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Objective. To define the sensitivity of microcomputed tomography- (micro-CT-) derived descriptors for the quantification of lung
damage caused by elastase instillation. Materials and Methods. The lungs of 30 elastase treated and 30 control A/J mice were
analyzed 1, 6, 12, and 24 hours and 7 and 17 days after elastase instillation using (i) breath-hold-gated micro-CT, (ii) pulmonary
function tests (PFTs), (iii) RT-PCR for RNA cytokine expression, and (iv) histomorphometry. For the latter, an automatic, parallel
software toolset was implemented that computes the airspace enlargement descriptors: mean linear intercept (Lm) and weighted
means of airspace diameters (D0, D1, and D2). A Support Vector Classifier was trained and tested based on three nonhistological
descriptors using D2 as ground truth. Results. D2 detected statistically significant differences (P < 0.01) between the groups at all
time points. Furthermore, D2 at 1 hour (24 hours) was significantly lower (P < 0.01) than D2 at 24 hours (7 days). The classifier
trained on the micro-CT-derived descriptors achieves an area under the curve (AUC) of 0.95 well above the others (PFTS AUC =
0.71; cytokine AUC = 0.88). Conclusion. Micro-CT-derived descriptors are more sensitive than the other methods compared, to
detect in vivo early signs of the disease.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a com-
plex and heterogeneous disease. Traditionally, two pheno-
types of COPD have been described: obstructive bronchitis
and pulmonary emphysema. Because of current smoking
trends and progressive aging of the world population,
an increase in COPD prevalence and related mortality
is expected in the coming decades [1]. Emphysema is
defined pathologically as the permanent enlargement of the
airspaces distal to the terminal bronchioles, accompanied by
destruction of their walls, without obvious fibrosis [2, 3]. At
the molecular level, emphysema is an inflammatory-driven
process caused by the enzymatic destruction of lung elastin
and collagen by neutrophil and macrophage elastase [4]. The
process is in most cases induced by cigarette smoking [5].

Animal models are key tools to study the disease.
Probably the most widely extended one is the mouse model
of elastase-induced emphysema, due to its simplicity and low
cost [6]. Efficient and sensitive quantification of the injury
is needed for the characterization of the disease and the
assessment of therapeutic interventions on this model. In
this paper, we describe efficient and sensitive methods to
quantify histologically airspace enlargement ex vivo. This can
in turn be used as an appropriate reference gold standard for
the comparison and evaluation of descriptors extracted from
micro-CT and other non-radiological in vivo techniques.

The mean linear intercept (Lm) [7] is a stereological
metric established in the early sixties, commonly used to
quantify emphysema in histological samples. Lm is perceived
as an index of airspace size, although formally is a mea-
surement of surface area-to-volume ratio. Computing Lm
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Figure 1: Calculation of the mean linear intercept (Lm). A
transparent sheet with 10 equally distributed horizontal lines is
laid over the printed digitized image of an H&E-stained section. A
transparent sheet with 11 equally distributed vertical lines is used
thereafter (not shown). For each line, the intercepts with the tissue
structures are counted. Lm is calculated as the ratio between the
product of the number of times the traverses are placed on the lung
and the length of the traverses, and the sum of all the intercepts.

requires counting linear intercepts (see Figure 1), which is a
relatively simple manual task [8]. Nevertheless, it cannot be
equated with calculating the airspace size without knowledge
of the shapes. Weibel et al. [9] illustrate this problem by
comparing the Lm calculated both in a sphere and an
ellipsoid of equal volumes. Both objects differ in their
surface area, which is larger in the case of the ellipsoid.
In consequence, measuring linear intercepts from random
cross sections of both objects will yield a volume (V)
to surface (S) ratio (Lm ∝ V/S) for the ellipsoid lower
than for the sphere. Indeed, Lm underestimates the severity
of emphysema in heterogeneous samples (i.e., samples
containing many small airspaces surrounding a few enlarged
ones).

To correct this problem, while taking advantage of the
computational power of modern computers, Parameswaran
et al. [10] presented three alternative measurements (D0,
D1, and D2) based on the moments of the airspace
equivalent diameters. When high moments are used, the
largest airspaces are weighted more heavily than smaller
ones. Therefore, D2 should be more accurate and robust
than Lm to quantify heterogeneous, mild emphysema. The
authors tested their hypothesis (i.e., shape dependence of
Lm and its inability to detect airspace enlargement on
heterogeneous samples) on both synthetic images and a few
lung parenchyma images. Following this approach, Jacob
et al. in [11] showed that D2 finds significantly more
pronounced separation between the control and smoke-
exposed mice (2–4 cigarettes/day, 6 days/week, 24 weeks)
than Lm.

Here, we present a fully automatic and parallel toolset
that calculates the above-described metrics (Lm, D0, D1, and
D2) on entire histological sections at reasonable speed. We
then used this in-house-developed software to quantify the
emphysema in a large study of elastase-induced emphysema
mouse model [12], starting at very early stages.

Table 1: Micro-CT data acquisition parameters.

X-ray source
voltage

Current
intensity

Exposure time per
projection

Field of view

80 kVp 500 μA 450 ms 43× 43 mm

Although histomorphometry is considered the most
accurate method for morphological disease characterization,
it is an ex vivo technique. There are several other techniques
that can be used to characterize lung injury and emphysema
in mice in vivo. This is of tremendous value to assess, for
instance, the efficacy of new drugs or therapeutic inter-
ventions. Among them, micro-computed X-ray tomography
(micro-CT) is an especially appropriate modality for lung
imaging (Table 1) [13]. Using micro-CT, moderate to severe
forms of emphysema can be easily detected in elastase-
treated mice, as the lung parenchyma appears darker than
in nontreated mice (see Figure 2). Pulmonary function tests
(PFTs) provide physiological data about lung function and
their characteristic parameters (Resistance and Compliance)
[12]. Finally, the inflammatory response of the lungs to the
damage caused by the insult can be evaluated by looking at
protein or RNA cytokine levels, using blood plasma or lung
tissue extracts. The information provided by these methods
is complementary.

In this study, we train a classifier to evaluate and
compare the sensitivity of micro-CT density-based-derived
descriptors and other non-radiological techniques (i.e.,
single compartment model PFTs, and RNA inflammatory
cytokine levels) to detect elastase-induced lung damage. The
histomorphometrical parameter D2 is used as reference value
because is a generalized, shape-independent quantitative
descriptor of airspace dimensions, well suited for automated
computation.

The paper structure is as follows. In the Materials and
Methods, we describe the animal preparation, the PFTs and
micro-CT imaging, and the sample preparation for RNA
cytokine levels measurement and histology. We also present
the image acquisition, the image analysis pipeline, and the
statistical analysis of the histology data. Besides, we describe
the classifiers that we used and how they were trained. The
next section presents the results on the sensitivity of the
histomorphometric descriptors to detect differences between
the control and elastase-treated groups a few hours after the
insult, and to study disease progression. Finally, we report on
the ability of the rest of descriptors to adequately classify the
animals using the histology as reference. The paper ends with
a discussion and conclusions.

2. Materials and Methods

2.1. Animal Preparation and In Vivo Tests

2.1.1. Animal Preparation. All experimental protocols in-
volving animal manipulation were approved by the Univer-
sity of Navarra Experimentation Ethics Committee. Sixty,
11-week-old mice were equally distributed into a control
and a treatment groups. Treated mice were intratracheally
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Figure 2: Sample transversal mouse lung micro-CT slices 17 days after instillation. (a) Control. (b) Elastase treated. Both slices are calibrated
in Hounsfield units and displayed with a 2500 window centered at a level of zero. Note how the lung of the elastase-treated animal appears
darker than the control lung.

instilled with 6 units per 30 g of porcine pancreatic elastase
(PPE, EC134GI, EPC, MI, USA), as described in a previously
published protocol [14]. Control animals were instilled with
a saline solution. Five animals of each group were sampled at
hours 1, 6, 12, and 24 and days 7 and 17 after treatment. At
each time point, all animals underwent micro-CT thoracic
imaging and pulmonary function tests. Then, they were
sacrificed and their lungs collected for histomorphometry
and cytokine measurements (RNA and protein).

2.1.2. Pulmonary Function Tests. Animals were anesthetized,
intratracheally cannulated, and connected to a Flexivent ro-
dent ventilator set (Scireq, Montreal, QC, Canada) set at
a rate of 200 breaths/min and a tidal volume of 10 mL/kg.
Lung resistance (R) and compliance (C) values were mea-
sured using a single-frequency-forced oscillation, fitting the
measured data to a single compartment model [15]. All
measurements were repeated three times.

2.1.3. Breath-Hold-Gated Micro-CT Imaging. The anes-
thetized, artificially ventilated mice were scanned using an
X-ray micro-computed tomograph (Micro-CAT II, Siemens
Pre-Clinical Solutions, Knoxville, TN, USA). Parameters
used for the micro-CT image acquisition are those given in
Table 2. Seven hundred micro-CT projections were acquired
during 650 ms isopressure breath holds at 12 cm H2O. Two
normal breathing cycles were induced between breath holds.
A total lung capacity perturbation was performed every 20
breath holds to prevent atelectasis.

The reconstructed three-dimensional images had a total
of 640 slices with isotropic 46 μm voxel size and 1024 ×
1024 pixels per slice. The scanning time was approximately
30 minutes. The estimated X-ray dosage was 71.6 cGy/exam
(Siemens Pre-Clinical Solutions, Knoxville, TN, USA). A
water phantom was used to calibrate the image to Hounsfield
units (HU).

2.1.4. Micro-CT Image Analysis. First, the lungs were auto-
matically delineated in the 3D micro-CT images using

Table 2: Evolution of Lm at the experiment time points after elastase
aspiration.

Time
Control Elastase

Median (μm) IQR (μm) Median (μm) IQR (μm)

1 hour 17.776 1.621 21.719 1.124

6 hours 18.061 1.802 21.054 2.336

12 hours 19.011 4.198 26.532 2.777

24 hours 19.269 0.517 26.110 2.641

7 days 18.478 0.341 31.327 3.216

17 days 19.987 0.427 29.348 2.926

IQR: interquartile range.

an existing segmentation method [16]. Then, the airways
were segmented and reconstructed using a fast and robust
algorithm developed by us [17]. The algorithm is based on
a propagating fast marching wavefront that divides the tree
into segments as it grows. A number of specific rules were
applied after every iteration of the front propagation to avoid
unwanted leakage into the parenchyma. From the segmented
airways, the right and left radius measurements of the main-
stem bronchi (RMBR and LMBR, resp.) were computed.
The airways were removed from the lung volume before
quantification. Two other parenchymal injury descriptors
were also computed: mean lung voxel intensity (MLVI) and
relative volume below −900 HU (VBT). This threshold was
selected because intensity values below −900 HU are rare in
scans of healthy mice (the VBT is less than 5% of the total
lung volume in all healthy animals of any age).

2.2. Sample Preparation for RNA Cytokine Expression and
Histology. Mice were anesthetized and then sacrificed by
exsanguination. Next, the lungs were fixed at a constant pres-
sure of 20 cm H2O. RNA was extracted from the accessory
lobe and then qRT-PCR was performed with an Applied
Biosystems 7900HT Fast Real-Time PCR System. Four
immune-modulatory cytokines and chemokines involved in
lung inflammatory response [18] were analyzed, namely,
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Figure 3: Sample histology images corresponding to a lung lobe slice of a mouse 17 days after instillation. (a) Mosaic acquired at 1.25x
magnification. Scale bar represents 1000 microns length. (b) Zoomed area acquired at 10x. Scale bar represents 100 microns length. The
mosaic (a) shows heterogeneous distribution of airspace enlargement. In the zoomed area (b), the left portion corresponds to normal
alveolar tissue and the right shows the typical airspace enlargement found in emphysema.

interleukin 6 (IL6), immune protein 10 (IP10), keratinocyte
chemoattractant (KC), and monocyte chemoattractant pro-
tein 1 (MCP1). Beta-2 microglobulin (B2M) was used as the
endogenous control gene for the experiments.

Three paraffin blocks from different lobules of each lung
were created and reserved for histological analysis. Three
nonconsecutive sections per block were cut and stained with
Hematoxylin and eosin (H&E), resulting in a total of nine
slides per mouse, each containing two lobe pieces. The total
number of sections acquired and analyzed was 1080.

2.3. Histological Image Analysis

2.3.1. Image Acquisition. Whole-slide views of all 1080 sec-
tions were acquired using an automated Axioplan 2ie Zeiss
microscope (Carl Zeiss, Jena, Germany). Each slide was
initially acquired with a Plan-Neofluar objective (numerical
aperture NA = 0.035, magnification 1.25x, pixel resolution
3.546 μm/pixel). The automatic threshold method proposed
by Otsu [19] was then applied to detect all tissue areas.
The size of the objects was measured and only objects with
a reasonable size to represent entire sections of lung lobes
were considered for further processing. For each object, a
bounding box was created and the coordinates of its four
vertices were sent to the microscope. Then, an automatic
routine scanned those areas with a Plan-Neofluar objective
(NA = 0.3, 10x, 0.725 μm/pixel). Some overlap was allowed
between image fields to facilitate the creation of large
mosaics. The Stitcher ImageJ plugin [20] was used for it.
The resulting mosaics were stored in a server for quantitative
analysis. Figure 3 shows a sample mosaic (Figure 3(a))
with a zoomed-in area showing heterogeneously distributed
airspace enlargement (Figure 3(b)).

2.3.2. Image Analysis. To accurately quantify bona-fide
emphysematous air spaces, all vessels, alveoli, and spurious
structures must be recognized and removed from the images
because they might be confused with enlarged alveolar
spaces. In the following paragraphs, we describe the method
used to segment vessels and alveoli and the extraction of
image descriptors.

Segmentation. The main steps of the segmentation algo-
rithm are summarized in the flowchart shown in Figure 4
and illustrated the snapshot shown in Figure 5. This image
contains a vessel of a certain size in the center of the
field of view. First, the 8-bit grayscale green channel was
extracted from the 24-bit RGB, since it provides the greatest
contrast between the background and the red-blue H&E
stained tissue. Then, a mask of the parenchyma tissue was
obtained by thresholding the histogram of the image. The
histogram of a typical histological image is monomodal.
Thus, common bimodal thresholding techniques—such as
Otsu’s thresholding—would not work well, leaving out
some tissue structure walls. As an alternative, a maximum
deviation unimodal thresholding [21] was used (Figure 6(a))
to extract all tissue areas from the background. The obtained
mask was then inverted and all the luminal structures were
segmented and labeled by connected component labeling
(Figure 6(b)).

Since the lumen of blood vessels and bronchioles could
be confused with enlarged airspaces, they must be detected
and removed from the image before proceeding with the
quantification. To this end, we applied binary erosion to the
mask of the parenchyma using a structuring element of size 7
to remove all but the thickest walls, corresponding to vessels



International Journal of Biomedical Imaging 5

Green channel extraction

Unimodal thresholding

Connected component labeling

Binary erosion

Downsampling

Image intersection

Inversion

Input: 24-bit RGB image

Output: 8-bit grayscale image

Output: parenchyma tissue mask

Output: inverted mask

Output: labeled luminal structures

Output: vessels and bronchioles walls

Convex-hull computation

Output1: downsampled convex hulls
Output2: downsampled labeled luminal

structures

Output: labeled airspaces

Output: convex hull of vessels and
bronchiolar walls

Figure 4: Flowchart of the airspace segmentation and labeling
approach discarding the vessels and alveoli.

and bronchioles. Then, we used the geometric methods pre-
sented by [22, 23] and implemented in the Shapely Python
package [24] to calculate the convex hull of the remaining
walls (see Figure 6(c)). Next, the intersection between the
convex hulls of the walls and the centroids of the labeled
structures is performed and all the structures for which a
nonempty intersection exists (i.e., vessels and bronchioles)
are removed from the segmentation (see Figure 6(d)). At the
end of this process, all the labeled regions represent airspaces.

The computation of the intersection is an intensive oper-
ation. To increase the speed, this operation was performed
on a downsampled version of the image. The downsampling
factor was empirically set to four to avoid loosing wall struc-
tures. However, the extraction of the airspace enlargement
descriptors is performed on the full-resolution image.

Figure 5: Lung parenchyma showing alveolar spaces and a large
blood vessel. H&E staining.

Extraction of Descriptors. We extract four descriptors from
the histology, namely, the linear mean intercept Lm and the
moments of the airspace equivalent diameters (D0, D1, and
D2).

The classical mean linear intercept Lm is defined as the
mean length of the linear intercepts in the lung. In this paper,
an approximation of Lm is computed as follows: the labeled
image (Figure 6(d)) of each lobe is converted into an array
of pixels; the image is then raster scanned, and the number
of positive pixels between each pair of two consecutive null
(wall) pixels is counted and its value (i.e., length of the ith
linear intercept li) is stored; then, the Lm is calculated as the
mean of all the stored linear intercepts lengths on the lung
lobe.

To compute the Dv indexes, we first calculate the area of
the ith airspaces (Ai) of the segmented, labeled image, by
counting the number of pixels inside each labeled region.
This value is scaled to physical dimensions using the objective
calibration.

Then the equivalent airspace diameter of each space is
defined as

di = 2

√
Ai

π
, (1)

which is equal to the diameter of a circle with area Ai.
The family of indexes Dv is then defined as the ratio of

two moments of the equivalent airspace diameters distribu-
tion d:

Dv =
〈
dv+1

〉
〈dv〉 with v = 0, 1, 2 . . . , (2)

where 〈· · · 〉 indicates the arithmetic mean. Dv can be
expressed as functions of the central moments of airspace
diameters. In particular, D0 is the arithmetic mean of the
airspace diameters. D1 is a function of its mean (μ) and
variance (σ2):

D1 =
〈
d2
〉

〈d1〉 = μ

(
1 +

σ2

μ2

)
, (3)

and D2 is a function of μ, σ2, and skewness (γ) of the airspace
diameters:

D2 =
〈
d3
〉

〈d2〉 = μ

[
1 +

σ2

μ2 + σ2

(
2 +

σγ

μ

)]
. (4)
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(a) (b)

(c) (d)

Figure 6: (a) Binarized image of H&E sample shown in Figure 4. (b) Image of the segmented alveoli calculated by connected component
labeling. Notice how the large vessel in the center of the image is mistakenly included as airspace. (c) Vessel wall and its convex hull. (d)
Removal of the vessel based on the intersection of the centroid of the vessel with the convex hull of the wall.

Computational Architecture. The code was written on a
hybrid Python/C++ platform and was specifically designed
to exploit parallelism. First, a process is spawn to walk the
image directory tree and collect the files to be processed.
Then, a job description is created for each image, which
contains all the parameters used to guide the analysis through
the steps detailed before. Each job is added to a shared queue
on the network. Several processes access the remote queue
from five different machines, download a job description,
and execute it locally. Results are saved in a distributed file
system.

2.3.3. Statistics. The median and interquartile ranges (IQR)
were calculated for each histology descriptor and time point.
The control and elastase-treated groups were compared
using the Mann-Whitney U-test. To measure progression,
the same test was performed on the elastase-treated animals
at successive time points. P values ≤ 0.01 were considered
statistically significant. The R language and environment for
statistical computing [25] were used for statistical analysis.

2.4. Classification. In the previous subsections, we have
presented three different sets of disease descriptors: (1)
micro-CT density-based descriptors: MLI (HU), VBT (%),
RMBR (μm), and LMBR (μm); (2) Pulmonary Functional
Test single compartment model parameters: Resistance (R)
(cm H2O/mL/s) and Compliance (C) (mL/cm H2O); (3)
RNA cytokine expression measured as concentration: IL6,
IP10, KC, and MCP1.

A Support Vector Machine (SVM) Classifier was created
for each descriptor set. The chosen kernel was a Gaussian
radial basis function. The classifier was defined by two
parameters: the area of influence of the support vector on

the data space Υ and the soft margin parameter P. The best
parameter combination was selected by a grid search with
exponentially growing sequences of Υ and P. In particular, Υ
was chosen in the interval (10−9, 103) and P in (10−1, 1013).
Each combination of parameters was cross-validated, and the
parameters with best cross-validation accuracy were selected.
The dataset was divided in a training (60% of the samples)
and test groups (the remaining 40%).

For every classifier, a receiver operating characteris-
tic (ROC) curve was generated. The histomorphometrical
parameter D2 was used as the gold standard and the
3rd quartile value of the control animals was used as a
threshold. For all possible combination of features, the
classical performance indexes of Area Under the ROC Curve
(AUC) and f1-score on the test dataset were computed. The
results were then compared to determine the best classifier.

3. Results

3.1. Histological Analysis. The mean linear intercept (Lm)
and weighted mean (D0, D1, and D2) were computed and
used as estimates of the airspace enlargement. Figure 7 and
Tables 2 (Lm), 3 (D0), 4 (D1), and 5 (D2) show the progression
of these parameters throughout the experiment for both
groups (control and elastase induced). As expected, no
progression was found in the control group, regardless of the
parameter used. In the treatment group, all the parameters
increased significantly (P < 0.01) from 1 hour to 24 hours
after elastase treatment. D2 and D1 have also a statistically
significant increase (P < 0.01) from 24 hours to one week
after elastase treatment, which was somehow undetected by
Lm and D0. No progression was detected in any case from one
week to 17 days after the insult.
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Figure 7: Evolution of Lm (a), D2 (b), D0 (c), and D1 (d) descriptors at different times after elastase instillation. D2 is the mean equivalent
diameter, D1 and D2 are weighted indexes of airspace size distribution, and Lm is the mean linear intercept. Statistically significant differences
between the control (C) and the elastase-treated (E) groups are indicated as well as differences between successive time points in the elastase
group (P < 0.01,∗).

Regarding the sensibility to differences between the
control and treatment groups, Lm is significantly different at
all time points except at 6 and 12 hours after elastase admin-
istration. D0 is significantly different at all time points except
very early on, 1 hour after treatment. Contrarily, D2 and
D1 are significantly different (P < 0.01) between treatment
and control groups at all time points. In summary, although
all the parameters yield similar results, D2 and D1 are more
sensitive to differences between the emphysematous mice
and controls.

The computation time per lung lobe section was about
20 minutes.

3.2. Classification. We used three classifiers based, respec-
tively, on: (1) Micro-CT density-based descriptors, (2) RNA
cytokine expression measured as relative RNA concentration
by qPCR, and (3) single compartment model parameters
from pulmonary function tests.

The cross-validation accuracy plots for the selection of
the optimal estimated parameters are shown in Figures
8, 9(a) and 9(b) for the micro-CT, cytokine expression
and pulmonary function tests classifier, respectively. The
optimal estimated parameters, best set of features, AUCs,
and f1-scores are given in Table 6 while Figure 10 shows the
ROC curves for the best classifier of each parameter set.
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Figure 8: Cross-validation accuracy plot for the selection of the
optimal work parameters of the micro-CT classifier (Υ = 10−4,
P = 108).

Table 3: Evolution of D0 at the experiment time points after elastase
aspiration.

Time
Control Elastase

Median (μm) IQR (μm) Median (μm) IQR (μm)

1 hours 25.849 0.733 30.890 2.742

6 hours 25.458 1.865 36.686 0.428

12 hours 25.586 0.777 37.885 4.977

24 hours 27.838 0.973 39.903 2.689

7 days 26.751 2.795 52.024 6.578

17 days 27.008 1.046 41.181 10.946

Table 4: Evolution of D1 at the experiment time points after elastase
aspiration.

Time
Control Elastase

Median (μm) IQR (μm) Median (μm) IQR (μm)

1 hour 50.220 0.688 71.907 11.718

6 hours 48.385 1.779 77.253 4.601

12 hours 46.708 3.180 85.817 4.261

24 hours 54.059 0.986 101.154 2.730

7 days 52.573 4.136 132.680 12.011

17 days 51.971 0.760 104.512 13.149

The Micro-CT-based classifier using as features MLI, VBT,
and RMBR shows the best performance with an AUC of 0.95
and a f1-score of 0.92 and as shown by the ROC curve the
highest true positive rates can be achieved for the same false
positive rate. In general, RNA cytokine expression classifier

Table 5: Evolution of D2 at the experiment time points after elastase
aspiration.

Time
Control Elastase

Median (μm) IQR (μm) Median (μm) IQR (μm)

1 hour 98.679 3.047 140.842 37.567

6 hours 85.693 10.657 135.809 21.120

12 hours 87.999 4.575 139.872 9.019

24 hours 105.524 4.026 179.636 4.278

7 days 100.105 7.213 218.298 22.146

17 days 98.459 10.738 185.006 13.165

using as features KC, IL6, and IP10 performs slightly worse
than micro-CT with an AUC of 0.88 and f1-score of 0.71
although it achieves the best true positive rate of 0.8 for a false
positive rate of 0.1. The classifier based on feature Functional
resistance performs significantly worse than the other two
classifiers with an AUC of 0.71 and an f1-score of 0.66, being
the closest to the performance of a random classifier.

4. Discussion

The main aim of this work was to evaluate and compare
the sensitivity of the quantification of elastase-induced lung
damage, using micro-CT-derived descriptors, pulmonary
function tests based on a single compartment model, and
RNA cytokine expression. Histomorphometry was used as
gold standard for the comparison.

Our results show that D2 is able to distinguish between
the control and the elastase-treated group at all time points,
starting as early as one hour after treatment. This early
airspace enlargement might be caused by surfactant dysfunc-
tion resulting from elastase administration. The ability of
D2 to discriminate such early damage can be attributed to
the fact that D2 heavily weights on enlarged airspaces and
therefore, reflects better the airspace size distribution. In
terms of the disease progression, D1 and D2 detected airspace
enlargement during the first 24 hours and from that point
until one week after treatment. This last increase was missed
by Lm and D0.

Compared to previous studies, our histomorphometry
values were obtained using a considerably larger sample
size. In previous works, a few random fields were acquired
from each mice lung. Here instead, mosaic images of whole
lung lobe sections were acquired and analyzed, which was
possible thanks to our fully automated software. Other
interesting characteristics of automated systems like ours are
the reduction of operator bias and a substantial reduction
of the time dedicated to the analysis. Finally, the key for the
success of our method is the fact that our toolset implements
a mechanism to eliminate alveoli and vessels. Previously,
major airways and vasculature were manually discarded at
acquisition or analysis time using a great deal of manual
interaction.

Micro-CT is especially appropriate to study in vivo
the progression of animal models of pulmonary disease
[13]. We have set up a generic protocol for micro-CT
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Table 6: Optimal estimated parameters, best features and corresponding area under the ROC curve (AUC), and f1-score for each classifier
(trained on micro-CT density-based descriptors, RNA cytokine expression data, and single compartment model parameters from pulmonary
function tests (PFTs)) are shown.

Classifier Optimal parameter Features AUC f1-score

Micro-CT Υ = 10−4; P = 108 MLI, VBT, RMBR 0.95 0.92

Cytokine Υ = 10−2; P = 105 KC, IL6, IP10 0.88 0.71

PFTs Υ = 10−6; P = 108 R 0.71 0.66
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Figure 9: Cross-validation accuracy plot for the selection of the optimal work parameters for: (a) cytokine expression classifier (Υ = 10−2

and P = 105); (c) pulmonary function tests classifier (Υ = 10−6 and P = 108).
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Figure 10: ROC curves of the classifiers tested on the best combination of features. The first set MLI, VBT, and RMBR were derived from
micro-CT images. The second set corresponds to the RNA cytokine expression levels of IL6, IP10, and KC. The third set corresponds to the
pulmonary functional parameter R. The features derived from micro-CT images show the best performance, because higher true positive
rates can be obtained for the same false positive rate at most thresholds.



10 International Journal of Biomedical Imaging

image acquisition that allows longitudinal studies [26].
The protocol includes endotracheal intubation and iso-
pressure breath holds to reduce movement artifacts. Several
segmentation and analysis methods were developed to
quantify the effects of disease on the very noisy, artifact-
plagued micro-CT images [12, 16]. These methods allow
for quantitative measurements of the lungs and the airways
separately, thus allowing to monitor disease development.
In this work, we found that a SVM classifier using the
micro-CT-derived, features MLI, VBT, and RMBR reached
a high AUC and f1-score, thus indicating that micro-CT
produces reliable measurements of airspace enlargement
even at very early disease stages. Pulmonary function tests
were also performed using forced oscillation techniques
with endotracheal intubation. The SVM classifier trained on
the Pulmonary function tests parameters using only tissue
resistance (R) achieved the best AUC and f1-score. It could
seem strange that the optimal classifier uses R instead of
C or both. In long-term studies of the elastase-induced
model, C gets clearly increased as a reflection of high lung
stiffness. Our results presented in [12] show instead that C
decreases during the first 24 hours. It is only at week 4 that C
starts to increase. We hypothesize that this behavior may be
related to the acute inflammatory reaction occurring in the
elastase-induced model, starting immediately after treatment
and nearly disappearing by day 7. On the other hand, the
relatively good performance of the SVM classifier training
on the cytokine expression levels could reflect this short-
time inflammation. However, its ability to detect airspace
enlargement in long-term studies has yet to be confirmed.

Finally, as explained in detail in the Results, the micro-
CT-derived descriptors seem to be especially well suited
for the estimation of airspace enlargement on the elastase-
induced emphysema mice model.

5. Conclusion

In this paper, we presented open source software for the
automatic quantification of airspace enlargement in large
histological tissue sections. Using this software, we can
automatically process large amounts of data in a relatively
short period of time and with minimal user interaction.
The automated measurements were able to detect airspace
enlargement very early after the insult with elastase. Those
measurements were used as ground truth to assess the sen-
sitivity of micro-CT and other non-radiological techniques.
Interestingly, typical respiratory-gated micro-CT density-
based descriptors (mean lung density and relative volume
below −900 HU) and the right radius of the mainstem
bronchi achieved a high sensitivity and specificity discrim-
inating early disease signs.
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