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Pyroptosis is a recently discovered aspartic aspart-specific cysteine protease

(Caspase-1/4/5/11) dependent mode of gene-regulated cell death cell death, which

is represented by the rupture of cell membrane perforations and the production

of proinflammatory mediaters like interleukin-18(IL-18) and interleukin-1β (IL-1β).

Mitochondria also play an important role in apoptotic cell death. When it comes

to apoptosis of mitochondrion, mitochondrial outer membrane permeabilization

(MOMP) is commonly known to cause cell death. As a downstream pathological

process of apoptotic signaling, MOMP participates in the leakage of cytochrome-c

from mitochondrion to the cytosol and subsequently activate caspase proteases.

Hence, targeting MOMP for the sake of manipulating cell death presents potential

therapeutic effects among various types of diseases, such as autoimmune disorders,

neurodegenerative diseases, and cancer. In this review, we highlights the roles and

significance of mitochondria in pyroptosis to provide unexplored strategies that target

the mitochondria to regulate cell death for clinical benefits.
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INTRODUCTION

Mitochondria are the major sites of cellular energy production through oxidative phosphorylation
(Jusic and Devaux, 2020). In addition to Adenosine Triphosphate (ATP) production, mitochondria
are involved in various cellular processes, such as autoinflammatory response, cell differentiation,
and immune regulation (West et al., 2011; Kasahara and Scorrano, 2014; Gurung et al., 2015;
Weinberg et al., 2015). The effect of mitochondria in the types of cell death has attracted wide
attention recently, but the mechanisms still seem obscure. Regulating cell death is a double-edged
sword (Wang et al., 2020a). Excessive cell death will lead to many neurodegenerative diseases, such
as Alzheimer disease and Parkinson disease. Inhibition of cell death is beneficial to the development
of autoimmunity and cancer. Thereby, there’s a lot of interest in targeting mitochondria to regulate
cell death in diseases (Wang et al., 2020b). Apoptosis is a major type of cell death regulation,
although the role ofmitochondria on this type is not complete, but the effect ofMOMPon apoptosis
has got some progress (Tait and Green, 2010). MOMP occurs under the drive of some certain
apoptosis-related protein molecules, such as BCL-2-associated X (BAX) and BCL-2 antagonist
killer (BAK), which sequentially causes a series of cascades leading to cell death (Kale et al., 2018;
Kalkavan and Green, 2018). However, other non-apoptotic signals can also cause MOMP, like
pyroptosis signaling. Inflammasome mediated caspase-dependent cleaved fragment of gasdermin
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(GSDM) family can also be located to mitochondria to cause
MOMP (Lee et al., 2019; Hu et al., 2020). In addition, this process
also involves the opening of potassium efflux channels and the
feedback to promote the formation of the inflammasome. It can
be seen that mitochondria are involved in different types of
cell death, although the specific roles and mechanisms are still
poorly established.

Herein, we discuss the effect of mitochondria on pyroptosis,
and highlight a new perspective on the interaction between
mitochondrial apoptosis and pyroptosis. Combined with recent
studies related to MOMP, we further discussed the interaction
between MOMP in mitochondrial pyroptosis and apoptosis, and
emphasized that targeting mitochondria may as a promising
strategy to change the occurrence and development of diseases
by regulating cell death.

TYPES AND PROCESSES OF PYROPTOSIS

Pyroptosis is a newly defined type of pro-inflammatory cell
death in recent decades, which was originally considered as an
inflammatory process before cell necrosis or apoptosis, but now
it has been recognized as a cell death mode characterized by
membrane perforation rupture and intracellular extravasation
of inflammatory mediators (Zychlinsky et al., 1992; Fink and
Cookson, 2005; Yuan et al., 2016). Currently, pyroptosis can
be divided into three types according to different initiate
activation modes, namely classical pyroptosis pathway, non-
classical pyroptosis pathway, and apoptosis protein Caspase-3
mediated pyroptosis pathway (Kayagaki et al., 2015; Jorgensen
et al., 2017; Wang et al., 2017). Although these three types
have their own characteristics, they are related to each other.
In addition, they share a common endpoint event which is to
process IL-18 and IL-1β, activate the perforating protein GSDMD
and eventually cause the cell membrane to break and release
IL-18 and IL-1β (Ding et al., 2016; Kovacs and Miao, 2017).

REGULATION MECHANISMS OF

PYROPTOSIS

The negative feedback regulation mechanism of pyroptosis itself
will timely prevent the occurrence of it and inflammation (Frank
and Vince, 2019). When caspase-1 is activated by different
pathways, on the one hand, it continues to cleave its downstream
signaling molecules including caspase-4/5/11, thus promoting
the activation of GSDMD and the maturation and release of
inflammatory factors. On the other hand, caspase-3/7 will also be
non-specific activated when the pyroptosis occurs, and this kind
of molecules will inactivate GSDMD by competitively cleaving it,
playing a negative regulatory role to maintain the homeostasis
(Takahama et al., 2018). Interestingly, when GSDMD was
inactivated, cells switched from pyroptosis to apoptosis. In
addition, TNF-αand some chemotherapy drugs can transform
apoptosis to pyroptosis by cleaving GSDME. It can be seen
that there is antagonism and conversion between pyroptosis and
apoptosis through some unknown signaling pathways (Wang
et al., 2017). In addition, some initial links of pyroptosis have

the same trigger point as autophagy signaling pathway (Stocks
et al., 2018). Many studies have shown that autophagy can
negatively regulate pyroptosis (Schroder and Tschopp, 2010; Kim
et al., 2015; Pu et al., 2017), and the mechanism may be that
autophagy reduces the activation of inflammatory bodies by
removing certain stimuli.

MECHANISMS OF MITOCHONDRIAL

APOPTOSIS

There are two kinds of apoptotic signals, death receptor pathway
and mitochondrial pathway. The former occurs when the ligands
outside the cell membrane bind to the receptors on the cell
membrane, activating apoptosis executioner caspases (Caspase-
3/7) through a series of cascade reactions, and finally leading
to the activation of apoptosis (Boatright et al., 2003; Julien and
Wells, 2017). The latter is derived frommitochondria.When cells
are subjected to various pathological changes, such as the loss of
certain growth factors and structural damage to genetic materials,
the permeability of mitochondrial outer membrane increases
and some soluble proteins in mitochondrial intermembrane
space are released into the cytoplasm. Apoptotic signals will
be then activated and cause cell death. As one of the main
components of the electron transport chain, cytochrome-c is
also a common soluble protein in mitochondria, which can be
identified by apoptotic peptidase activating factor 1 (APAF1)
to promote the formation of apoptotic bodies (Dorstyn et al.,
2018). Subsequently, the initiator caspase 9 will be recognized
and activated by the apoptosome. The next step is to cleave
and activate apoptosis executioner caspases (Caspase-3/7), which
is the common step between the two main apoptotic signaling
pathways (Poreba et al., 2019). In addition, MOMP can induce
cell apoptosis and death in a non-caspase-mediated way, which
is related to the regulation of the B cell lymphoma 2 (BCL-
2) protein family (Wei et al., 2001). The activation of BAK
and BAX, some kinds of pro-apoptotic effectors, is essential for
MOMP induced mitochondrial apoptosis (Lindsten et al., 2000;
Ke et al., 2018). But only their specific interactions promote
apoptosis, so BAK and BAX are also regarded as superfluous in
some inappropriate conditions. For example, during the process
of mitochondrial apoptosis, the mitochondrial membrane pore
protein voltage-dependent anion-selective channel 2 (VDAC2)
can associate with both two proteins, BAX is necessary for this
process while BAK is not (Naghdi et al., 2015; Lauterwasser et al.,
2016; Chin et al., 2018). Normally, BAK and BAX localize to the
mitochondria and cytoplasm in an inactive form, respectively
(Edlich et al., 2011; Schellenberg et al., 2013; Todt et al., 2015).
During apoptosis, BAX moves toward the mitochondria and
gets accumulation (Letai et al., 2002). Then BAK and BAX are
activated by combining their hydrophobic bases with a subclass
of BCL-2 homology regions (BH3)-only proteins (Leshchiner
et al., 2013; Moldoveanu et al., 2013). After being activated, BAK
and BAX can oligomerize each other, which is necessary for
MOMP (Dewson et al., 2009, 2012; Bleicken et al., 2010; Subburaj
et al., 2015).
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There are some other effectors can also induce MOMP.
For instance, BOK, a BAX/BAK-like BCL-2 protein, has been
discovered can initiate MOMP and then commit cells to die
without the regulation of BCL-2 proteins (Einsele-Scholz et al.,
2016; Llambi et al., 2016; Fernández-Marrero et al., 2017).
The proapoptotic characteristics of BOK could be explained by
the instability of its own hydrophobic subunit (Zheng et al.,
2018). In addition, some non-BCL-2 family proteins, such as
GSDMD and GSDME, can also promote MOMP. Cleavaged by
specific caspase, the amino-terminal of GSDMD and GSDME
can not only locate to the cell membrane to cause plasma
membrane permeabilization but also to the mitochondria to
induce MOMP (Rogers et al., 2017, 2019; Wang et al., 2017).
However, this direct way of MOMP mediated by gasdermin
protein family needs further study. Indeed, there are some other
types of cell death that are closely related to mitochondria.
Mitochondria is the main source of intracellular reactive oxygen
species, which can activate some receptor protein kinases
and further form necrosome causing necroptosis (Schenk and
Fulda, 2015; Zhang et al., 2017). Furthermore, reactive oxygen
species can cooperate with iron ions to promote the catalytic
reaction of lipid peroxides leading to ferroptosis (Dixon et al.,
2012; Wang et al., 2016). Cell necrosis and ferroptosis are
different types of cell death from apoptosis, and although some
of the mechanisms are still unknown, this is sufficient to
demonstrate the important role of mitochondria in the regulation
of cell death.

INTERACTIONS BETWEEN PYROPTOSIS

AND MITOCHONDRIAL APOPTOSIS

Pyroptosis is a newly discovered pro-inflammatory model of cell
death initiated by the different inflammation-associated caspases.
The inflammasome complex is assembled and activated under
the stimulation of intra- and extracellular pathological signals,
leading to the activation of inflammatory caspases. On the one
hand, the activated caspase cleaves the precursor of inflammatory
factors (IL-1β and IL-18) to promote its maturation; on the
other hand, it also activates and cleaves GSDMD, leading to
cell membrane pore formation and finally to lysis, cell content
release and pyroptosis (Kayagaki et al., 2015; Shi et al., 2015;
Broz and Dixit, 2016). As discussed earlier, the amino-terminal
cleavage fragment of GSDMD can locate the mitochondria to
cause MOMP, promoting the activation of caspase-3 (Rogers
et al., 2019). Interestingly, caspase-3 is a executioner caspase
during the activation of apoptosis. Furthermore, mitochondrial
apoptosis can induce NLRP3 inflammasome mediated caspase-
1 activity (Tsuchiya et al., 2019), which depends on caspase-
3 mediated potassium channel glycoprotein activity. Potassium
efflux from the cell via the channel, while this process should
assist the assemblage of inflammasome. In addition, when
GSDMD expression was low, the activation of caspase-1 tended
to apoptosis rather than pyroptosis.

Another study has recently reported that another member of
the gasdermin proteins family, GSDME, has the same function as
GSDMD, and can also activate the intrinsic pathway downstream

of inflammasome activation (Rogers et al., 2019). Briefly, GSDME
is activated by caspase-3 to further generate the GSDME-N
fragments. On the one hand, it can cause the pore-forming effect
of cell membrane to mediate pyroptosis; On the other hand,
it has been proved that GSDME-N can also cause changes in
mitochondrial membrane permeability, further leading to the
translocation of cytochrome-c from mitochondria to cytoplasm.
While cytochrome-c can continue to activate apoptotic bodies
and induce apoptosis, and the interaction between pyroptosis and
apoptosis is just like a feedback regulation. Further researches
should focus on the part of mitochondria to interfere with
this feedback and thus influence the development of diseases
associated with cell death patterns. Additionally, many studies
in recent years have shown a complex link between mitophagy
and pyroptosis. The current prevailing view is that there is a
negative feedback regulation between mitophagy and pyroptosis
(Yu et al., 2019; Davidson et al., 2020; Ding et al., 2020).
Activation of caspase-1 caused by inflammasome would inhibit
mitophagy and further enhance mitochondrial damage. In
contrast, deletion of Parkin, a key regulator of mitophagy,
would increase mitochondrial damage and promote pyroptosis
(Yu et al., 2014). The mechanism may be related to the
release of mitochondrial ROS and the disruption of membrane
integrity mediated by pyroptosis. Moreover, potassium efflux
and cytochrome-c also play important roles in the regulation
of mitophagy and pyroptosis, but more details remain to be
clarified. It can be seen that there are many crosstalks between
mitochondrial apoptosis and pyroptosis, and a certain type of
cell death cannot be emphasized alone, not just for mitochondrial
apoptosis and pyroptosis.

CONCLUSIONS AND PERSPECTIVES

We have introduced the types and regulation mechanisms
of pyroptosis briefly and discussed the significant effect of
mitochondria on apoptosis in this review. In addition to the
discussion of the mechanism between the well-known cell
death type apoptosis and mitochondria, the MOMP-mediated
apoptotic cell death in different signaling pathways was also
be emphasized. According to recent findings, the association
between MOMP and inflammasome-mediated pyroptosis was
further highlighted, and the interplay between pyroptosis and
apoptosis was also revealed. Although mitochondria are involved
in a variety of regulatory cell death types, the molecular
mechanisms involved are not completely exacted. Moreover,
there are actually therapeutic drugs or molecules that target the
mitochondria to regulate the pathological processes that involved
mitochondria. Previous studie have ever reported that the
permeability transition pore complex (PTPC), a multi-protein
complex, is participated in the metabolism of mitochondrial
stability and also in mitochondria-related intrinsic apoptotic
pathways (Deniaud et al., 2006). This targeted intervention,
which integrates multiple death signals, may be a promising
therapeutic strategy for clinical application. Survivin, a member
of the IAP5 gene family, has also been shown to act as a regulatory
factor for mitochondrial apoptosis and to inhibit mitochondrial
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apoptosis by using adenovirus transduction technology in both
animal and cell studies (Blanc-Brude et al., 2003). In addition,
one homology domain of BCL-2 homology regions (BH3)
Peptidomimetics can inhibit apoptosis and thus intervene in the
progression of certain related diseases, although the development
of targeted interventions is still limited (Nemec and Khaled,
2008). In summary, the targeted regulation of mitochondria
and their related pathological processes has gradually aroused
great interest. While further research and exploration are needed,
this does not prevent the targeting of mitochondria as a new

promising strategy to regulate cell death to achieve disease
control or treatment of purposes.
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