63] 4 ✓ FMAs BBTs  +  10

Jo, 2012 [64] 4 X WMFT  +  9

Kim, 2018 [65] 2 ✓ FMA-UEs BBTs  =  7

Kiper, 2011 [66] 4 ✓ FMA-UEs  +  9

Kiper, 2014 [67] 4 ✓ FMA-UEs  +  9

Kiper, 2018 [46] 4 ✓ FMA-UEs  +  8

Klamroth-Marganska, 2014 [68] 8 ✓ FMA-UE SIS  +  7

Kottink, 2014 [32] 6 ✓ FMA-UE ARAT​  =  6

Kwon, 2012 [69] 4 X FMA-UEs  =  5

Laffont [44] 6 ✓ FMA-UE BBT, WMFT  =  8

Lee, 2016a [70] 8 ✓ FMA-UEs BBTs  +  8

Lee, 2016b [71] 6 ✓ BBT  +  9

Lee, 2018 [72] 8 ✓ FMA-UEs  +  8

Levin, 2012 [73] 3 ✓ FMA-UEs BBTs, WMFT  +  9

Liao, 2012 [74] 4 ✓ FMA-UEs  +  7

Mugler, 2019 [75] 3 X FMA-UE  =  8

Nijenhuis, 2017 [76] 6 ✓ FMA-UEm, s ARAT​m, s, BBT SIS  =  5

Norouzi-Gheidari, 2019 [39] 4 X FMA-UEs BBTs SISs  +  8

Ogun, 2019 [77] 6 ✓ FMA-UEs ARAT​s  +  8

Oh, 2019 [17] 6 ✓ FMA-UE BBT  +  9

Park, 2019 [33] 4 ✓ FMA-UE WMFT SIS  =  9

Piron, 2009 [78] 4 ✓ FMA-UEs  +  8

Piron (2010) [47] 4 ✓ FMA-UEs  +  10

Prange, 2015, [79] 6 ✓ BBT  +  9

Rogers2019 [80] 4 X FMA-UEs  =  5

Schuster-Amft, 2018 [81] 4 ✓ BBTm, s SIS  =  7

Shin, 2014 [82] 2 X FMA-UEs  =  8

Shin, 2015 [83] 4 ✓ FMA-UEm, s  =  9

Shin, 2016 [84] 4 ✓ FMA-UEs SISs  +  10

Subramanian, 2012 [85] 4 ✓ FMA-UE  +  8

Thielbar, 2014 [86] 6 ✓ FMA-UEs ARAT​s  +  10

Thielbar, 2020 [87] 4 ✓ FMA-UE  +  8

Tomic, 2017 [88] 3 ✓ FMA-UE WMFT  +  8

Wolf, 2015 [89] 8 ✓ FMA-UEs ARAT​s, WMFT  =  6
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gait and balance, making it difficult to draw conclusions 
regarding the UL. Palma et al., solely relying on qualita-
tive synthesis, supported positive findings on function 
[42]. Results were inconclusive regarding activity and 
participation components and further interpretation 
was limited due to lack of quantitative synthesis. Then, a 
meta-analysis by Lohse et  al. showed positive effects in 
favour of VR-based interventions regarding three ICF-
WHO components [43]. However, analysis was restricted 
to therapies that did not include robotic assistance. Fur-
thermore, analyses through meta-regressions did not 
point out significant differences in outcomes between 
commercially available and custom-built systems.

Two updated Cochrane reviews covered broader 
aspects of VR and robotics in UL rehabilitation after 
stroke [8, 10]. In the review by Mehrholz et al., high qual-
ity evidence supports better improvements in ADL, arm 
function and arm strength in favour of RAT [8]. None-
theless, effects of robotic training performed in form of 
a serious game were not studied. Then, a review by Laver 
et  al. on VR-based interventions, demonstrated equiva-
lent improvements in UL function and activity when 
comparing time-matched interventions [10]. Notably, UL 
function and activity outcomes were pooled in one com-
mon analysis instead of distinguishing effects in terms 
of the two ICF-WHO components. Further analyses in 
subgroups suggested better results when specific systems 
designed for rehabilitation were employed compared to 
off-the-shelf CVG, although differences did not reach 
statistical significance.

Finally, two recent reviews showed improvements on 
both UL function and activity in groups receiving VR/
gaming-based training after stroke [11, 18]. However, 
both reviews studied broader aspects of VR-based inter-
ventions and their scope was not delimited to specific 
use of serious games. Karamians et  al. suggested that 
interventions with gaming components further promote 

recovery compared to those providing visual feedback 
only [18]. Then, Maier et  al. distinguished VRS specifi-
cally built for rehabilitation purposes from others des-
tined to generic use [11]. Results illustrated that, when 
compared to conventional therapy, interventions spe-
cifically designed based on elements enhancing neural 
plasticity led to significantly better results [11]. Addition-
ally, it was suggested that custom-made interventions, in 
comparison to non-specific interventions, comply better 
with a series of neurorehabilitation principles.

Adherence to neurorehabilitation principles 
of interventions using serious games for UL rehabilitation 
after stroke
To this date, UL stroke recovery through games devel-
oped specifically for rehabilitation and implemented 
on diverse systems, has not been explicitly reviewed. 
In addition, most recent reviews delimit their scope in 
technological terms by considering interventions based 
on the devices being used [11, 12, 18]. Some authors 
characterise comparison between studies using differ-
ent devices as difficult [44]. However, a holistic over-
view of serious games, regardless of the technology 
used, is important in order to better understand their 
added value in UL rehabilitation after stroke. Com-
parison between studies using systems with different 
technical specificities, mainly in hardware, is challeng-
ing. Nonetheless, interventions through serious games 
implemented on different devices may share similari-
ties. Indeed, all studies included in our review perform 
non-invasive treatments. Then, gamification and adapt-
ability of interventions, to the patients’ impairments 
and performance, aim to maintain motivation through-
out therapy sessions [45]. Additionally, all these sys-
tems have the potential to give access to kinematic data 
allowing objective assessment, evaluating real-time 
performance and tracking UL recovery [46–48]. Finally, 

Table 3  (continued)

Authors and publication year Durationa Matched 
groupsb

UL function UL activity Participation Overall 
findingsc

Principlesd

Yin, 2014 [90] 2 ✓ FMA-UEm, s ARAT​m, s  =  11

Zondervan, 2016 [91] 3 ✓ ARAT, BBT  =  7

UL upper limb, FMA-UE Fugl-Meyer Assessment Upper Extremity subscale, ARAT​ action research arm test, BBT box and block test, WMFT Wolf-motor function test, 
SIS stroke impact scale, ✓, matched time between interventions; X, time between interventions not matched; + , statistically significant improvement in favour of 
experimental group for main outcomes; = , no statistically significant differences reported between experimental and control group
a Duration: total number of treatment weeks
b Matched groups: matched time in terms of daily session time, sessions per week and total number of weeks between experimental and control group
c Overall findings: reported findings concerning primary outcome measures
d Principles: total number of neuro-rehabilitation principles fulfilled by the serious game used in the intervention. A total of 11 principles were examined for each trial
m Studies that reported only median and quartiles
s Studies for which the standard deviation had to be estimated
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all interventions stimulate recovery through adher-
ence to common neurorehabilitation principles. In fact, 
comparison across different types of technologies and 
treatment modalities leads to identification of common 
‘active ingredients’ in terms of effective rehabilitation 
[11]. In accordance with recent literature, this review 
contributes to identifying a rationale regarding efficacy 
of interventions in UL rehabilitation after stroke. Our 
results point out that even in a group of interventions 
specifically developed for rehabilitation purposes, dif-
ferences in outcomes may be explained depending on 

higher adherence to neurorehabilitation principles. 
Furthermore, even though most interventions seem 
to fulfil certain principles (task-specific practice, vari-
able practice, massed practice), it seems that clusters 
of principles met among serious games may lead to 
differences in efficacy. For instance, our findings sug-
gest that providing feedback during therapy appears 
to be an important characteristic that interventions 
using serious games should satisfy. Further, to what 
degree each individual principle contributes in efficacy 
is difficult to study. However, it appears that the more 

Fig. 2  Forest plot of upper limb motor function as measured by the FMA-UE: studies using a serious game fulfilling ≥ 8 Npr versus studies using a 
serious game fulfilling < 8 Npr. FMA-UE upper extremity subscale of the Fugl-Meyer Assessment, Npr neurorehabilitation principles



Page 11 of 16Doumas et al. J NeuroEngineering Rehabil          (2021) 18:100 	

an intervention adheres to principles, the better the 
expected outcomes can be regarding motor recovery.

To the best of our knowledge, this systematic review is 
the first to address, in a non-fragmented way, efficacy of 
specifically designed gaming interventions in UL reha-
bilitation after stroke. Our results confirm current trends 
favouring custom-made rehabilitation systems and gami-
fication of interventions. Positive findings concerning 
function and activity have already been reported in pre-
vious reviews [11, 18]. It is worth noting that this review 
shows encouraging results in participation outcomes 

indicating, therefore, improvements in three ICF-WHO 
components.

Strengths and limitations
In a rapidly emerging field, 40% of studies included 
in our review were published within the last 3  years. 
Quantitative synthesis was performed by only using 
RCT of moderate to high methodological quality. 
However, this was not feasible for two studies due to 
unavailable data. Additionally, even though our work 
was conducted according to PRISMA guidelines for 

Fig. 3  Forest plot of upper limb motor function as measured by the FMA-UE: studies in the subacute phase after stroke versus studies in the 
chronic phase after stroke. FMA-UE, upper extremity subscale of the Fugl-Meyer Assessment
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systematic reviews, no methods were used to detect 
unpublished trials. Also, publication bias was only 
assessed through funnel plot graphic representation 
which nonetheless did not indicate asymmetry. Het-
erogeneity across studies was moderate to high regard-
ing UL function and activity outcomes. This may be 
partially due to variation of elements such as patient 

characteristics, duration of interventions and evalua-
tion timepoints. Heterogeneity was addressed by using 
a random effects model for meta-analyses and by con-
ducting additional analyses. Even though heterogene-
ity levels remained moderate, our results were little 
affected by changes in methods or outliers, indicating 
robustness.

Fig. 4  Forest plot of upper limb activity as measured by the ARAT, BBT, WMFT: studies using a serious game fulfilling ≥ 8 Npr versus studies using 
a serious game fulfilling < 8 Npr. ARAT​ action research arm test, BBT box and block test, WMFT Wolf motor function test, Npr neurorehabilitation 
principles

Fig. 5  Forest plot of participation as measured by the social participation subscale of the SIS. SIS stroke impact scale
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Perspectives
Our work offers some suggestions regarding clini-
cal practice and future research. Interventions using 
serious games may be encouraged and integrated in 
upper limb rehabilitation programs during subacute 
and chronic stage after stroke. Specifications regarding 
dosage, duration and selection of patients that could 
benefit most from these treatments need further inves-
tigation. In addition, serious games should be explored 
in terms of ways to provide self- or tele-rehabilitation.

From a research point of view, new developments 
in gaming interventions can take into consideration 
adherence to neurorehabilitation principles. In accord-
ance with our findings, future developments of inter-
ventions in UL stroke rehabilitation ought to comply 
with as many neurorehabilitation principles as possible. 
Future work should study how variations in clusters 
of these principles may influence differently specific 
aspects of motor or cognitive rehabilitation. Also, rich-
ness of kinematic data, accessible through technologi-
cal devices on which games are implemented, open 
new perspectives in assessment and follow-up of stroke 
patients. In our review, only 11% of studies used kin-
ematic data, complementary to clinical rating scales, 
for UL function evaluation. Finally, few studies (11%) 
included in our review reported cognitive outcomes. 
Since motor performance and functional recovery can 
be influenced by cognitive determinants [49, 50], com-
bined assessment of all these aspects should be further 
considered in future work.

Conclusion
In conclusion, this systematic review and meta-analysis 
showed that post-stroke UL rehabilitation through seri-
ous games, implemented on various types of techno-
logical devices, showed better improvements, compared 
to conventional treatment, on three ICF-WHO compo-
nents. Long term effect retention was maintained for UL 
function. Irrespective of the technological system used, 
serious games that complied with more than 8 out of 11 
neurorehabilitation principles led to better overall effects. 
Our findings emphasize the importance of adherence to 
neurorehabilitation principles in order to improve effi-
cacy of interventions in UL rehabilitation after stroke.
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