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Abstract: Epstein–Barr virus (EBV) mainly persists in B cells, which differentiate into antibody-
producing cells, and thus, EBV has been implicated in autoimmune diseases. We aimed to describe
the EBV reactivation and its relevance to autoimmune disease, focusing on Graves’ disease, which is
an autoimmune hyperthyroidism caused by thyrotropin receptor antibodies. Circulating autoreactive
B cells that have evaded from the selection have difficulties differentiating to produce antibodies.
However, once EBV infects such B cells and reactivates, the B cells may become plasma cells and
produce autoantibody. We herein proposed an EBV reactivation-induced Ig production system,
which is a distinct pathway from the antibody production system through germinal centers and bone
marrow and has the following characteristics: 1. IgM dominance, 2. ubiquitous Ig production, and 3.
the rescue of autoreactive B cells, which skews Ig production toward autoantigens. IgM autoantibodies
induced by EBV reactivation may activate the classical complement pathway and injure healthy tissue,
which supply autoantigens for the production of affinity-matured IgG autoantibodies. Antibodies
induced by EBV reactivation may play important roles in the development and exacerbation of
autoimmune diseases.

Keywords: Epstein-Barr virus (EBV); reactivation; autoimmune disease; Graves’ disease; thyrotropin
receptor antibody (TRAb); IgM; complement

1. Introduction

Epstein–Barr virus (EBV) has been implicated in autoimmune diseases [1–4]. Epstein–Barr nuclear
antigen (EBNA)1 was previously shown to exhibit cross-reactivity with the myelin antigen of multiple
sclerosis (MS) [5] or with the Ro (ss-A) protein, which appears prior to the onset of systemic lupus
erythematosus (SLE) [6], and patients with a high EBNA1 titer were found to be at risk of developing
MS and SLE. Despite these epidemiologic evidences, a pathophysiological link between EBV and
autoimmune disease remains controversial.

Recently, the effectiveness of B cell depletion therapy by anti-CD20 monoclonal antibodies had
been shown on rheumatoid arthritis (RA), SLE and MS [7–9]. Thus, importance of the B cell-tropic
EBV on the pathophysiology of autoimmune diseases has become highlighted. In addition, one of the
common features of autoimmune disease is tissue injury [9–11].

Infectious mononucleosis (IM) is a symptomatic primary infection of EBV. Acute EBV infection
is known to induce polyclonal B cell activation [1,12,13]. Various autoantibodies have been detected
in the acute phase serum of IM patients and autoimmune disorders may develop after IM [14–17].
We also noted some reports that had detected autoantibodies released from lymphocytes infected with
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exogenously-added EBV [18–21]. Tamoto et al. recently reported that serum thyrotropin receptor
antibodies (TRAbs) may be present even in asymptomatic EBV primary infection [22]. These findings
support a relationship between EBV infection and autoimmunity.

2. EBV and Its Reactivation

EBV is a common human herpes virus [1] that was discovered by Epstein et al. in 1964 in a culture
of Burkitt lymphoma cells. It is also known as the first human oncovirus. Its genome is double-stranded
DNA of approximately 170 kbp.

In primary infection, EBV infects B cells directly or through oropharyngeal epithelium [1,23].
Most of the infected B cells become latently infected, and some of them become lytic and produce
infectious virions [1,23]. Some latently infected B cells return to the oropharynx, become lytic,
and release the virus. After primary infection, EBV mainly persists in B lymphocytes for life.

The characteristic proteins expressed in EBV latency are the EBNAs and latent membrane proteins
(LMPs) (Table 1). In addition to the proteins, EBV-encoded small RNAs (EBERs) and microRNAs
are expressed. EBNA1 is necessary to retain and replicate the genome of EBV through its action as
a bridge coupling the EBV genome to host chromosomes [24]. EBNA2 plays essential roles in the
transformation of infected cells [25]. It has also been shown to up-regulate the promoter of LMP1 [26],
which is critical for B-cell activation. LMP1 is known to mimic host CD40 signal constitutively [12].
Therefore, the cell activation pathway including nuclear factor κB (NF-κB) is promoted, and further,
LMP1 induces the expression of bcl-2, which supports the cell survival and growth. On the other hand,
LMP2A constitutively mimics signaling from the B-cell receptor (BCR) [27].

Table 1. Examples of EBV latent and lytic proteins.

Latent Cycle
EBNA1
EBNA2

EBNA3A
EBNA3B
EBNA3C
EBNA-LP

LMP1
LMP2A
LMP2B

Lytic Cycle
BZLF1 Immediate-early
BRLF1 replication

BMRF1 EA
BALF5 Early replication
BGLF4
BHRF1

BCRF1
BNRF1 Late replication
BFRF3 VCAp18
BLRF2 VCAp23
BDLF3 gp150
BLLF1 gp350/220

EBV-encoded small RNAs (EBERs) are more abundant than any other EBV-related antigen,
of which there are 107 copies per cell [1]. Furthermore, EBER1 is shown to be approximately 10-fold
more abundant than EBER2.

In latently infected cells, the EBV genome is replicated once per cell cycle by host DNA polymerase.
However, occasionally, EBV may be lytically reactivated, and its lytic genes are sequentially expressed,
and lytic replication cycles are induced (Table 1). BCR stimulation is known to induce lytic
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replication from latency [28]. The plasma differentiation of the host B cell is also related to the
lytic reactivation [29,30]. BZLF1 and BRLF1 are the transactivators expressed in the immediate early
period of lytic replication [1] (Table 1). They activate promoters of early lytic genes. Early lytic genes
encode proteins related to viral replication. The protein encoded by BMRF1 is called early antigen
(EA), which functions as a polymerase-associated processivity factor [1]. BALF5 and BGLF4 encode
DNA polymerase and virion protein kinase, respectively [1]. The product of late lytic genes includes
structural protein. The expression of these lytic genes occurs sequentially, and a large number of
infectious virions are released, which deteriorate host cells [1,24,28]. Grimm-Geris et al. reported that
45.1% of healthy university students shedded EBV in their gingival swab [31], which showed the lytic
replication occurred in a healthy, non-immunosuppressed state.

3. Graves’ Disease Is an Autoimmune Thyroid Disease

In our study of EBV reactivation and autoimmunity, we adopted Graves’ disease, an autoimmune
hyperthyroidism, as an example, because the number of patients of Graves’ disease is large,
and consequently many efficient antibodies or receptor proteins were available. The mechanisms we
demonstrate here may be common in every autoimmune disease, and therefore, we would like to
explain about the EBV-reactivation-induced Ig production and autoimmunity with Graves’ disease.

Graves’ disease accounts for the majority of hyperthyroidism cases [32]. Patients with Graves’
disease have a diffusely enlarged thyroid gland and elevated serum thyroid hormone levels.
They develop palpitations, dyspnea, heat intolerance, or weight loss because thyroid hormone
activates the sympathetic nervous system, calorigenesis, and metabolism.

Thyrotropin receptors (TSHRs) on the surface of the thyroid follicular epithelium bind thyrotropin
(thyroid-stimulating hormone: TSH) secreted from the pituitary gland and signals including cAMP for
thyroid hormone production are transmitted [33,34] (Figure 1). Patients with Graves’ disease have
TSHR autoantibodies called TRAbs that bind TSHR competitively with TSH. Although TRAbs are
heterogeneous antibodies, most are the stimulating type [32,35,36]. Weetman et al. reported that
stimulating TRAbs are restricted to an IgG1 subclass, since only IgG1 fractions increased cAMP [32,37].
In their experiments, non-IgG fractions consisted mainly of IgM, but they never increase cAMP. On the
other hand, Kraiem et al. reported that TSHR-blocking antibodies were distributed in various IgG
subtypes and suggested that they were polyclonal [38]. These results are not conflicting with the report
of Furmaniak et al. showing that TRAb-IgG contained both stimulating and blocking antibodies [39].
Other groups established several TRAb-producing B cell clones from patients of Graves’ disease with
EBV, of which most turned out to be in IgM classes. The explanation of these results may be that their
samples were EBV-transformed lymphoblastoid cell lines (LCLs).

Thyroid diseases with lymphocytic infiltration of the thyroid gland and characteristic
autoantibodies against thyroid components are called autoimmune thyroid diseases (AITD) [32,40,41].
Graves’ disease and Hashimoto’s thyroiditis are representative AITD, and TRAb is the autoantibody
for Graves’ disease, while the anti-thyroid peroxidase (TPO) antibody and anti-thyroglobulin antibody
are autoantibodies for Hashimoto’s thyroiditis. An insult that leads to an immune response may be
important as the mechanism for AITD.

Graves’ disease and Hashimoto’s thyroiditis may simultaneously occur in the same patient and
within the same family. Patients with Graves’ disease are at an increased risk of other autoimmune
diseases, including insulin-dependent diabetes mellitus, myasthenia gravis, Sjögren’s syndrome,
and RA [32]. Genetic factors and environmental factors have been proposed as risk factors for Graves’
disease. An iodine intake, stress, or infection may be environmental factors. However, an emphasis
has been placed on genetic (hereditary) factors based on previous findings showing that siblings had
a high risk of being affected and monozygotic twins had a higher concordance rate than dizygotic
twins [32,41,42].
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Although many susceptible genes have been reported to date, their risk ratios were not high:
risk ratio of twofold to fourfold [32]. We herein proposed viral infections as an important environmental
factor, namely, Epstein–Barr virus (EBV) infection.
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Figure 1. EBV reactivation induces plasma cell differentiation and the production of thyrotropin receptor
antibodies (TRAbs). The reactivation of EBV persisting in TRAb-producing cells induces plasma cell
differentiation and TRAb production. TRAb bind the thyrotropin receptor (TSHR) competitively with
thyrotropin (TSH) and stimulates the thyroid follicular epithelium. Inset: A TRAb (red) and EBER1
(green) double-positive cell.

4. EBV Lytic Reactivation Stimulates Antibody Production by Host B Cells

A product of the BMRF1 gene called EA is expressed in the early replicative cycles of lytic
reactivation (Table 1). It has been used as the marker of EBV reactivation for the convenience of
measurement and sample storage. However, EBV reactivation could occur in healthy subjects [31].
Therefore, we must be careful in explaining the results of EA antibody levels.

We previously reported a correlation between serum TRAb levels and EA antibody levels in
66 patients with Graves’ disease [43]. As healthy controls in this study, we used healthy laboratory
staff other than hospital staffs who may have night duty.

B cells differentiate into antibody-producing cells (plasma cells). When EBV persists in autoreactive
B cells, EBV latency or reactivation may influence antibody production. Previous studies suggested a
relationship between plasma cell differentiation and EBV reactivation [29,30]. We hypothesized that
the reactivation of EBV persisting in TRAb-positive B cells may stimulate the plasma-cell differentiation
and production of TRAbs, thereby inducing or aggravating Graves’ disease (Figure 1).

4.1. Detection of EBV-Infected B Cells That Have Autoantibodies on Their Surface

Pathologists detect EBV-infected cells on tissue slides using an EBER1 peptide nucleic acid
(PNA) probe labeled with fluorescein isocyanate (FITC), and this technique is called EBER1 in situ
hybridization (ISH) [44]. Fundamentally, EBERs were found to be expressed in latently infected
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cells; however, the in vitro induction of lytic reactivation did not reduce the expression of EBERs [45].
Kimura et al. developed the application of EBER1 ISH for floating cells [46].

We sampled PBMCs from eight patients with Graves’ disease and eight normal controls, and stained
surface TRAb by recombinant human TSHR and anti-human TSHR antibody to the C terminus.
Then, we stained EBER1 using the methods described above. Flow cytometry revealed the presence of
TRAbs and EBER1 double-positive cells (TRAb(+) EBV(+) cells) in all patients and control samples
(Figure 1) [47].

4.2. Autoantibody Production Induced by EBV Reactivation

We then induced the reactivation of EBV on PBMCs containing TRAb(+) EBV(+) cells. Various
strategies have been shown to induce EBV lytic reactivation, including phorbol esters and calcium
ionophores. We used a culture at 33 ◦C to induce reactivation, which was moderate, but physiological
because no chemicals were used [48–50].

During EBV reactivation, we detected TRAbs released in the culture fluids of each sample [51].
Reactivated cells contained CD138(+) cells, which exhibited compatible characteristics with plasma cells.
These cells had the glycoprotein gp350/220, an EBV reactivation late gene product (Table 1), on their
surface. Released TRAbs bound to TSHR and its levels were measured using a radio-receptor assay.

Studies showing EBV-infected B cells mimicing the pathway in which naive B cells differentiate
to become resting memory B cells are controversial [1], and Thorley–Lawson et al. have stated
that EBV-infected B cells enter germinal centers and differentiate to resting memory B cells [52].
However, in our results, the B cells differentiated to be plasma cells and secreted antibodies without
germinal centers.

These findings primarily suggest that TRAb(+) EBV(+) cells are present in peripheral blood,
and EBV reactivation induces TRAb secretion from these cells.

5. Difference between Patients and Controls

Our findings showing that not only patients with Graves’ disease, but also healthy controls,
have TRAb(+) EBV(+) cells, which indicates that both have autoreactive TRAb(+) cells that evaded
central selection in bone marrow and may have partially escaped peripheral selection. However,
these cells in healthy controls did not produce TRAbs in vivo to sufficient levels for a clinical cut-off;
however, patients with Graves’ disease tested positive for serum TRAbs. This difference between
patients and controls appeared to depend on the persisting strain of EBV, as well as on the genetic
factor. EBV persisting in the B cells of patients may have been more easily reactivated than that in
healthy controls.

EBV is divided into two major strains: type A (1) and type B (2), with type A being more dominant
worldwide [1]. The genes and amino acid sequences of EBNA-LP, EBNA2, EBNA3A, EBNA3B,
EBNA3C, and gp350/220 (Table 1), and the numbers of various repeats have been shown to markedly
differ between the two strain types [1,53,54]. EBNA2 plays essential roles in the transformation of
infected cells [25,55]. It has also been shown to up-regulate the promoter of latent membrane protein
(LMP) 1 [26], which is critical for B-cell activation. Though the ability to transform in vitro could
not explain all of the mechanisms of autoimmunity, the efficiency to establish infection appears to
depend on the EBV strain. Many infectious virions are released during the induction of reactivation.
EBNA2 and LMP1 are necessary for virions to establish infection in surrounding cells and expand the
infected cell population.

Whole-genome sequencing showed that the lytic genes for reactivation (Table 1) were conserved
between type A and type B [56]. However, the splicing variant of BZLF1, an immediate-early gene
product, was recently reported in EBV(+) epithelial cell lines [57]. Therefore, some mutations in lytic
genes may be associated with reactivation.
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Regarding the frequency of TRAb(+) B cells, by the time B cells enter the circulation, they may be
defined genetically; the strain of persistent EBV is also important for the expansion of the TRAb(+)
EBV(+) cell population and TRAb production.

6. Mechanisms of EBV Reactivation-Induced Ig Production

6.1. EBV Reactivation Also Induces Class-Switched Antibodies

We induced EBV reactivation in PBMCs from Graves’ disease patients and healthy controls cultured
at 33 ◦C according to our previous method [48–50]. We detected various isotypes of immunoglobulins
(Igs): IgG, IgM, and IgE [58]. We also identified the expression of activation-induced cytidine deaminase
(AID), which catalyzes class-switch recombination (CSR) and somatic hypermutation (SHM) [59]
(Figure 2), and noted that the expression of AICDA (the AID gene) increased on day 5 of the induction
of reactivation. Immunohistochemistry on culture cells on day 12 confirmed the strong staining of the
AID protein.

Y

new EBV
infection

LMP1

NF-kB

AID

polyclonal B-cell activation

CSR
SHM

moderate

EBV reactivation-induced Ig production

EBV reactivation plasma cell differentiation

mature naive B cells

IgG

IgM

IgM
IgM > IgG

Figure 2. IgM dominant production induced by EBV reactivation. In EBV reactivation-induced Ig
production, newly infected EBV induces LMP1 and then stimulates NF-κB to activate polyclonal B cells.
NF-κB binds to the promoter of the AID gene (AICDA) to stimulate AID production. Class-switch
recombination (CSR) and somatic hypermutation (SHM) may be catalyzed, but are moderate. Therefore,
the Ig produced are IgM-dominant.

Heath et al. had reported that AID transcripts upregulated in EBV-transformed LCL [60]. They had
detected SHM by the sequencing of immunoglobulin heavy chain variable region (IgHV) genes, but they
observed that their LCL from naive B cell or non-switched memory B cells had not undergone CSR,
because the LCLs presented IgM+ IgD+ phenotype.

The rates of peripheral B cells with surface globulin other than IgM are approximately 15% [61].
In our study, at day 12 of EBV reactivation induction, the rate of released IgG and IgE in total was
approximately 40%. Therefore, we considered the CSR as functioning, even if it was mild
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Heath et al. also stated that the LCL changed the Ig class to IgG by adding CD40L and IL-4
stimulation [60]. In our study, the T cell functions were suppressed by cyclosporine A, but at the
beginning, T cells were present and could produce IL-4. Furthermore, EBV-LMP1 mimics the CD40
signal of the host B cells, therefore, CSR could function in our culture.

The binding of the transcription factor NF-κB to the AICDA promoter is important for the
expression of AID [13,62]. B cells typically encounter their specific antigen and are activated by
receiving the CD40 signal from cognate CD4 T cells following the presentation of the digested antigen
to T cells, and the CD40 signal then activates NF-κB (Figure 3, left).

activated

lymphoid
tissue

＜bone marrow＞

Y

specific antigen
+ CD4

purged

＜circulation, local tissues＞

EBV infection

reactivation
plasma cell
differentiation

germinal
center

Ig production through
germinal centers and bone marrow

EBV reactivation-induced Ig production
may rescue autoreactive B cells

mature naive B cell

plasma cell

activated

LMP1 expression

mature naive
autoreactive B cell

Figure 3. Rescue of autoreactive B cells. Left: Pathway of Ig production through germinal centers and
bone marrow. B cells are activated by the presentation of their specific antigens for cognate CD4 T
cells and a CD40 signal. Activated and proliferated B cells form germinal centers to affinity-matured
class-switched antibodies in bone marrow. Right: Autoreactive B cells that have difficulty entering
lymphoid tissue may activate and produce antibodies through EBV reactivation-induced Ig production.

EBV-LMP1 is known to constitutively mimic the CD40 signal [12]. Therefore, EBV plays a role in
the CD40 signal by inducing LMP1 and activating NF-κB without a specific antigen and cognate CD4
T cells. Activated NF-κB then initiates the transcription of AICDA.

6.2. EBV Infection Causes Polyclonal B Cell Activation

In addition to NF-κB, LMP1 induces the cell activation pathway; MAPK, JNK, PI3K/Akt,
and IRF7 [1]. Therefore, EBV activates host B cells through the expression of LMP1. B cells may be
non-specifically activated by random infection and the spreading of EBV. Consequently, polyclonal B
cell activation may be induced in acute EBV infection.

During EBV primary infection, the majority of infected cells become latency type 3 and express LMP1
on the plasma membrane [23] (Figure 2). In EBV reactivation, the original host B cell will deteriorate;
however, many new virions are produced and enter the surrounding cells. These newly infected cells also
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become latency type 3 and express LMP1. Therefore, in EBV reactivation and new infection, LMP1 induced
on the plasma membrane mimics the CD40 signal and activates NF-κB, and infected B cells are then
polyclonally activated [1,12,13]. NF-κB stimulates B cells to express AID. The continuous stimulation of
EBV reactivation induces the differentiation of B cells to plasma cells and antibody production. Therefore,
we proposed “EBV reactivation-induced Ig production system” (Figure 2).

6.3. EBV Reactivation-Induced Ig Production as an Alternative System

B cells enter the circulation after antigen specificity has been established in bone marrow (mature
naive B cells) [63]. B cells activated by the presentation of their specific antigen to cognate CD4 T cells
proliferate and migrate into primary follicles to form germinal centers (Figure 3, left). Mature naive B
cells with IgM undergo CSR and SHM, with the majority producing affinity-matured IgG. Only cells
that survive this selection process become memory B cells or plasma cells. Plasma cells then migrate to
bone marrow to secrete high-affinity isotype-switched antibodies for a long period of time [64].

In contrast to the antibody-producing system through germinal centers and bone marrow,
when EBV infects circulating mature naive B cells, these B cells may be activated polyclonally and
express AID by signals from LMP1 (Figure 3, right). This activation may occur without specific
antigens and the assistance of CD4 T cells. EBV reactivation then induces the terminal differentiation to
plasma cells and antibody production. EBV reactivation-induced Ig production may be an alternative
antibody-producing system.

6.4. Characteristics of EBV Reactivation Induced Ig Production

6.4.1. IgM Dominance

The majority of antibodies released in response to the induction of EBV reactivation in a culture
were found to be IgM [58]. AID induced by LMP1 may function moderately. EBV may infect both
memory and mature naive B cells [1], and 70–90% of circulating B cells are mature naive B cells with
IgM [19,20,61,63]. Since EBV randomly infects circulating B cells, the antibody produced may be IgM
dominant, even if the induced AID catalyzes CSR to some extent (Figure 2).

Thyroid-stimulating TRAb is an IgG class antibody [32,37]. Kumata et al. measured TRAb-IgG
and TRAb-IgM levels in the sera of 34 patients with Graves’ disease and 15 healthy controls, and noted
that serum TRAb-IgM levels were significantly higher than TRAb-IgG levels, in contrast to serum total
IgG levels, which were markedly higher than those of other Ig classes [65]. Furthermore, TRAb-IgM
levels were significantly higher in the group with higher EA and VCA levels than in the others group,
which indicated the secretion of TRAb-IgM under EBV reactivation conditions.

In addition to this clinical study, we cultured PBMCs from 10 Graves’ disease patients and
14 healthy controls and induced EBV reactivation. We measured total IgG and total IgM levels
in culture media and confirmed that IgM levels were significantly higher than those of IgG [58].
These findings suggested EBV reactivation-induced Ig production as the source of IgM.

6.4.2. Ubiquitous Ig Production

In the EBV reactivation-induced Ig production system, B cells may produce antibodies in both
the circulation and local tissues. Each process in this system may occur following infection by EBV
and its reactivation. The system does not require lymphoid tissue, germinal centers, T-cell assistance,
or even antigens, including autoantigens. Therefore, antibody production through this system may
be ubiquitous.

In the region of lymphocyte infiltration, once EBV persisting in a certain cell begins to reactivate,
the infectious virions produced may spread to and infect the surrounding cells. Consequently, the number
of EBV-infected cells and regional concentration of antibodies may increase in peripheral tissues.
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We found that EBV(+) lymphocytes and IgG4(+) plasma cells accumulated in the same area in
7 out of 11 resected thyroid tissue samples from Graves’ disease patients [66]. These findings indicated
that IgG4 was produced under the influence of EBV-reactivation in local thyroid tissue.

6.4.3. Rescue of Autoreactive B Cells

Circulating B cells enter the lymph nodes through high endothelial venules (HEV) and encounter
their specific antigens through afferent lymphatic vessels [63]. B cells digest antigens, present them to
cognate CD4+ T cells, are activated, and then proliferate due to CD40 signals from T cells (Figure 3, left).

Autoreactive B cells, which have specificities for autoantigens, have difficulties locating their
specific autoantigens because these antigens are packaged inside cells, including the nucleus, DNA and
intracellular components [63]. Therefore, autoreactive B cells cannot be activated and are purged from
lymphoid tissue (Figure 3, right). They are finally removed and the production of autoantibodies is
avoided, which may be one of the peripheral selection processes.

However, when EBV infects autoreactive B cells that need to be removed, B cells may be activated
polyclonally, differentiate to plasma cells, and then produce autoantibodies along with EBV reactivation
(Figure 3, right). EBV reactivation-induced Ig production is a system that may rescue autoreactive B
cells, and the antibodies produced may be skewed toward autoreactivity, which explains not only the
increased serum levels of various autoantibodies in EBV primary infection and reactivation, including
the acute phase of IM [14–17], but also the overlap of autoimmune diseases, for example, Graves’
disease and insulin-dependent diabetes mellitus.

6.5. Role of Antibodies Induced by EBV Reactivation

The most prominent difference between the antibody-producing system through germinal centers
and bone marrow and that induced by EBV reactivation is the presence or absence of germinal
centers (Figure 3). The EBV reactivation-induced system does not have germinal centers in its
pathway. Although EBV induces AID in host B cells, the efficiency of CSR is moderate, and thus,
affinity maturation may also be insufficient. We speculated that the antibodies produced by the EBV
reactivation-induced system may have weak affinity for antigens.

However, we noted an important role for EBV reactivation-induced IgM-autoantibodies that
differed from that of typical autoantibodies (Figure 4). IgM antibodies activate the classical complement
pathway and injure target cells. EBV reactivation-induced IgM autoantibodies may injure self-tissue
through complement. Small sections of injured tissue may be removed in the circulation and
incorporated by antigen presenting cells (APCs), particularly B cells in lymphoid tissues. B cells digest
and present tissue antigens to cognate T cells, which activate the CD40 signal, and proliferated B cells
then form germinal centers to produce affinity-matured IgG antibodies. Therefore, this tissue injury
may lead to immune responses and induce the development and exacerbation of autoimmune diseases,
including Graves’ disease.

The EBV reactivation-induced system may also be a source of low-affinity IgG4.
Besides the tissue injury, EBV-reactivation-induced TRAb-IgM may function as a TSHR-blocking

antibody. It was reported that stimulating TRAbs were restricted to an IgG1 subclass [37], whereas
IgM-containing fractions did not increase cAMP. Another report suggested that TSHR-blocking
antibodies were polyclonal [38].

We confirmed that TRAb-IgM produced by EBV reactivation could bind to recombinant human
TSHR (manuscript in preparation). In order to clarify the cell injury and TSHR-blocking effect of the
antibodies produced by EBV reactivation, we recently separated the antibodies produced by EBV
reactivation in culture.
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EBV reactivation-induced
TRAb-IgM

classical complement
pathway

injury

thyroid antigen
(TSH receptor)

TRAb(+) B cell

lymphoid
follicle

CD4

GC

class-switched
affinity-matured
TRAb-IgG

bone marrow

thyroid

Figure 4. Tissue injury by the TRAb-IgM-activated complement system and production of high
affinity TRAb-IgG. EBV reactivation-induced TRAb-IgM may injure thyroid follicular cells through the
activation of the classical complement pathway. Thyroid debris may be removed to the circulation and
incorporated by B cells in lymphoid tissues. B cells digest and present an antigen of the TSH receptor
to cognate T cells, activating the CD40 signal, and proliferated B cells then form germinal centers to
produce affinity-matured TRAb-IgG, which may develop and exacerbate Graves’ disease (red arrow).

7. How the EBV Reactivation-Induced Ig Production System Can Be Connected to the Development
and Exacerbation of Autoimmune Diseases

Based on the above results, we consider the relationship between EBV reactivation as follows.
Circulating autoreactive B cells evaded from central selection and partially from peripheral

selection must be deleted without producing antibodies. However, once EBV has infected the
B cells, they can be activated polyclonally and differentiate to be plasma cells along with EBV
reactivation. The rescued B cells are therefore skewed toward autoreactivity (Figure 3), and these are
the reason why various autoantibodies are increased in IM and may be the reason for the overlap of
autoimmune diseases.

The antibody production induced by EBV reactivation occurs in the circulation and local tissues
instead of bone marrow.

Since these antibodies are in IgM class, they can activate the classical complement pathway and
the target cells are injured and removed in the circulation, which lead to the immune response to
produce affinity-maturated IgG (Figure 4).

Our study targeted Graves’ disease as an example of autoimmune disease and we could sample
such a limited number of the subjects. Therefore, the more detailed study is required targeting many
other autoimmune diseases with a number of subjects.

8. T Cell Involvement in Autoimmunity

B cells are involved in autoimmunity through the production of autoantibodies, whereas T cells
participate with their effector functions.
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The specific antigens and contribution of cognate CD4 T cells are required for the activation and
proliferation of B cells and subsequent formation of germinal centers. When a CD4 T cell recognizes
a specific peptide-HLA complex on a B cell surface, the T cell expresses the CD40 ligand (CD40L)
and interacts with CD40 on the B cell. The B cell is then activated, enters a mitotic cycle, and forms a
germinal center. B cells undergo CSR and affinity maturation by SHM, in which follicular helper T
(Tfh) cells are needed to help B cells [67]. When a naive CD8 T cell receives a T-cell receptor stimulation
from a specific peptide-HLA complex, it is activated and becomes a cytotoxic T lymphocyte (CTL)
in various manners. CTLs exhibit cytotoxicity and induce apoptosis of their target cells, including
EBV-infected cells. Therefore, autoreactive CTLs injure healthy cells and induce apoptosis.

Approximately 10% of the CD4 T-cell population exert inhibitory effects on T-cell activation and
are called regulatory T (Treg) cells [68,69]. Treg cells constitutively express CD25, also known as the
IL-2R α chain, and form high-affinity IL-2R. Treg cells also strongly express cytotoxic T-lymphocyte
antigen (CTLA)-4 through a transcription factor Foxp3 [70]. Treg cells suppress the surrounding T cells
by CTLA-4, which competitively binds to co-stimulatory molecules on APC, or by high-affinity IL-2R,
which deprives IL-2. Treg cells are reported to be autoreactive [69] and may inhibit the activation of
autoreactive T cells, which contributes to the suppression of autoimmunity.

Prior to T-cell reactions, antigen presentation is needed. APCs uptake and process antigens for
presentation by HLA molecules. However, before uptake, the tissue must be injured and removed
in the circulation. IgM antibodies may be attributed to injured target cells through the complement
system (Figure 4).

9. Conclusions

We herein proposed an EBV reactivation-induced Ig production system that is an alternative
system of antibody production with the following characteristics: IgM dominance, ubiquitous Ig
production, and the rescue of autoreactive B cells.

IgM dominance means that EBV reactivation-induced antibodies injure target cells by activating
the classical complement pathway. Ubiquitous Ig production does not require germinal centers or bone
marrow. The rescue of autoreactive B cells that were to be removed results in a skewed population for
autoantibodies, which may be the reason why various autoantibodies appear in IM, and the reason for
the overlap of autoimmune diseases.

Antibodies induced by EBV reactivation may play important roles in the development and
exacerbation of autoimmune diseases. The study on EBV reactivation-induced Ig production has just
begun. Further mechanisms are to be elucidated in the future.
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Abbreviations

EBV Epstein-Barr Virus
TRAb Thyrotropin Receptor Antibody
TSH Thyroid Stimulating Hormone (Thyrotropin)
LMP1 Latent Membrane Protein 1
NF-κB Nuclear Factor κB
AID Activation-Induced Cytidine Deaminase
CSR Class-Switch Recombination
SHM Somatic Hypermutation
GC Germinal Center
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