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Elucidating the principles of sequence–structure relationships of proteins is a long-standing issue in biology. The 
nature of a short segment of a protein is determined by both the subsequence of the segment itself and its 
environment. For example, a type of subsequence, the so-called chameleon sequences, can form different 
secondary structures depending on its environments. Chameleon sequences are considered to have a weak 
tendency to form a specific structure. Although many chameleon sequences have been identified, they are only a 
small part of all possible subsequences in the proteome. The strength of the tendency to take a specific structure 
for each subsequence has not been fully quantified. In this study, we comprehensively analyzed subsequences 
consisting of four to nine amino acid residues, or N-gram (4 ≤ N ≤ 9), observed in non-redundant sequences in the 
Protein Data Bank (PDB). Tendencies to form a specific structure in terms of the secondary structure and 
accessible surface area are quantified as information quantities for each N-gram. Although the majority of 
observed subsequences have low information quantity due to lack of samples in the current PDB, thousands of N-
grams with strong tendencies, including known structural motifs, were found. In addition, machine learning 
partially predicted the tendency of unknown N-grams, and thus, this technique helps to extract knowledge from 
the limited number of samples in the PDB. 
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Introduction 
 

How a protein sequence determines its structure and function is a key question in biology [1-3]. To elucidate the 
principles of sequence–structure relationships, biologists have tackled discovering rules from the enormous amount of 

Although recent great successes of the protein structure predictions, the molecular principles of sequence–structure 
relationships are not fully understood. In this study, we comprehensively measured the tendency to form a specific 
structure for subsequences, or N-grams, observed in the Protein Data Bank. Because the current dataset is too 
sparse to cover the 20N variation of subsequences, we applied information quantity as a measure of the tendency. 
Higher information quantities indicate the stronger tendency observed in more diverse protein families. As a result, 
we discovered several thousand subsequences that almost always form a specific secondary structure regardless of 
its surrounding. 

◀ Significance ▶ 

https://orcid.org/0000-0003-0207-6271
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structural data of proteins deposited in the Protein Data Bank (PDB) [4-7]. Statistical studies on the PDB have achieved 
success for a wide range of prediction tasks from protein sequences, such as predictions of secondary structures [8], 
solvent-accessible residues [9,10] and intrinsic disorder [11,12]. In the tasks to predict structural features for a short 
segment of protein sequence or subsequence, three levels of information hidden in the sequence are used. The first is the 
propensity of amino acids composing the target segments [13]. The second is context-dependent information, which 
means that information from the regions other than the target site [14,15]. The interactions with the other regions separated 
along the sequence from the target segment, including non-local interactions, create challenges for predictions [16-18]. 
The third is evolutionary information, such as the sequence profile generated from a multiple sequence alignment [19,20]. 
State-of-the-art prediction methods based on the sequence profile drastically improve the predictions [8]. Toward 
understanding the principles of sequence–structure relationships, the distinction of the contributions of the information to 
determine the structures is of importance. At the standpoint of Anfinsen’s dogma, the first two levels of information are 
enough to predict the structures. Trials to maximize the prediction performances without evolutionary information provide 
indispensable insights [21]. In addition, differences in roles of the first and second types of the information should be 
dissected. Although the first type of information, i.e., a short segment of the amino acid sequence, has been studied for a 
long time, the principles have not been fully clarified. When we consider 20 types of standard amino acids, subsequences 
consisting of N residues have 20N variations of the sequence. Different sequences should exhibit different physical 
properties. Characterizing the universe of N-residue subsequences, or N-gram, is the key to understanding the principles 
of sequence–structure relationships [22]. 

A prominent example of well-characterized classes of N-gram sequences is chameleon sequences, which are 
subsequences with the capability to form distinct secondary structures depending on the environment [23,24]. Chameleon 
sequences have a weak tendency to form a specific structure, and their structures are determined by their surroundings 
rather than by their sequence. On the contrary, non-chameleon sequences have a strong tendency to form specific 
structures. Previous studies have successfully identified many chameleon sequences by taking advantage of the wealth of 
data in the PDB based on the binary classification of subsequences into chameleon.  However, the strength of the tendency 
to form a specific structure in each subsequence can be considered as a spectrum in principle. Classifying the 
subsequences into chameleon may overlook the quantitative features of the sequence–structure relationships. 

In this study, we quantified the strength of the tendency to form a specific structure of each subsequence in terms of the 
information quantity calculated from the statistics on the PDB. The information quantity is the negative logarithm of the 
expected probability for a probability distribution. When segments with the same subsequence more frequently form the 
same secondary structure than expected, this subsequence is considered to have a high information quantity. Alternatively, 
when segments with the same subsequences take various secondary structures by chance, this subsequence has no 
information about its secondary structure. 

In addition to the secondary structures, we also assessed the relative accessible surface area (rASA) of the residues. We 
aimed to characterize the N-grams observed in the PDB in terms of information quantity for their structures encoded in 
each N-gram sequence. We collected N-grams (4 ≤ N ≤ 9) from the PDB and evaluated the propensity for secondary 
structure (helical, beta, and coil structures) and rASA. We found thousands of N-grams with strong tendencies for these 
structural features. They are potential candidates for structural motifs of proteins. We also found that a machine learning 
technique can be partially applied to estimate the tendency of unknown N-grams. 

 
Materials and Methods 
 
Dataset Construction 

The method overview is shown in Figure 1. We analyzed the same dataset as in our previous study [25]. This dataset is 
a subset of the PDB [26] snapshot in 2017 filtered by the following criteria: i) X-ray structures with a resolution better 
than or equal to 3.0 Å, ii) the number of atoms is less than one million, and iii) the redundancy in the dataset is eliminated 
by single-linkage clustering based on the sequence identity ≤ 40 % using CD-HIT software [27]. The data from the PDB 
were processed using in-house scripts via PDBML [28]. The entry consisting of the highest number of N-gram segments 
in each cluster was chosen as a representative. The dataset is shown in Supplementary Data S1. 
 
N-gram Analyses 

In this article, we define the two terms, the N-gram segment and N-gram sequence, as follows. The former indicates a 
region consisting of N-successive residues in a polypeptide chain contained in a PDB entry. The latter indicates the amino 
acid sequence of N-successive residues. An N-gram sequence is a property of each N-gram segment. N-gram segments 
with the same N-gram sequence were collected from the dataset to characterize an N-gram sequence, and their statistics 
were assessed. 
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For all the polypeptide chains in the dataset, they were decomposed into N-gram segments by sliding the window of N-

successive residues along the sequence. The N value ranged from four to nine. The secondary structure and rASA of each 
N-gram segment were assigned based on the properties of the residue at the middle of the segment; when N is an even 
number, the (N/2)-th residue was chosen as a representative. We assessed the following properties of each segment: (i) 
the secondary structure, (ii) whether highly exposed to solvent or not based on the threshold of rASA ≥ 0.8, and (iii) 
whether exposed to solvent or not based on the threshold of rASA ≥ 0.2. For property (i), the secondary structure was 
defined by the DSSP software [29]. The eight classes of secondary structures produced by DSSP were reduced into three 
classes: helix (‘H’, ‘G’, and ‘I’ in the DSSP output), beta (‘E’ and ‘B’), and coil (other symbols). For properties (ii) and 
(iii), the rASA was defined as the ASA value of the residue divided by the reference ASA value, which is defined by the 
ASA of the center residue in the Gly-X-Gly tripeptide. 

In this article, the symbols signifying these properties of N-grams are introduced. The three properties are signified as 
the symbol pc, 
where 
 𝐶𝐶 ∈ {𝑆𝑆𝑆𝑆, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟08 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟02}, 
and  

𝑝𝑝𝑆𝑆𝑆𝑆 ∈ {ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}  

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟08 ∈ {ℎ𝑖𝑖𝑖𝑖ℎ𝑙𝑙𝑙𝑙_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛𝑛𝑛𝑛𝑛_ℎ𝑖𝑖𝑖𝑖ℎ𝑙𝑙𝑙𝑙_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒}   

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟02 ∈ {𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑛𝑛𝑛𝑛𝑛𝑛_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒}. 

 
Information Quantity of an N-gram Sequence 

If many segments with the same N-gram sequence always exhibit the same properties, this N-gram sequence is 
considered to have a strong tendency to that property. Conversely, if the same N-gram sequence can yield diverse 
properties, such as the chameleon sequences, this N-gram sequence is considered to have a weak tendency. We quantified 
the strength of the tendency of each N-gram sequence in terms of the expected probability of obtaining an observed 

 
 

Figure 1  Method overview. The dataset was constructed by extracting entries meeting the criteria from the Protein Data 
Bank (PDB) with the elimination of redundancy. For each N-gram segment with 4 ≤ N ≤ 9 included in the dataset, five 
properties were assessed including the secondary structure and rASA. Information quantity to predict these properties 
from the sequence was evaluated in terms of the negative log value of the expected probability to observe the samples in 
the dataset. In addition, the predictability of the properties was also evaluated using a machine learning technique. 
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distribution in samples. The expected probability for the N-gram sequence s for the property C is defined as 
 

 𝑃𝑃𝐶𝐶(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)!
∏ 𝑛𝑛𝑘𝑘(𝑠𝑠)!𝑘𝑘∈𝑝𝑝𝐶𝐶

∏ 𝑓𝑓𝑘𝑘(𝑁𝑁)𝑛𝑛𝑘𝑘(𝑠𝑠)
𝑘𝑘∈𝑝𝑝𝐶𝐶 ,        (1) 

 
where n(s)  signifies the number of N-gram segments with the sequence s observed in the dataset. nk(s)  is the number of 
N-gram segments with the N-gram sequence s and the property k. fk(N) denotes the relative frequency of the N-gram 
segments with the property k for all sequences with length N: 
 

 𝑓𝑓𝑘𝑘(𝑁𝑁) =
∑ 𝑛𝑛𝑘𝑘(𝑠𝑠)𝑠𝑠∈𝑠𝑠𝑠𝑠𝑠𝑠(𝑁𝑁)

∑ 𝑛𝑛(𝑠𝑠)𝑠𝑠∈𝑠𝑠𝑠𝑠𝑠𝑠(𝑁𝑁)
,          (2) 

 
where seq(N) is a set of all the subsequences with length N in the dataset  𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 . The quantity PC(s) indicates the expected 
probability for the event that n(s) observations of the subsequence s in the dataset have the distribution nk(s) for the 
property 𝐶𝐶. The expectation assumed here is as follows: the property 𝑘𝑘 of each observation is determined by a random 
sampling obeying the distribution 𝑓𝑓𝑘𝑘(𝑁𝑁). When we consider the three-class property, i.e., C = SS, the distribution nk(s) 
have (3 + 𝑛𝑛(𝑠𝑠) − 1)!/(𝑛𝑛(𝑠𝑠)! (3 − 1)! possibilities as a result of combination with repetition of n(s) samples from three 
classes. An example for the case of n(s) = 3 is shown in Table S1. The expected probability for one of the possibilities of 
distribution, PC(s), can be calculated by multiplication of the expected probability of each sample and the number of 
permutation. A lower expected probability PC(s) indicates that the N-gram sequence s is strongly biased toward a specific 
property in terms of the property C. In other words, the N-gram sequence s with a low PC(s) value has a high information 
quantity for its structure. The information quantity is defined as: 
 
 𝐼𝐼𝐶𝐶(𝑠𝑠) =  − log𝑃𝑃𝐶𝐶(𝑠𝑠).          (3) 
 
Preference to take a specific property k by a sequence s is assessed by the ratio of relative frequency, 
 
 𝑅𝑅𝑘𝑘(𝑠𝑠) = 𝑓𝑓𝑘𝑘(𝑠𝑠)

𝑓𝑓𝑘𝑘(𝑁𝑁)
,           (4) 

 
Where 
 
 𝑓𝑓𝑘𝑘(𝑠𝑠) = 𝑛𝑛𝑘𝑘(𝑠𝑠)

𝑛𝑛(𝑠𝑠)
.           (5) 

 
 The amino acid propensities for a subset of N-grams were assessed in terms of the log odds ratio, 
 

 𝑝𝑝𝐴𝐴(𝑆𝑆) = log�𝑓𝑓𝐴𝐴
𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆)�1−𝑓𝑓𝐴𝐴

𝑟𝑟𝑟𝑟𝑟𝑟�

𝑓𝑓𝐴𝐴
𝑟𝑟𝑟𝑟𝑟𝑟�1−𝑓𝑓𝐴𝐴

𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆)�
�,         (6) 

 
where 𝑓𝑓𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 denotes the relative frequency of amino acid A (one of the 20 standard amino acids) in the entire dataset, and 
𝑓𝑓𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆) is that in the subset S. 
 
Cluster Analysis 

We filtered enriched N-grams for each property based on the criterion IC(s) ≥ 50 and Rk(s) ≥ 2.0. These enriched N-
grams were analyzed with a hierarchical clustering method based on Ward’s method [30]. The distance between N-grams 
was calculated as the Levenshtein distance. We focused on clusters obtained by cutting the dendrograms at arbitrarily 
determined levels and sequence patterns for each cluster was analyzed using WebLogo [31]. 
 
Machine Learning 

We examined the predictability of N-gram features from their sequences alone by using a machine learning technique, 
that is, an artificial neural network. The input layer was defined as a 20 × N-dimensional binary vector encoding the 
sequence of the N-gram. Each bit corresponds to one of the 20 standard amino acids at the i-th residue, where 𝑖𝑖 ∈
{1,2, … ,𝑁𝑁}. Three predictors were constructed for each N in the range of 4 ≤ N ≤ 9 as follows: i) a three-class classifier 
for the secondary structure (helix, beta, or coil), ii) a binary classifier for rASA08 (highly_exposed or not_highly_exposed), 
and iii) a binary classifier for rASA02 (exposed or not_exposed). The dataset was divided into six subsets by picking PDB 
entries at random (Supplementary Table S1). The number of samples in each class was balanced. One of the subsets was 
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further divided into training and test sets for tuning the hyperparameters, including the number of hidden layers, number 
of nodes in each layer, loss function, and optimizer. The tuning was performed by using the Bayes optimization powered 
by the hyperas library. After that, five-fold cross-validation was performed using the remaining five subsets. The machine 
learning tasks were performed using TensorFlow 1.12.0 with Keras 2.2.4 libraries. 
 
Results 
 
Statistics of N-gram Segments in the Dataset 

We analyzed N-gram sequences in the dataset in the range of 4 ≤ N ≤ 9. Our dataset consisted of 15,070 non-redundant 
PDB entries, including 50,231 chains and 11,994,671 residues for 17,367 proteins. For tetra-grams, 156,603 sequences 
of 204 = 160,000 possible sequences were observed in the dataset (Table 1). This means that the current PDB covers 
nearly 97.9 % of the tetra-gram space. With an increase in N, the volume of N-gram space was exponentially widened 
(20N), and the coverage of the N-gram space by observation in the PDB decreased. The diversity of observed N-gram 
sequences was saturated at N ≥ 6 (Table 1). 

In the dataset, the majority of sequences have only a few samples of segments. The histogram shows a logarithmic 
decay of the number of N-gram sequences along with an increase in n(s) the number of segments for each sequence 
(Supplementary Figure S1). The N-gram sequences most frequently observed in the dataset for each N are summarized 
in Table 2. The N-gram groups are marked as *, †, ‡, §, and ¶ in the table. All the top-10 octa- and nona-grams and some 
hepta-grams originated from ubiquitin (group ¶). All the other frequently observed octa- and nona-grams originated from 
a kind of redundancy not removed in our protocol, i.e., redundancy in each PDB entry. For example, subsequences in 
alpha-hemolysin and ferritin are repeatedly appeared in the dataset (Supplementary Data S2). The group † with poly-H 
was from the His-tag sequence (PDB ID: 2W5A; Supplementary Figure S2A). Group * indicates Ala-based subsequences. 
Many of them were from unidentified segments that were artificially assigned as poly-Ala (e.g., PDB ID: 3RFR, 3HDI, 
4UYZ, 1H54, and 1GKU; Supplementary Figure S2B). An exception is the molybdenum storage protein subunit beta 
(PDB ID: 2OGX; Figure 2A). The subsequences in the group ‡ including “ENLYFQG” were a part of the recognition 
sequence for TEV protease. Subsequences in the group § including “DVLVNNA” were related to oxidation/reduction 
enzymes (e.g., PDB ID: 4EGF; Figure 2B). The subsequence “EELKK” was the motif named s-helix reported by Stefan 
et al. [32] (PDB ID: 2OSO; Figure 2C). 

 
Information Quantity of N-grams 

We analyzed the information quantity of each N-gram sequence in terms of IC(s) defined in Eq. (3). The distributions 
of IC(s) for each property C and length N are shown in Figure 3. In general, the histograms showed a decrease in the 
frequency along with an increase in, IC(s) suggesting that only a small part of  the N-gram sequences had high information 
quantity.  In addition, shorter subsequences had richer information, especially tetra-grams that clearly had higher IC(s) 
values than longer ones. Alternatively, distributions with N ≥ 6 showed similar distributions. In general, because shorter 
subsequences have a higher number of samples (segments with the same subsequence) in the dataset, they can yield higher 
values of IC(s) than longer subsequences. Conversely, longer sequences can encode richer information about structural 
properties than shorter sequences. The distributions shown in Figure 3 reflect these two effects. Enrichment of information 
about the secondary structure and rASA in tetra-grams implies that these properties can be encoded in four successive 
amino acids in many cases, and the abundance of samples is more beneficial than considering longer segments of 
sequences. 

Table 1  Statistics of the N-gram dataset 
𝑁𝑁 4 5 6 7 8 9 
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠  156,603 1,615,093 3,518,164 3,840,949 3,836,531 3,803,384 

𝑛𝑛 11,605,625 11,481,522 11,359,564 11,239,836 11,122,244 11,006,754 

𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

0.4933 0.4950 0.4954 0.4965 0.4966 0.49741704 

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 0.2305 0.2310 0.2310 0.2309 0.2307 0.230135606 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

 

0.2762 0.2740 0.2737 0.2726 0.2727 0.272447354 

𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑙𝑙𝑙𝑙_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  0.03965 0.03920 0.03896 0.03880 0.03874 0.038693606 

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 0.4651 0.4631 0.4620 0.4610 0.4603 0.459648867 

 

https://doi.org/10.2210/pdb2w5a/pdb
https://doi.org/10.2210/pdb3rfr/pdb
https://doi.org/10.2210/pdb3hdi/pdb
https://doi.org/10.2210/pdb4uyz/pdb
https://doi.org/10.2210/pdb1h54/pdb
https://doi.org/10.2210/pdb1gku/pdb
https://doi.org/10.2210/pdb2ogx/pdb
https://doi.org/10.2210/pdb4egf/pdb
https://doi.org/10.2210/pdb2oso/pdb
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Figure 2  Examples of frequently observed N-grams. The focused segments are marked in red. (A) The poly Ala segment 
in the molybdenum storage protein (PDB ID: 2OGX). (B) The “DVLVNNA” segment in an L-xylulose reductase (PDB 
ID: 4EGF). (C) The “EELKK” segment in a member of the vinyl-r-reductase family of proteins (PDB ID: 2OSO).  
 

Table 2  The most frequently observed N-grams in the dataset 
𝑁𝑁 = 4  𝑁𝑁 = 5  𝑁𝑁 = 6 

 

 𝑁𝑁 = 7  𝑁𝑁 = 8  𝑁𝑁 = 9  
𝑠𝑠 𝑛𝑛(𝑠𝑠) 𝑠𝑠 𝑛𝑛(𝑠𝑠) 𝑠𝑠 𝑛𝑛(𝑠𝑠) 𝑠𝑠 𝑛𝑛(𝑠𝑠) 𝑠𝑠 𝑛𝑛(𝑠𝑠) 𝑠𝑠 𝑛𝑛(𝑠𝑠) 

AALA* 1,604 HHHHH† 636 HHHHHH† 263 ENLYFQG‡ 133 AGKQLEDG¶ 71 AGKLEDGR¶ 71 

AAAA* 1,545 AAAAA* 365 ENLYFQ‡ 253 LEHHHHH† 105 AKIQDKEG¶ 71 AKIQDKEGI¶ 71 

LAAA* 1,416 NLYFQ‡ 364 NLYFQG‡ 200 AAAAAAA* 81 DGRTLSDY¶ 71 DGRTLSDYN¶ 71 

ALAA* 1,413 ENLYF‡ 272 LVNNAG§ 153 VKTLTGK¶ 80 DKEGIPPD¶ 71 DKEGIPPDQ¶ 71 

LAAL* 1,257 AALAA* 259 LEHHHH† 152 ENLYFQS‡ 76 DQQRLIFA¶ 71 DQQRLIFAG¶ 71 

AAAL* 1,209 LYFQG‡ 259 AAAAAA* 123 DVLVNNA§ 72 DTIENVKA¶ 71 DTIENVKAK¶ 71 

HHHH† 1,154 AAVAA* 253 NLYFQS 113 AGKQLED¶ 71 DYNIQKES¶ 71 DYNIQKEST¶ 71 

LAEA 1,118 AAALA* 228 EHHHHH† 107 AKIQDKE¶ 71 EDGRTLSD¶ 71 EDGRTLSDY¶ 71 

LEAL 1,116 LEHHH† 227 TAMIAG 94 DGRTLSD¶ 71 EGIPPDQQ¶ 71 EGIPPDQQR¶ 71 

AVAA 1,088 EELKK 210 VLVNNA§ 86 DKEGIPP¶ 71 ENVKAKIQ¶ 71 ENVKAKIQD¶ 71 

The symbols *, †, ‡, and § denote groups of similar N-gram sequences. The N-grams with the symbol ¶ are subsequences from 
the ubiquitin. 

 
Figure 3  Distributions of IC(s) for the properties (A) the secondary structure, (B) rASA08, and (C) rASA02. Green, 
blue, orange, cyan, red, and gray lines indicate N = 4, 5, 6, 7, 8, and 9, respectively. 

https://doi.org/10.2210/pdb2OGX/pdb
https://doi.org/10.2210/pdb4EGF/pdb
https://doi.org/10.2210/pdb2OSO/pdb
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The property rASA08, indicating whether the rASA of the segment ≥ 0.8 or not, showed different behavior from the 
rASA02, which means rASA ≥ 0.2. Whereas IC(s) of the tetra-grams were still higher than the longer N-grams for rASA08, 
the difference between them was smaller than that for rASA02. This implies that the property rASA08 is encoded to longer 
segments compared to rASA02. 

 
Structural Features of the Subsequences 

Many subsequences with a strong tendency to form a specific secondary structure were found in the dataset. To filter 
them, we applied the criteria IC(s) ≥ 50, and the probability of forming the secondary structure by the subsequence was 
two-fold higher than the random (Rk(s) ≥ 2.0, see Eq. [4]). We found 2,205, 3,919, and 4,505 tetra-grams enriched to form 
helical, beta, and coil structures, respectively (Supplementary Data S2). The top-5 tetra-grams for each properties are 
shown in Table 3. For example, the subsequence “ELAK” with 𝐼𝐼𝐶𝐶=𝑆𝑆𝑆𝑆(𝑠𝑠 = "𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸") = 586.3 had 880 observed segments 
in the dataset, and 94.5 % of them formed a helix (Supplementary Figures S3A, B, and C). The subsequence “ELAR” also 
yielded a strong tendency to form a helix (Supplementary Figures S3D, E, and F). A cluster analysis shows that motifs 
constituting an amphiphilic helix, “EXXK” and “EXXR”, were enriched (Supplementary Figure S4). The negatively 
charged residues often occur at the N-terminal end of the helix due to the macro-dipole effect of the helix [33]. Overall, 
the tetra-grams with a strong helical tendency favored Ala, Glu, and Leu (Figure 4A). At near the threshold, 93.0 % of 
71 observed segments of “FAQR” formed a helix and 𝐼𝐼𝐶𝐶=𝑆𝑆𝑆𝑆(𝑠𝑠 = "𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹") = 50.0. For the beta structures, Val, Leu, and 
Ile residues were highly enriched for the tetra-grams with a strong tendency for the beta structures (Figure 4C and 
Supplementary Figure S5). The tetra-gram with the highest information quantity was 𝐼𝐼𝐶𝐶=𝑆𝑆𝑆𝑆(𝑠𝑠 = "𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉") = 538.4 
(Supplementary Figures S3G, H, and I). In the case of the coil structures, enrichment of Pro and Gly residues were 
confirmed (Figure 4E and Supplementary Figure S6). The subsequences with high information quantities, for example 
𝐼𝐼𝐶𝐶=𝑆𝑆𝑆𝑆(𝑠𝑠 = "𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴") = 425.8 and 𝐼𝐼𝐶𝐶=𝑆𝑆𝑆𝑆(𝑠𝑠 = "𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿") = 393.9, appeared at short loops linking two adjacent secondary 
structural elements (Figures 5A and B). Although these subsequences showed a strong tendency, they did not guarantee 
the formation of the coil structure. As an example, whereas the representative residue in the segment in PDB ID: 2PF6 
met the criteria for the helix (Figure 5C), this short helix appeared distorted, and it was in a loop region. Another example 
(PDB ID: 3PWQ; Figure 5D) had the “LPEG” segment at the kink point in a long helix. If the subsequence with coil 
tendency appeared within a regular secondary structural element, it might have a distorted conformation. 

On the other hand, the majority of N-grams had low information quantities; 145,974 tetra-grams (94.5% of all observed 
tetra-grams) did not meet the criteria (IC(s) ≥ 50 and Rk(s) ≥ 2.0) for secondary structures. There are two factors for a 
decrease in the information quantity, i.e., lack of samples and weakness of tendency to yield a specific property. To 
directly assess the latter factor for each N-gram sequence, an error of relative frequencies of the secondary structures from 
the expected values was assessed for each N-gram sequence: 

 
Figure 4  The amino acid propensities for the subsets of tetra-grams with strong tendencies for (A) helix, (B) beta, (C) 
coil, (D) highly_exposed, and (E) exposed segments. Panel (F) shows the propensity for the subset of tetra-grams without 
a strong tendency to form a specific secondary structure. 

https://doi.org/10.2210/pdb2pf6/pdb
https://doi.org/10.2210/pdb3pwq/pdb
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Figure 5  Structures of segments with strong tendencies. The focused segments are marked in red. (A) The “AGAD” 
segment in Lys-gingipain W83 (PDB ID: 4RBM). (B) The “LPEG” segment in SEX4 glucan phosphatase (PDB ID: 
3NME). (C) The “LPEG” segment in the Lutheran blood group glycoprotein (PDB ID: 2PF6). (D) The “LPEG” segment 
in the phenylacetic acid degradation protein paaA (PDB ID: 3PWQ). (E) The two “KDGK” segments in an 
uncharacterized protein (PDB ID: 4EBG). 

Table 3  Examples of tetra-grams with a strong secondary structure tendency 
𝑠𝑠 𝑛𝑛 

 
𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 
𝐼𝐼𝐶𝐶=𝑠𝑠𝑠𝑠  𝑠𝑠 𝑛𝑛 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 
𝐼𝐼𝐶𝐶=𝑠𝑠𝑠𝑠 

ELAK 880 0.946 586.3  ALGG 605 0.0193 9.499 

ELAR 858 0.923 548.1  GAVA 549 0.0166 8.943 

EALE 867 0.917 544.1  GLSA 53 0.0185 9.427 

EEAL 899 0.923 539.7  LSAG 468 0.0192 9.307 

EALR 903 0.917 528.5  GLLD 459 0.00678 8.734 

𝑠𝑠 𝑛𝑛 
 

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
 

𝐼𝐼𝐶𝐶=𝑠𝑠𝑠𝑠  𝑠𝑠 𝑛𝑛 
 

𝑓𝑓ℎ𝑖𝑖𝑖𝑖ℎ𝑙𝑙𝑙𝑙_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
 

𝐼𝐼𝐶𝐶=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟08 

VLVV 450 0.944 538.4  KDGK 530 0.423 377.7 

VVVV 384 0.958 481.7  VDGK 348 0.420 245.9 

VVVG 475 0.884 465.7  ADDP 204 0.544 224.3 

LVVD 483 0.872 454.3  PEGY 226 0.469 193.7 

VVVD 529 0.843 452.3  DGRT 245 0.385 192.0 

𝑠𝑠 𝑛𝑛 
 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  
 

𝐼𝐼𝐶𝐶=𝑠𝑠𝑠𝑠  𝑠𝑠 𝑛𝑛 
 

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
 

𝐼𝐼𝐶𝐶=𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟02 

AGAD 723 0.898 425.8  EKLG 657 0.945 361.0 

LPEG 548 0.842 393.9  KDGK 530 0.958 313.5 

AGLP 573 0.920 373.8  AKKL 544 0.949 304.7 

LTPE 490 0.939 365.7  PEEL 566 0.935 294.1 

LPPG 365 1.00 350.5  LKEG 545 0.941 293.6 

 

 

https://doi.org/10.2210/pdb4rbm/pdb
https://doi.org/10.2210/pdb3nme/pdb
https://doi.org/10.2210/pdb2pf6/pdb
https://doi.org/10.2210/pdb3pwq/pdb
https://doi.org/10.2210/pdb4ebg/pdb
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 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐶𝐶=𝑆𝑆𝑆𝑆(𝑠𝑠) = 1
3
�𝛴𝛴𝑘𝑘

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑘𝑘(𝑠𝑠) − 𝑓𝑓𝑘𝑘(𝑁𝑁))2 ,      (7) 

 
where fk(N) and fk(s) denote the relative frequency of N-gram segments with the property k for all the N-grams with the 
length of N, and that for the segments with the N-gram sequence s, respectively. For tetra-grams in this dataset, the relative 
frequencies of helix, beta, and coil structures were 0.387, 0.231, and 0.383, respectively. We found 496 tetra-grams 
yielding a propensity similar to this average distribution with RMSEC=SS(s) < 0.02. For example, 604 segments with the 
subsequence “ALGG” were observed in the dataset, and 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝐶𝐶=𝑆𝑆𝑆𝑆("𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴") = 0.0193 , 𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒("𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴") = 0.433 , 
𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏("𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴") = 0.204, 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐("𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴") = 0.363, and 𝐼𝐼𝐶𝐶=𝑆𝑆𝑆𝑆("𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴") = 9.50. Other examples are listed in Table 3. For 
these “extreme” chameleon sequences, small side chains, Leu, Asn, Ser, and Thr, were enriched (Figure 4F). 

For the solvent accessibility of segments, we applied two thresholds of rASA: exposed (rASA ≥ 0.2) and highly exposed 
(rASA ≥ 0.8). The ratios of exposed and highly exposed N-gram segments were 46.0–46.3 % and 3.87–3.96 % for 4 ≤ N 
≤ 9, respectively (Table 1). We found 703 and 586 tetra-grams with strong tendencies (IC(s) ≥ 50 and Rk(s) ≥ 2.0) to be 
exposed and highly exposed, respectively. For example, 95.8 % and 42.3 % of 530 observed N-gram segments with 
“KDGK” were exposed and highly exposed, respectively (Table 3). Members of the DUF4467 family of proteins have 
two “KDGK” segments (PDB ID: 4EBG; Figure 5E). Amino acid propensities were similar to these different thresholds. 
Amino acids preferred to form the coil structure (Gly and Pro), and charged residues (Asp, Glu, and Lys) were enriched 
for the tetra-grams with strong tendencies to be exposed and highly exposed (Figures 4B and D). However, subsequences 
enriched for exposed segments and those enriched for highly exposed ones showed distinct features. Only 81 tetra-grams 
were shared between them. Although the amino acid preferences for the tetra-grams favored in exposed and highly 
exposed segments were similar, the cluster analysis revealed different sequence patterns (Supplementary Figures S7 and 
S8). Additionally, for longer subsequences (N ≥ 6), Gly and Pro were not preferred for rASA02, and Ile, Asn, Gln, and 
Thr were preferred for rASA02 (Supplementary Figure S9). The two properties, exposed and highly exposed, had different 
characteristics for longer subsequences. Note that subsequences enriched to high exposure are not necessarily enriched 
to exposure because enrichment is assessed in terms of dissociation from the background, i.e., fk(N). For example, the N-
gram “CEMT” with 48 highly exposed and 50 exposed segments out of 52 observations yielded Ihighy_exposed(“CEMT”) = 
142.6 and Iexposed(“CEMT”) = 32.34. 

 
Predictions of N-grams with Strong Tendencies  

We tested the accuracy of predicting whether a subsequence has a strong tendency by using a machine learning 
technique. In this test, only sequence information encoded as a 20 × N-dimensional binary vector and the label about the 
tendency were given for predictors; no context information of the sequence and no evolutionary information were used. 
The three-class (for the secondary structure) and binary classifications (for the rASA properties) were performed using a 
multi-layer neural network. For the binary classification, a positive set consisted of N-grams where more than 80 % of 
the segments had a particular property, and the negative set consisted of other N-grams that were randomly selected to 
have the same number of N-grams in the positive set (Supplementary Table S1). 

The accuracies for the secondary structure, rASA08, and rASA02 were 62–65 %, 74–75 %, and 71–73 %, respectively 
(Figure 6). Although the prediction accuracies look worse than the state-of-the-art sequence-based prediction methods 
[8], the purpose of this study differs from them. This study aimed to predict the tendency of each N-gram sequence rather 
than to predict the property of a query protein. Our predictions were performed based on the N characters encoding amino 
acid residues without any context or evolutionary information of the sequences. The fact that the predictions yield better 
performance compared with the random suggests that the tendency of unobserved N-gram sequences can be predicted 
based on the data of known N-grams.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6  Accuracy of the machine learning prediction tasks. 
(A) The three-class classification of the secondary structures. 
(B) The binary classification of highly exposed segments 
(rASA08). (C) The binary classification of exposed segments 
(rASA02). 

https://doi.org/10.2210/pdb4ebg/pdb
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Discussion 
 
In this study, we comprehensively analyzed protein subsequences consisting of four to nine residues observed in the 

PDB. Although the N-grams in the non-redundant dataset based on the PDB included a majority of all the possible tetra-
grams of amino acids, the cases with N ≥ 5 covered only a tiny subspace of the sequence spaces. In particular, the 
saturation of the diversity of observed N-grams (Table 1) suggests that many N-grams with N ≥ 6 appear in a limited 
context in the PDB. 

To find N-grams with a strong tendency to determine their structural properties in the dataset, we applied the 
information quantities IC(s) for each N-gram sequence s. The higher information quantity of an N-gram suggests a stronger 
tendency for the N-gram. Tetra-grams clearly have higher information quantities than subsequences with higher N values 
(Figure 3). This is partly because tetra-grams had larger samples (observed segments for each N-gram sequence) than 
longer subsequences did. However, the distribution for the classification, whether highly exposed or not (rASA08), 
showed smaller differences in information quantity between shorter and longer subsequences compared with the other 
properties. This implies that information of high exposure of segments is encoded in longer subsequences. On the other 
hand, four residues were sufficient to encode the strong tendencies for the secondary structure and that for exposure 
(rASA02) of segments. 

Based on the information quantity, we can filter the N-gram sequences with strong tendencies. We applied the arbitrary 
criteria, IC(s) ≥ 50 and Rk(s) ≥ 2.0, and found many N-gram sequences with a strong tendency. Strong tendencies to form 
helical, beta, and coil structures were found in 2,205, 3,919, and 4,505 tetra-grams, respectively. On average, 80.2 % of 
segments for these tetra-grams formed their secondary structure. We observed that some of the exceptional segments, 
which had a sequence with a strong tendency but formed a non-enriched structure, had distorted structures (Figures 5C 
and D). On the other hand, we also found 496 tetra-grams that evenly formed all three secondary structures. These 
subsequences had a weak tendency to form a specific secondary structure, that is, a strong tendency to be chameleon 
sequences. Although many previous studies on chameleon sequences detected the chameleon sequences by finding at 
least one pair of segments with different secondary structures and the same sequence, our analyses quantified the strength 
of the tendency to be chameleon sequences. This provides a new viewpoint for the study of chameleon sequences, and 
the roles of these “extreme” chameleon sequences will be studied in the future. In terms of rASA, we found 703 and 586 
tetra-grams with a strong tendency to be exposed (rASA ≥ 0.2) and highly exposed (rASA ≥ 0.8), respectively. The 
numbers of informative N-grams for exposed and highly exposed segments were smaller than those for the secondary 
structures. 

Although we found many N-grams with high information quantity, they are only a small part of all the N-grams observed 
in the PDB. A majority of N-grams have a small number of segments, and thus, it is difficult to obtain information about 
their tendency. However, machine learning techniques provide information about the N-grams without a sufficient 
number of samples based on information about similar subsequences. 

 
Conclusion 

 
A survey of the protein subsequences in the PDB revealed thousands of subsequences with a strong tendency to form 

a specific secondary structure and to be exposed to the solvent. They included both known and unknown candidates for 
structural motifs. Although they are only a small part of the entire space of possible subsequences, they provide insight 
into the protein structure based only on the short array of characters without any context or evolutionary information. 
Because a major reason for overlooking the tendency for many subsequences is the lack of samples, further growth of the 
PDB may provide more sequence motifs in the future. In addition, machine learning can partially compensate for the 
problem due to the lack of known samples. In this study, we focused only on statistics of subsequence and some 
categorical properties of segments. Further analyses including detailed three-dimensional conformation of each segment 
and interactions with surrounding segments would provide insight into underlying biophysical mechanisms for enriched 
subsequences. 

Although state-of-the-art sequence-based predictions using evolutionary information have achieved high performances, 
especially for secondary structures, the principle of how the sequence determines its structures is still unclear. A 
comprehensive understanding of the strength of the tendency to determine the nature of a segment by the subsequence 
itself provides indispensable insights for illuminating the principles. In addition, mapping these informative subsequences 
onto each protein sequence may provide insights into novel proteins. 
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