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Abstract

Conventional frontline treatment for ovarian cancer consists of successive chemotherapy

cycles of paclitaxel and platinum. Despite the initial favorable responses for most patients,

chemotherapy resistance frequently leads to recurrent or refractory disease. New treatment

strategies that circumvent or prevent mechanisms of resistance are needed to improve

ovarian cancer therapy. We established in vitro paclitaxel-resistant ovarian cancer cell line

and organoid models. Gene expression differences in resistant and sensitive lines were

analyzed by RNA sequencing. We manipulated candidate genes associated with paclitaxel

resistance using siRNA or small molecule inhibitors, and then screened the cells for pacli-

taxel sensitivity using cell viability assays. We used the Bliss independence model to evalu-

ate the anti-proliferative synergy for drug combinations. ABCB1 expression was

upregulated in paclitaxel-resistant TOV-21G (q < 1x10-300), OVCAR3 (q = 7.4x10-156) and

novel ovarian tumor organoid (p = 2.4x10-4) models. Previous reports have shown some

tyrosine kinase inhibitors can inhibit ABCB1 function. We tested a panel of tyrosine kinase

inhibitors for the ability to sensitize resistant ABCB1-overexpressing ovarian cancer cell

lines to paclitaxel. We observed synergy when we combined poziotinib or lapatinib with pac-

litaxel in resistant TOV-21G and OVCAR3 cells. Silencing ABCB1 expression in paclitaxel-

resistant TOV-21G and OVCAR3 cells reduced paclitaxel IC50 by 20.7 and 6.2-fold, respec-

tively. Furthermore, we demonstrated direct inhibition of paclitaxel-induced ABCB1 trans-

porter activity by both lapatinib and poziotinib. In conclusion, lapatinib and poziotinib

combined with paclitaxel synergizes to inhibit the proliferation of ABCB1-overexpressing

ovarian cancer cells in vitro. The addition of FDA-approved lapatinib to second-line pacli-

taxel therapy is a promising strategy for patients with recurrent ovarian cancer.
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Introduction

Ovarian cancer is a devastating disease that affects 1 in 70 women during their lifetime. There

will be an estimated 22,000 new cases of ovarian cancer in 2020, and approximately 14,000

women in the United States will die from the disease [1]. The five-year overall survival rate

remains less than 50%, making ovarian cancer the most deadly gynecologic malignancy [2].

More than two-thirds of patients are diagnosed at an advanced stage with five-year survival

rates of 36% and 17% for stage III and IV disease, respectively [2]. The recommended treat-

ment of women with advanced-stage ovarian cancer includes platinum-based doublet chemo-

therapy [3, 4]. Unfortunately, over 80% of patients with advanced ovarian cancer who achieve

a complete response with conventional first-line chemotherapy will develop recurrent disease

[5]. Despite modest response rates for all regimens (20–30%), dose-dense paclitaxel is a pre-

ferred agent in treating platinum-resistant recurrence [6–8]. Virtually all relapsed patients will

die of disease, highlighting the pressing need for novel therapies.

Chemotherapy resistance is categorized as either inherent or acquired. Inherent resistance

exists before chemotherapy exposure, while acquired resistance develops in response to che-

motherapy administration. Mechanisms of acquired resistance to paclitaxel include alterations

in microtubules, dysregulation of apoptosis, and increased cellular drug efflux [9]. Multidrug

resistance (MDR) is a pervasive impediment to the successful treatment of solid tumors,

including ovarian cancer. The MDR mechanism includes elevated expression of the ATP-

binding cassette (ABC) family of transmembrane transporters that can reduce intracellular

drug levels and limit therapeutic efficacy. ATP-binding cassette subfamily B, member 1

(ABCB1), also known as P-glycoprotein (P-gp) or multidrug resistance protein 1 (MDR1), was

the first ABC transporter identified and is the best characterized ABC family member [10–12].

ABCB1 functions to protect cells from the damage of xenobiotic and toxic substances, includ-

ing chemotherapeutic agents (e.g., taxanes, vinca alkaloids, anthracyclines) [13]. We observe

higher paclitaxel IC50 (i.e., the concentration required to inhibit proliferation in 50% of cells)

in immortalized human ovarian cancer cell lines and patient-derived organoids with elevated

ABCB1 expression. Similar observations have been reported across a wide variety of cancer

cell lines [14–16]. Elevated ABCB1 expression and poor paclitaxel response has also been asso-

ciated with unfavorable clinical outcomes for ovarian cancer patients [17].

Clinical development of small molecule inhibitors of ABC transporters to reverse MDR has

been ongoing for more than three decades. Initially, ABCB1 inhibitors were used for non-

oncologic indications (e.g., verapamil, quinine, and cyclosporine), but the high doses necessary

to inhibit ABCB1 function proved to be too toxic [18, 19]. Better tolerated second- and third-

generation ABCB1 inhibitors demonstrate a more favorable therapeutic window, though new

clinical applications remain elusive [20–22]. Similarly, many tyrosine kinase inhibitors (TKIs)

(e.g., dasatinib, vandetanib, lapatinib), can inhibit ABCB1 function, albeit from off-target

activity [23–29]. Recent in vitro studies have shown lapatinib can partially reverse multidrug

resistance in ABCB1-overexpressing ovarian cancer cells, findings further supported through

in vivo mouse models [30].

In the current study, we aimed to better understand acquired paclitaxel resistance in ovar-

ian cancer and identify small molecules that possess anti-cancer synergy when combined with

paclitaxel in resistant ovarian cancer. A variety of ovarian cancer models were employed,

including immortalized cell lines and primary tumor organoids established from several differ-

ent histotypes, in hopes of finding a treatment strategy with broad applicability to gynecologi-

cal cancers. We report that among a panel of tested TKIs, lapatinib, and poziotinib

demonstrated the strongest synergy in combination with paclitaxel in ABCB1-overexpressing

human ovarian cancer cells. Others have previously reported synergistic antitumor activity
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using paclitaxel and lapatinib in combination for esophageal and ovarian cancer [31, 32]. To

our knowledge, this is the first report of anticancer synergy using poziotinib in combination

with paclitaxel in ovarian cancer, although poziotinib-mediated inhibition of ABCB1 activity

was recently reported in colon cancer cells [33]. Both poziotinib and lapatinib are TKIs that

primarily target ErbB protein tyrosine kinases EGFR, ERBB2, and ERBB4 [34–36]. Evidence

suggests lapatinib inhibits ABCB1 activity, but the mechanism remains unclear [24]. We show

that its synergistic anti-cancer effect, when combined with paclitaxel, is independent of EGFR,

ERBB2, or ERBB4 antagonism in human ovarian cancer cell models. Moreover, poziotinib

and lapatinib appear to inhibit ABCB1 via direct interaction with the transporter. We also

observe elevated ABCB1 expression associated with paclitaxel resistance in primary ovarian

tumor organoids underscoring potential clinical relevance. These findings encourage further

investigation of whether lapatinib can be combined with paclitaxel to improve the chemother-

apeutic efficacy and survival in ovarian cancer patients.

Materials and methods

Drug-resistant cell lines

We purchased ovarian cancer cell lines TOV-21G [37] (ATCC1 CRL-11730™) and NIH:

OVCAR-3 (OVCAR3) [38] (ATCC1HTB-161™) directly from ATCC and absence of myco-

plasma was confirmed independently. TOV-21G cells were maintained subconfluent at 37˚C,

5% CO2 in 1:1 (v:v) mixture of Medium 199:MCDB 105 supplemented with 15% fetal bovine

serum (FBS). OVCAR3 cells were grown as subconfluent monolayers in high glucose (4500

mg/L) RPMI-1640 with 0.01 mg/mL bovine insulin and 20% FBS at 37˚C, 5% CO2. Paclitaxel-

resistant cells were established from parental lines by incubating cells in paclitaxel-containing

growth media using recurrent 48-hour treatment cycles until a stable pool of resistant clones

was confirmed. Clinically relevant paclitaxel concentrations of 25, 50 and 150 nM were used

for the first cycle and the highest concentration that allowed for outgrowth of viable cells was

selected for subsequent cycles. The concentration used and recovery time needed for cells to

repopulate between cycles was determined independently for each cell line. We treated TOV-

21G cells with 3 cycles of 150 nM paclitaxel for 48 hours each, every 2 weeks. We treated

OVCAR-3 cells with 5 cycles of 25 nM paclitaxel for 48 hours each, every 2 to 3 weeks. The sta-

bility of the resistant phenotype was verified by routine testing with dose-response prolifera-

tion assays, for a minimum of 8 passages following the final treatment cycle.

Organoids

Ovarian tumor tissue was obtained at the time of debulking surgery from patients who pro-

vided written, informed consent to the use of their tissue for establishment of tumor organoids

and cell lines, as approved by the University of Kentucky Institutional Review Board. Estab-

lishment of organoids and drug sensitivity testing was conducted by the organoid modeling

laboratory at Tempus (Chicago, IL). Tissue was enzymatically dissociated and de novo orga-

noids were established in Matrigel1 Growth Factor Reduced Basement Membrane Matrix

(Corning) in vitro using factor defined media [39] and grown at 37˚C, 5% CO2. Representative

micrographs were H&E stained and compared with the primary tumor to confirm concordant

histology. We also performed mutational concordance analysis by comparison of sequencing

results between the primary tumor specimen and the resultant tumor organoids. For cytotox-

icity assays, organoids were enzymatically dissociated into single cells and seeded in individual

wells of 384-well plates. Organoids were cultured under normal conditions for 72 hours before

administering paclitaxel treatment (1000 nM, 100 nM, 10 nM, 1 nM, 0.01 nM) in quadrupli-

cate wells per dose. Experiments were terminated after treating cells for 72 hours. Cell viability
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was measured using CellTiter 96 Aqueous One Solution Cell Proliferation assay (Promega) to

determine EC50 for each sample.

RNA sequencing

Total RNA was extracted from ovarian cancer cell lines with RNeasy Plus Universal Mini Kit

(Qiagen) followed by whole transcriptome sequencing. RNA from each cell line was analyzed

in triplicate. RNA quality and quantity were assessed with an Agilent Bioanalyzer 2100 RNA

Nano chip. TruSeq Stranded Total RNA Prep Kit (Illumina) was used to generate ribosomal

RNA-depleted libraries which were sequenced as 100 base pair, single-end reads on an Illu-

mina HiSeq 2500 in rapid mode by the Markey Cancer Center’s Oncogenomics Shared

Resource Facility at the University of Kentucky. An average depth of 4.9x107 single-end reads

per sample was achieved. RNA from tumor organoids were sequenced by Tempus (Chicago,

IL) using the proprietary xT sequencing platform with an exome capture-based RNA-seq

methodology [40]. Sequencing reads were trimmed and filtered to remove adapter sequences

and low-quality reads using Trimmomatic (V0.39) [41]. Read alignments were mapped to

Ensembl GRCh38 transcripts annotation (release 82), using STAR aligner in the RSEM soft-

ware [42]. On average, there were 4.2x107 (~84.1%) uniquely mapped reads per sample and

3.8x107 (~75.6%) reads mapped to exons in the ovarian cancer cell lines. Depth of coverage

summary is provided in S8 Fig. We used R (version 3.5.0) and the Bioconductor (version 3.10)

package edgeR for normalization and differential expression analysis [43]. The raw counts of

the samples in comparison were first normalized within samples using read counts aligning to

each gene per million mapped reads (CPM). We excluded from analysis genes that were unex-

pressed or lowly expressed (no sample with CPM > 1). The read counts were further normal-

ized between samples using TMM (Trimmed Means of M values) to account for the library

size variance. Within edgeR, the read counts were fit to a negative binomial distribution model

to estimate variance, and differential expression was subsequently analyzed using the “exact-

Test” function [43]. Significant differentially expressed genes (control vs. paclitaxel-resistant)

had log2 fold change� 1 or� -1 and q-value < 0.05. RNA-seq data are available at the Gene

Expression Omnibus (GEO) under accession number GSE172016.

Proliferation assays

Cells were seeded in white-walled 96-well microplates at 3x103 cells per well in 100 μL growth

media and incubated for 24 hours at 37˚C, 5% CO2 to allow cells to attach. Subsequently, the

growth media was removed and replaced with fresh media containing serially diluted drug(s)

of interest or blank media for untreated controls. Within an experiment, each drug concentra-

tion was tested in duplicate. For paclitaxel, drug concentrations ranged from 3000 nM to 0.017

nM. Lapatinib concentrations spanned from 50 μM to 0.08 μM. After treatment, we incubated

cells an additional 96 hours, then determined cell viability of drug-treated cells relative to

untreated control cells (% viability) using the CellTiter-Glo 2.0 viability assay (Promega).

Luminescence was measured using a Varioskan LUX multimode microplate reader (Thermo-

Fisher Scientific). Dose-response curves were then fit to the data (four parameter log-logistic

model), and we calculated IC50 values with R statistical software (version 3.5.0), package drc
(version 3.0) [44]. Each drug was analyzed with each cell line using data from a minimum of

three independent experiments.

Drug combination/synergy analysis

We produced dose-response matrix data using cell proliferation assays as described above. We

tested pairs of drugs alone and in combination with each of five serially diluted concentrations
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and cell viability was measured using CellTiter-Glo 2.0 (Promega). For every drug pair, each

concentration was tested in combination in at least 3 independent experiments in a 6 x 6

matrix design. Percent viability for each combination was determined by dividing drug-treated

signals by untreated signals and multiplying by 100. Paclitaxel (1000, 167, 28, 4.6, 0.77, 0 nM)

was tested in combination with lapatinib (50000, 10000, 2000, 400, 80, 0 nM), poziotinib

(12500, 4167, 1389, 463, 154, 0 nM), vandetanib (10000, 2000, 400, 80, 16, 0 nM), dacomitinib

(10000, 3333, 1111, 370, 123, 0 nM), AZ5104 (5000, 500, 50, 5, 0.5, 0 nM) and allitinib (12500,

1250, 125, 12.5, 1.25, 0 nM). The percentage of viable cells relative to untreated control cells

was used to assess synergy for each drug combination using the synergyfinder package (version

1.10) within R (version 3.5.0) [45]. We used the Bliss independence model [46] for synergy

scoring.

siRNA transfection

We used siGENOME SMARTpool siRNA reagents (Dharmacon) for the RNAi-mediated

knockdown of human EGFR, ERBB2, ERBB4, and ABCB1. Ovarian cancer cell lines were tran-

siently transfected with 15 nM siRNA, including the siGENOME Non-Targeting siRNA Pool

#2, using DharmaFECT1 transfection reagent (Dharmacon) according to the manufacturer’s

instructions. Cells were harvested 24 hours after transfection and either seeded in 96-well

microplates for cell proliferation assays or re-plated for expansion prior to RNA extraction.

Real-time PCR

RNA was extracted from ovarian cancer cell lines with RNeasy Plus Universal Mini Kit (Qia-

gen) and 1 μg of each sample was converted to cDNA using High-Capacity cDNA Reverse

Transcription Kit (ThermoFisher Scientific) with random primers and MultiScribe Reverse

Transcriptase. Reverse transcription reactions were performed in a VeritiPro Thermal Cycler

(Applied Biosystems) under the following conditions: 25˚C for 10 minutes, 37˚C for 120 min-

utes, 85˚C for 5 minutes. Real-time semi-quantitative PCR to measure gene expression was

employed using FAM-MGB labeled TaqMan Gene Expression Assays (ThermoFisher Scien-

tific). TaqMan Advanced Master Mix (ThermoFisher Scientific) was used to assess expression

of human ABCB1 (ATP binding cassette subfamily B member 1; assay ID Hs00184500_m1),

EGFR (epidermal growth factor receptor; assay ID Hs01076090_m1), ERBB2 (erb-b2 receptor

tyrosine kinase 2; assay ID Hs01001580_m1), ERBB4 (erb-b2 receptor tyrosine kinase 4; assay

ID Hs00955522_m1), relative to MRPL19 (mitochondrial ribosomal protein L19; assay ID

Hs00608519_m1) in triplicate. The reaction mixture consisted of 1X Master Mix, 1X TaqMan

Assay and 1 μL template cDNA in 20 μL final volume. PCR was carried out using a QuantStu-

dio 3 Real-Time PCR instrument in “fast” run mode with the following conditions for all

genes: 2 minute hold at 50˚C, 2 minute hold at 95˚C, followed by 40 cycles of amplification for

1 second at 95˚C and 20 seconds at 60˚C. Relative expression was evaluated across samples in

QuantStudio Software (Applied Biosystems) using the Comparative CT (ΔΔCT) method.

ABCB1 activity

Transporter activity of ABCB1 was assessed in the presence of lapatinib, poziotinib, paclitaxel

and verapamil (positive control) using the Pgp-Glo Assay System with P-glycoprotein (Pro-

mega) according the manufacturer’s instructions [47]. Briefly, single agent 10 μM lapatinib,

10 μM poziotinib, 0.5 μM paclitaxel, 200 μM verapamil, or 10 μM lapatinib or poziotinib com-

bined with 0.5 μM paclitaxel or 100 μM verapamil, were incubated with 0.5 mg/mL P-gp mem-

branes (supplied with kit) in 5 mM MgATP for 60 minutes on a heating block set to 37˚C.

Reactions were stopped by the addition of 50 μL ATP Detection Reagent. Plates were mixed
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on an orbital shaker for 10 seconds at 500 RPM then incubated 20 minutes at room tempera-

ture protected from light. Luminescence was then measured in quadruplicate wells for each

sample with a 1 second exposure using a Varioskan LUX Multimode microplate reader (Ther-

moFisher Scientific). Luminescent signals (RLU) from three independent experiments were

analyzed. RLU values from untreated (baseline), verapamil-treated (positive control) and

experimental samples were subtracted from sodium vanadate-treated samples (negative con-

trol) to determine change in luminescence. These values were normalized to baseline levels to

determine relative change in ABCB1 activity.

Statistical analysis

Statistical analyses were performed using R (version 3.6.3) or GraphPad Prism (version 5.01).

For RNAseq analyses, differential expression was analyzed using the “exactTest” function [43].

Significant differentially expressed genes (control vs. paclitaxel-resistant) had log2 fold

change� 1 or� -1 and q-value < 0.05 (q< 0.1 for tumor organoids). Synergy studies were

conducted in quadruplicate and Bliss scores were compared (control vs. PacR) using unpaired

two-tailed t-tests. Real-time PCR data was analyzed by comparing ΔCT values using unpaired

two-tailed t-tests (2 samples) or 1-way ANOVA followed by Tukey’s Multiple Comparison

Tests (time course). Data was collected in triplicate across at least three independent experi-

ments. Results are presented as mean ± standard error of the mean. Pairwise comparisons of

IC50 values were assessed using two-tailed unpaired t-tests were used to assess differences

between means of a minimum of three independent experiments. IC50 values were calculated

by fitting the experimental data to four-parameter log-logistic curves using package drc (ver-

sion 3.0) in R. Median P-gp activity determined from quadruplicate measurements across

three independent experiments was analyzed using Kruskal-Wallis test followed by pairwise

comparisons using Conover-Iman tests.

Results

We used primary organoid and immortalized cell line models to study the genetic basis of pac-

litaxel resistance in ovarian cancer. We generated models of acquired paclitaxel resistance

from the human clear cell ovarian carcinoma cell line, TOV-21G, and the human papillary

serous ovarian carcinoma line, OVCAR3. Cell lines were grown in monolayers and treated

with clinically-achievable concentrations of paclitaxel (25–150 nM) in 48-hour increments

then allowed to recover in drug-free culture media. Upon repopulation, cells were treated with

additional cycles of paclitaxel until we established stable pools of resistant cells. Resistant cell

lines exhibited increases in paclitaxel IC50 ranging from 6.5-fold for OVCAR3 (26.6 nM in

resistant versus 4.1 nM in control) to 94-fold for TOV-21G (403.1 nM in resistant versus 4.3

nM in control) (Fig 1A and 1B).

In parallel, primary tumor organoid cell lines were established from seven unique ovarian

cancer patients using tissue acquired from primary debulking surgeries (Table 1) [48]. Most

organoid lines were developed from high grade serous carcinoma specimens (n = 5) isolated

from the ovary (n = 2), fallopian tube (n = 2) or omentum (n = 1). We derived the remaining

two organoid lines from low-grade adenocarcinomas, one serous, and one endometrioid. Pac-

litaxel resistance was analyzed in these novel organoid cell lines, with EC50 values spanning

more than four orders of magnitude (0.01–285 nM), with a median EC50 of 0.92 nM. We des-

ignated the four organoid lines with EC50 values less than or equal to the median EC50 as “sen-

sitive” to paclitaxel and three lines with EC50 values greater than the median as “resistant” (Fig

1C). We established five lines from chemotherapy naïve specimens, and two from patients

who received neoadjuvant chemotherapy consisting of carboplatin and paclitaxel. Of the
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neoadjuvant treated organoid lines, one was resistant and had the highest paclitaxel EC50

(UK1236), while the other was sensitive to paclitaxel (UK1254).

To better understand the molecular basis for the paclitaxel-resistance (PacR) phenotype,

gene expression profiling was conducted on the PacR ovarian cancer cell lines and matched

parental controls. Gene expression differences associated with paclitaxel resistance revealed

common changes in certain transcripts irrespective of the cell line. There were 1795 differen-

tially expressed transcripts identified in the TOV-21G-PacR cells compared to control (FDR

q< 0.05; log2 fold change� 1 or� -1; “TOV21G” in S1 Table). For OVCAR3, we found 2407

differentially expressed transcripts (“OVCAR3” in S1 Table). A group of 229 genes showed

similar expression patterns across the PacR cell lines, 118 of which exhibited increased expres-

sion; 111 genes had reduced expression (Fig 2A; “Common” in S1 Table). ABCB1 expression

was strongly induced in PacR cells and was the most statistically significant of the common dif-

ferentially expressed genes (Fig 2B; q< 1.0x10-300 and q = 7.4x10-156 in TOV-21G and

OVCAR3 cells, respectively). Similarly, we analyzed gene expression differences among sensi-

tive and resistant ovarian cancer organoid lines. As seen in the immortalized cell lines, elevated

ABCB1 expression was associated with paclitaxel resistance in the organoid lines, too (Fig 2C;

Fig 1. Ovarian cancer cell lines exhibit varied responses to paclitaxel treatment. Paclitaxel-resistant (PacR) and parental

control ovarian cancer cell lines, TOV-21G and OVCAR3, were treated with serially diluted doses of paclitaxel for 96 hours

in vitro. Cell viability is displayed at each concentration tested relative to untreated cells for the control (black) and PacR

(red) cell lines of (A) TOV-21G and (B) OVCAR3 cells. Dose response curves were fit to the data and IC50 values were

calculated using four-parameter log-logistic models. (C) Ovarian tumor organoid cell lines’ paclitaxel EC50 values. Resistant

lines are shown in gold and sensitive lines are shown in black.

https://doi.org/10.1371/journal.pone.0254205.g001

Table 1. Clinical information for organoid tissue donors.

Organoid

ID

Age at diagnosis

(years)

Race Histotype Stage Grade Tissue1 BRCA status

UK1225 62 White endometrioid adenocarcinoma IA 1 (well

differentiated)

Ovary WT

UK1226 57 White serous adenocarcinoma with marked

psammoma bodies

IIIA2 1 (low grade) Ovary WT

UK1236 47 White residual serous adenocarcinoma IVA 3 Ovary WT

UK1254 49 White residual serous carcinoma IVA 3 Ovary WT

UK1393 47 White serous carcinoma IIIC 3 Omentum WT

UK2238 58 White serous carcinoma IIIA2 3 Fallopian

tube

BRCA1 c.2071delA

(germline)

UK2326 63 White serous carcinoma IIIC 3 Fallopian

tube

WT

1 Site of origin

https://doi.org/10.1371/journal.pone.0254205.t001
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p = 2.4x10-4). Further examination of ABCB1 splice variants, gene fusions and mutations in

our models detected no alterations. A synonymous polymorphism (rs2214102; chr7:87600185

T>C) was found in TOV-21G cells.

We sought to identify compounds that showed anti-proliferative synergy when combined

with paclitaxel in resistant P-gp-overexpressing ovarian cancer cells. Evidence has shown

some TKIs can inhibit P-gp activity [23–29]; therefore, we used a panel of investigational and

clinically approved TKIs to screen for synergy. We focused on inhibitors of the ERBB gene

family due to expression differences in resistant ovarian cancer cells associated with the resis-

tant phenotype (Fig 2B). Since ERBB4 was differentially expressed in resistant cells of both

lines, we chose ERBB family TKIs active against ERBB4 for further investigation. For the initial

screen, we treated parental and PacR TOV-21G cells with poziotinib, dacomitinib, AZ-5104,

allitinib (AST-1306), vandetanib, or lapatinib alone and in combination with paclitaxel, and

then assayed for cell viability. We calculated the average synergy scores based upon the Bliss

independence model for each combination tested [45, 46] (Fig 3A). The ABCB1-specific inhib-

itor, elacridar, was included as a positive control and showed the strongest synergy with pacli-

taxel, with a mean Bliss score of 1.5 versus 27.9 for control and PacR cells, respectively

Fig 2. ABCB1 overexpression among recurrent gene expression differences tracking with paclitaxel resistance in ovarian cancer. (A)

Supervised hierarchical clustering of 229 common transcripts phenotypically segregated 111 down-regulated and 118 up-regulated

transcripts in PacR cells (orange bar) from control cells (black bar). (B) mRNA expression levels measured by RNAseq in control and PacR

cells were compared within cell lines for EGFR, ERBB2, ERBB3, ERBB4, ABCB1 and ABCG2 (� q< 0.05). (C) ABCB1 mRNA expression

levels measured by RNAseq compared in paclitaxel-sensitive and -resistant ovarian cancer organoids. Statistical significance determined by

exact test (edgeR).

https://doi.org/10.1371/journal.pone.0254205.g002

Fig 3. Lapatinib and poziotinib demonstrate anti-proliferative synergy when combined with paclitaxel. (A) A panel of TKIs were screened for anti-proliferative

synergy when combined with paclitaxel on TOV-21G-control and–PacR derivative cell lines. The ABCB1-specific inhibitor, elacridar, was included as a positive control.

Average Bliss synergy scores across drug combinations (minimum of 3 independent experiments) are summarized as averages +/- standard error of the mean. Unpaired

two-tailed t-tests were performed for each drug (control vs. PacR; � p< 0.05; �� p< 0.005; ��� p< 0.0005). (B) Representative surface response model plots of synergy

analyses using a Bliss independence model for paclitaxel in combination with lapatinib are depicted for control and PacR TOV-21G and (C) OVCAR3 cell lines.

https://doi.org/10.1371/journal.pone.0254205.g003
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(p = 1.3x10-4). Anti-proliferative synergy was also seen when paclitaxel was combined with

lapatinib (p = 0.0030) or poziotinib (p = 0.015). These findings were then validated in

OVCAR3 cells for lapatinib (p = 0.025) and poziotinib (p = 0.039) (S1 Fig). Representative sur-

face response models show similar Bliss synergy scores over the range of concentrations tested

for the lapatinib plus paclitaxel combination in TOV-21G and OVCAR3-PacR cells, with no

synergy in control cells with low basal expression of ABCB1 (Fig 3B and 3C).

Lapatinib and poziotinib inhibit the ErbB family of tyrosine kinases. To assess the potential

contribution of ErbB receptors on paclitaxel resistance in ovarian cancer, silencing RNAs

(siRNA) were used to knockdown expression of EGFR, ERBB2, and ERBB4 in the control and

PacR cells (S1 and S3 Figs). Following siRNA transfection, cells were treated with lapatinib

and paclitaxel alone and in combination for 96 hours. Sustained down regulation of gene

expression was confirmed at 120 hours post-transfection by real-time PCR (S4 and S5 Figs).

Cells were inherently resistant to lapatinib, and we observed no differences among control and

PacR cells (S6 Fig). Blocking the expression of EGFR, ERBB2, or ERBB4 did not alter pacli-

taxel-induced cytotoxicity in the TOV-21G cell line when compared to cells that received non-

target siRNA (Fig 4A). However, we observed a significant decrease in paclitaxel IC50 in

OVCAR3-PacR cells treated with EGFR siRNA (Fig 4B). We then measured ABCB1 expres-

sion following knock-down of EGFR in OVCAR3 cells and found significantly lower ABCB1

mRNA levels in siEGFR-treated cells compared to the non-target (siNTC) control (Fig 4C). A

similar siEGFR-induced reduction in ABCB1 expression was not observed in the TOV21G

cells (S7 Fig).

In addition to ErbB receptors, lapatinib reportedly inhibits the function of at least two

ATP-binding cassette (ABC) transporters, ABCB1 and ABCG2 [24]. These transporters pro-

mote cytotoxic resistance by enhancing cellular efflux of chemotherapeutic drugs, including

paclitaxel. Expression levels of ABCG2 are low or undetectable in our cell lines (Fig 2B); thus,

any contribution to the resistant phenotype is negligible in these models. ABCB1 expression

was reduced by siRNA in TOV-21G and OVCAR3-control and PacR cells. We then measured

paclitaxel-induced cytotoxicity. Silencing ABCB1 in TOV-21G-PacR cells significantly

reduced paclitaxel IC50 21.6-fold when compared to cells receiving non-target siRNA

Fig 4. Differential regulation of ABCB1 expression by EGFR in ovarian cancer cell lines. (A) Dose response curves following siRNA knockdown of EGFR, ERBB2 or

ERBB4 in TOV-21G-control and–PacR cells indicating cell viability after 96 hours of exposure to paclitaxel. (B) Paclitaxel IC50 in OVCAR3-control and -PacR cells

following knock-down of EGFR, ERBB2, and ERBB4 expression. Bar plots depict average IC50 +/- standard error of the mean (SEM). ANOVA p< 0.0001. Bars not

sharing subscripts are significantly different (Tukey’s p< 0.05). (C) ABCB1 and EGFR expression measured with real-time PCR 72 hours after siEGFR transfection in

OVCAR3 cells. Relative expression was compared using one-way ANOVA (ABCB1 p = 0.001; EGFR p< 0.0001) and Tukey’s Multiple Comparison Tests (� p< 0.05, ��

p< 0.01, ��� p< 0.001).

https://doi.org/10.1371/journal.pone.0254205.g004
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(p< 0.005; Fig 5). In comparison, silencing ABCB1 in the TOV-21G-control cells had a more

modest effect on paclitaxel sensitivity; IC50 was 6.8 nM among cells receiving non-target

siRNA versus 4.9 nM for cells receiving ABCB1 siRNA (p< 0.005). Similarly, in OVCAR3-

control cells, there was no difference in IC50 after silencing ABCB1 expression. We did observe

a significant reduction in IC50 in the OVCAR3-PacR cells with silenced ABCB1 expression

(p< 0.05; Fig 5).

To investigate the mechanism of lapatinib and poziotinib-mediated ABCB1 inhibition, we

examined their effect on transporter activity. ABCB1 is an ATP-dependent transporter and

ABCB1 substrates will stimulate ATPase activity. ABCB1 ATPase activity was measured using

the Pgp-Glo Assay System (Promega) [47] in the presence of verapamil (positive control), pac-

litaxel, lapatinib and poziotinib, and with paclitaxel in combination with lapatinib and pozioti-

nib. As shown in Fig 6, single agent verapamil and paclitaxel stimulated ABCB1 ATPase

activity 23-fold (p = 0.0001) and 6-fold (p = 0.021), respectively, compared to baseline ABCB1

activity (no added substrate). As single agents, lapatinib inhibited ABCB1 activity approxi-

mately 6-fold (p = 0.025) compared to baseline while poziotinib showed no significant differ-

ence. Combining lapatinib or poziotinib with paclitaxel significantly reduced paclitaxel-

induced ABCB1 activity (p = 0.026 and p = 0.027, respectively; Fig 6).

Discussion

Resistance to chemotherapy profoundly impacts cancer outcomes by limiting the clinical

benefit of cancer treatment. Many mechanisms of resistance have been described, with the

upregulation of drug efflux transporters (e.g., ABCB1) being one of the more commonly

observed in vitro [13]. The current study demonstrates that ABCB1 upregulation is the major

driver of paclitaxel resistance in two different human ovarian cancer cell line models of

acquired resistance. Silencing ABCB1 expression with sequence-specific siRNAs significantly

reduced paclitaxel IC50 in resistant cells (Fig 5). Resistance was completely overcome in

OVCAR3-PacR cells; however, sensitivity was only partially restored in TOV-21G-PacR cells.

This is most likely due to the highly elevated ABCB1 expression in TOV-21G-PacR cells (Fig

2B) combined with the incomplete silencing of ABCB1 expression in these cells (S4A Fig).

While expression was significantly reduced in the TOV-21G-PacR-siABCB1 versus–siNTC

cells, ABCB1 expression remained elevated relative to the TOV-21G-control cell lines.

Fig 5. ABCB1 overexpression is sufficient for paclitaxel resistance in ovarian cancer. Cell viability following

paclitaxel treatment was examined after silencing ABCB1 expression in TOV-21G and OVCAR3 cells. IC50 values were

compared across non-target siRNA (siNTC) and ABCB1 siRNA (siABCB1) transfected cells using unpaired two-tailed

t-tests. � p< 0.05; �� p< 0.005.

https://doi.org/10.1371/journal.pone.0254205.g005
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Although OVCAR3-PacR-siABCB1 cells similarly maintained elevated ABCB1 expression

compared to OVCAR3-control cells (S5A Fig), we did not observe increased paclitaxel IC50.

The magnitude of ABCB1 upregulation is much lower in OVCAR3-PacR cells compared to

TOV-21G-PacR cells (Fig 2B). It is possible that the ABCB1 siRNAs sufficiently reduce ABCB1

expression in OVCAR3-PacR cells below a threshold required for paclitaxel resistance that

could not be achieved in the TOV-21G-PacR cells. An alternative technology that could pro-

vide a more complete knock-out of ABCB1 (e.g., CRISPR) may be necessary to completely

overcome resistance in the TOV-21G-PacR cells.

We show that for ovarian cancer cells overexpressing ABCB1, the combination treatment

of lapatinib and paclitaxel has synergistic effects, sensitizing otherwise resistant cells to pacli-

taxel. This finding is in agreement with other studies in a variety of cancer cell types [24, 25,

31, 49]. We have also shown for the first time in ovarian cancer cells that poziotinib, currently

in late phase clinical trials for patients with NSCLC and an ERBB2 exon 20 insertion mutation

[50], has a similar effect when combined with paclitaxel in ABCB1-overexpressing ovarian

cancer cells. However, poziotinib requires higher concentrations to achieve comparable syn-

ergy to lapatinib with paclitaxel. Poziotinib and lapatinib are inhibitors of ErbB receptors,

therefore, we aimed to determine if expression of ErbB receptors influenced paclitaxel

Fig 6. Lapatinib and poziotinib directly inhibit ABCB1-mediated paclitaxel transport. ABCB1 ATPase activity was

measured in untreated (baseline) and drug-treated recombinant human ABCB1 membranes and normalized to

baseline activity. Verapamil served as positive control. Box and whisker plots depict the median activity, interquartile

range (boxes) with whiskers extending to data points up to 1.5x the interquartile range (IQR). Outlier values greater

than 1.5x IQR are shown as closed circles. Statistical significance was determined using Kruskal-Wallis test followed by

Conover-Iman tests for pair-wise comparisons.

https://doi.org/10.1371/journal.pone.0254205.g006
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sensitivity. Silencing expression of EGFR, ERBB2 or ERBB4 had no effect on paclitaxel-medi-

ated cytotoxicity in TOV-21G-control or TOV-21G-PacR cells (Fig 4A). However, silencing

EGFR significantly reduced paclitaxel IC50 in OVCAR3-PacR cells (Fig 4B). We found that

when EGFR expression was reduced in OVCAR3-PacR cells, a concomitant decrease in

ABCB1 expression occurred (Fig 4C), leading to lower paclitaxel IC50 in these cells. Interest-

ingly, silencing EGFR in the TOV-21G cells did not alter ABCB1 expression (S7 Fig) highlight-

ing cell line-specific differences in how ABCB1 expression is controlled. Regulation of ABCB1

expression by EGFR has been previously reported [51–53] and it would appear EGFR is, at

least in part, mediating ABCB1 overexpression in the OVCAR3-PacR cells.

Other TKIs targeting the ErbB receptor family, specifically allitinib, dacomitinib, vandeta-

nib and AZ5104, did not sensitize cells to paclitaxel treatment in our model despite previous

reports of ABCB1 inhibition by dacomitinib in colon cancer cell lines (Fig 3A) [54]. While var-

iability exists in the ability of different TKIs to inhibit ABCB1 function, these data support con-

tinued clinical investigation of the combination of paclitaxel and lapatinib.

As shown in Fig 6, the ability of lapatinib and poziotinib to reduce paclitaxel efficacy is

likely due to direct inhibition of ABCB1 function. Based on the observed stimulation of

ABCB1 ATPase activity, paclitaxel is a substrate of ABCB1. The reduction in paclitaxel-

induced ATPase activity in vitro when lapatinib or poziotinib are present demonstrates physi-

cal interference with ABCB1 function. Our results are in agreement with others that have pro-

posed a mechanism whereby TKIs, including lapatinib and poziotinib, physically bind to and

inhibit ABCB1 rendering the transporter non-functional [27, 33].

Demonstration of clinical relevance for ABCB1 upregulation on chemoresistance in ovar-

ian cancer has been inconsistent; however, recent reports highlight the importance of ABC-

B1-overexpression in the treatment of recurrent ovarian cancer [55, 56]. This is not

unexpected since patients with recurrent ovarian cancer have already received paclitaxel, an

ABCB1 substrate, as part of their primary therapy [57]. Neoadjuvant chemotherapy (carbopla-

tin/paclitaxel doublet) is also commonly prescribed before primary debulking surgery. Thus,

primary cancer tissue samples obtained after neoadjuvant chemotherapy may commonly

express efflux transporters. We developed our ovarian tumor organoid models from seven pri-

mary ovarian cancer patients, two of whom received neoadjuvant chemotherapy. Of these two,

one had the highest level of ABCB1 expression (UK1236), ~10-fold higher than the next high-

est expresser, and the other had undetectable ABCB1 expression (UK1254). It is unclear

whether epigenetic or other molecular mechanisms underlie differences observed in these

models for induction of ABCB1 expression following neoadjuvant chemotherapy. Regardless,

our new ovarian cancer organoid cell lines are providing a clinically relevant validation of the

link between ABCB1 upregulation and paclitaxel resistance in ovarian cancer, consistent with

previously established immortalized human cell lines in the laboratory setting.

The combination of lapatinib and paclitaxel has been previously used for the treatment of

advanced solid malignancies [58–63], but exclusively in the context of ERBB2-overexpression.

While results were inconsistent, most of these trials showed this combination produced a

favorable overall response rate in ERBB2-overexpressing tumors and had manageable toxici-

ties. Re-evaluation of this combination therapy is warranted, with a new focus on ABCB1-o-

verexpressing ovarian cancers. This treatment strategy is attractive for several reasons. First,

dose-dense paclitaxel is a preferred second-line therapy for resistant or refractory ovarian can-

cers. Since lapatinib is already FDA-approved, its addition to paclitaxel as a second-line ther-

apy can move quickly into early phase trials. Second, the pharmacology of lapatinib is well

understood and has a known toxicity profile. Using lapatinib with paclitaxel could allow for

dose-reductions of paclitaxel that may lower the incidence of dose-limiting toxicities associ-

ated with paclitaxel use (e.g., neuropathy, bone marrow suppression). Lastly, lapatinib may be
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available soon as a generic version of Tykerb (Novartis) which the FDA granted approval for

in September 2020 [50]. This should substantially reduce the cost of lapatinib and make it a

more affordable treatment option.

From genome-wide screens, we show ABCB1 overexpression consistently associated with

paclitaxel resistance across various human ovarian cancer cell line models. While immortal-

ized cell lines are considered poor clinical surrogates due to their relative homogeneity, we

identified elevated ABCB1 expression in clinically relevant, paclitaxel-resistant tumor orga-

noid models, as well. Limitations of this work include small sample size, so it will be important

to show similar associations across a broader collection of clinical samples. Although lapatinib

shows the highest degree of synergy with paclitaxel in our study, the possibility that other

untested agents are more effective than lapatinib in ABCB1-overexpressing ovarian cancers

cannot be ruled out.

There is a pressing need for new therapeutic options for ovarian cancer and our findings

identify a promising approach for patients with relapsed ovarian cancer. We show that ABC-

B1-overexpressing ovarian cancers are particularly sensitive to paclitaxel combined with lapa-

tinib in the laboratory setting and that ABCB1 overexpression is common and predictive of

paclitaxel sensitivity in patient-derived ovarian organoids. The clinical investigation of this

combination is relatively low risk with high reward potential. Repurposing lapatinib to

enhance paclitaxel efficacy represents an opportune therapeutic strategy to improve outcomes

for relapsed/refractory ovarian cancer patients.

Supporting information

S1 Table. Differentially expressed genes associated with paclitaxel resistance in ovarian

cancer cell lines.

(XLSX)

S1 Fig. Drug synergy in OVCAR3 cells. Average Bliss synergy scores across drug combina-

tions (paclitaxel + lapatinib or paclitaxel + poziotinib) from 4 independent experiments of

OVCAR3-control and -PacR cells are summarized as averages +/- standard error of the mean.

The ABCB1 inhibitor, elacridar, serves as positive control. Unpaired two-tailed t-tests were

performed for each drug (control vs. PacR; � p< 0.05; �� p < 0.01).

(TIF)

S2 Fig. Real-time PCR analysis of siRNA efficacy in TOV-21G cells. Relative expression

of ABCB1, EGFR, ERBB2, and ERBB4 following siRNA transfection in TOV-21G cells.

Significant differences in expression (ΔCT) were determined using unpaired two-tailed t-tests

(� p< 0.001).

(TIF)

S3 Fig. Real-time PCR analysis of siRNA efficacy in OVCAR3 cells. Relative expression

of ABCB1, EGFR, ERBB2, and ERBB4 following siRNA transfection in OVCAR3 cells.

Significant differences in expression (ΔCT) were determined using unpaired two-tailed t-tests

(� p< 0.001).

(TIF)

S4 Fig. Time course real-time PCR analysis of siRNA efficacy in TOV-21G-control and

-PacR cells. Gene expression of ABCB1, EGFR, ERBB2 and ERBB4 were measured in TOV-

21G control and paclitaxel-resistant cells at 48 hours and 120 hours post-transfection. Expres-

sion was analyzed relative to control cells at time 0 using MRPL19 as the endogenous reference

gene. Error bars indicate 95% confidence intervals for relative expression from triplicate
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measurements. Samples not sharing subscripts are significantly different (p< 0.05).

(TIF)

S5 Fig. Time course real-time PCR analysis of siRNA efficacy in OVCAR3-control and

-PacR cells. Gene expression of ABCB1, EGFR, ERBB2 and ERBB4 were measured in

OVCAR3-control and paclitaxel-resistant cells at 48 hours and 120 hours post-transfection.

Expression was analyzed relative to control cells at time 0 using MRPL19 as the endogenous

reference gene. Error bars indicate 95% confidence intervals for relative expression from tripli-

cate measurements. Samples not sharing subscripts are significantly different (p< 0.05).

(TIF)

S6 Fig. Lapatinib sensitivity in control and paclitaxel-resistant TOV-21G and OVCAR3

cells. Dose response assays were used to determine relative in vitro cytotoxicity after 96 hours

of exposure to lapatinib in resistant and control ovarian cancer cell lines, TOV-21G and

OVCAR3.

(TIF)

S7 Fig. ABCB1 expression in TOV-21G-control and–PacR cells following ErbB family

gene silencing. Real-time PCR analysis of ABCB1 expression 48 hours post-transfection of

siEGFR, siERBB2, siERBB4 or siNTC control siRNA constructs. Bar plots depict expression

relative to TOV-21G-control-siNTC cells with error bars depicting 95% confidence intervals.

MRPL19 expression was used as the calibrator. One-way ANOVA (p< 0.0001) and Tukey’s

Multiple Comparison tests were used to determine statistical significance. Bars not sharing a

common subscript are significantly different (Tukey’s p< 0.05).

(TIF)

S8 Fig. Read depth for RNA sequencing analysis of immortalized cell lines. For each

immortalized ovarian cancer cell line analyzed by RNA-seq, depth of coverage (x-axis) is plot-

ted against the proportion of genes greater than or equal to a given read depth (y-axis).

(TIF)
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