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Background: Tumor infiltrating myeloid (TIM) cells constitute a vital element of the tumor
microenvironment. The cell-type heterogeneity of TIM has yet to be fully investigated.

Methods: We used a time saving approach to generate a single-cell reference matrix,
allowing quantification of cell-type proportions and cell-type-specific gene abundances in
bulk RNA-seq data.

Results: Two distinct clusters, MSC1 and MSC2 (MSC subtype) were newly identified in
lung adenocarcinoma (LUAD) patients, both significantly associated with overall survival
and immune blockade therapy responses. Twenty myeloid cell types were detected.
Thirteen of these had distinct enrichment patterns between MSC1 and MSC2. LAMP3+
dendritic cells, being a mature and transportable subtype of dendritic cell that may migrate
to lymph nodes, were noted as associated with non-responsiveness to immunotargeted
therapy. High infiltration level of IFIT3+ neutrophils was strongly related to the response to
immune-targeted therapy and was seen to activate CD8+ T cells, partly through
inflammasome activation. The infiltration levels of TIMP1+ macrophages and S100A8+
neutrophils were both significantly associated with poor prognosis. TIMP1+macrophages
were noted to recruit S100A8+ neutrophils via the CXCL5–CXCR2 axes and promote
LUAD progression.

Conclusion: Altogether, we performed virtual microdissection of the bulk transcriptome
at single-cell resolution and provided a promising TIM infiltration landscape that may shed
new light on the development of immune therapy.

Keywords: tumor infiltrating myeloid cells, lung adenocarcinoma, single-cell transcriptome analysis, bulk RNA-seq
analysis, deconvolution
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INTRODUCTION

Lung adenocarcinomas (LUADs) account for over 40% of lung
cancers and represent its most leading and prevalent histological
subtype. Despite an improvement in therapeutic strategies, the
rates of objective clinical responses remain low, with only
17.4% lung cancer patients surviving more than 5 years
beyond diagnosis (1). In this, the dynamic tumor immune
microenvironment plays an important role in tumor
progression and metastasis (2, 3). Tumor-infiltrating T
lymphocytes are now recognized as the key components of the
tumor microenvironment (TME). Therapeutic strategies for
targeting these cells are being actively developed and have
demonstrated remarkable therapeutic effects (4). While current
immunotherapies targeting T lymphocytes benefit only few
patients (5), it is important to unravel the exact cellular
functions of the remaining cell types within the TME that may
be involved in tumor progression.

Recently, there has been much focus on cancer immunology,
with primary emphasis on myeloid cells as important components
in tumor immune evasion (6, 7). However, the various reports that
ascribe macrophages and neutrophils with either pro- or antitumor
properties, together with acknowledgement that our understanding
of tumor infiltratingmyeloid cell (TIM) subtypes is quite inadequate
(8, 9), leads to a high potential for confusion and/or contradiction
within this field. Despite this, some strategies targeting myeloid cells
have been developed (10, 11). However, the limited understanding
of clear mechanistic hypotheses had led to difficulties in interpreting
clinical outcomes for such approaches (12). In particular, the
complexity of TIM subtypes and the discrepancies between
human and mouse models has deeply impeded the
implementation of selective myeloid-targeting immunotherapies.

Single-cell RNA sequencing (scRNA-seq) offers an
opportunity to dissect the complexity of the TME, enabling the
identification of the cell state in a manner independent of any
previous knowledge of cellular markers (13, 14). Single-cell
analysis has been applied to reveal the cellular heterogeneity of
TIMs, including tumor-associated macrophages (TAMs),
dendritic cells (DCs), and neutrophils in different cancer types
(13, 15, 16). However, due to high cost and strict requirement for
cellular activity, analyses of large patient cohorts have been
almost impossible. Computational algorithms, which allow for
the estimation of relative cell infiltrate level based on bulk RNA
sequencing (RNA-seq) and scRNA-seq data, have now been
deve loped and may compensate for th is (17–19) .
CIBERSORTx is a computational framework to accurately
infer relative abundance of cell type from bulk RNA-seq
according to the signature matrix generated from scRNA-seq
Abbreviations: AUC, area under the curve; CERES, genome-wide CRISPR gene
essentiality scores; CTL, cytotoxic T-cell infiltration; DC, dendritic cell; DEG,
differentially expressed genes; ICB, immune blockade therapy; LASSO, least
absolute shrinkage and selection operator; LN, lymph node; LUAD, lung
adenocarcinoma; OS, overall survival; RTM, resident tissue macrophages;
scRNA-seq, single-cell RNA sequencing; TAM, tumor-associated macrophage;
TIM, tumor infiltrating myeloid cell; TME, tumor microenvironment; TPM,
transcripts per million; UMAP, uniform manifold approximation and
projection; UMI, unique molecular identifier.
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by means of a deconvolution algorithm (18). It has been
successfully used and validated for revealing immune cell
landscapes in melanomas (20), clear-cell renal cell carcinomas
(21), and prostate cancer (22). Unfortunately, CIBERSORTx
does not seem to provide a standard procedure or pipeline
describing how to integrate scRNA-seq data to construct a
reference matrix, as it just uses all the scRNA-seq data as the
input. As such, this procedure requires substantial
computational resources and time to handle the huge amount
of the data. Although down-sampling can address this problem,
scRNA-seq data usually suffer from the problem of extremely
high dropout rate, especially for those generated by 10×
Genomics. Thus, the reference matrix generated by down-
sampling is often unhelpful for such considerations and will
result in a poor deconvolution effect.

In this paper, we applied a timesaving approach to create a
customized reference matrix for scRNA-seq data for myeloid cells
and made a deconvolution of The Cancer Genome Atlas (TCGA)
LUAD cohort (Figure 1). As a result, we identified for the first
time two different enrichment patterns (called MSC subtype
hereafter). A series of analyses, including survival analysis and
multivariable Cox regression analysis with clinical features,
revealed MSC subtype to be robust prognostic factors. We reveal
the relationship between MSC subtype and immune checkpoint
blockade (ICB) therapy and identify three TIM subtypes that
might contribute to the ICB response. Finally, we explore the
heterogeneity of macrophages and detected a functional
relationship between macrophage and neutrophil subtypes.
METHODS

Data Source and Preprocessing
The single-cell transcriptome file of five LUAD patients and the
validation data for DCs’ distribution were downloaded from the
Gene Expression Omnibus (GEO) database under the accession
numbers GSE127465 (14) and GSE131907 (23). The
transcriptome expression profiles and corresponding clinical
information for LUAD were retrieved from the Genomic Data
Commons Data Portal of TCGA. Expression data were
converted from counts type to transcripts per million (TPM).
Three transcriptional microarray expression data (GSE matrix
files) for LUAD cohorts [GSE31210 (24), and GSE72094 (25)]
were obtained from the GEO. The microarray datasets were log-
transformed (on a base 2 scale) and genes were detected with
more than one probe retaining its maximum value.

scRNA-seq Data and Single-Cell
Data Analysis
The Seurat package (version 3.0) was used to perform
scRNA-seq analysis (26). Transcriptomes with more than 300
total counts, <10,000 total counts, and <20% of counts coming
from mitochondrial genes were retained for subsequent analysis.
From the remaining cells, gene expression matrices were
normalized to the total unique molecular identifier (UMI)
counts per cell and were log-transformed (on a base 2 scale).
September 2021 | Volume 12 | Article 723908
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Dimensionality reduction was performed with uniform manifold
approximation and projection (UMAP). The marker gene of
each cluster was identified using Seurat.

Single Cell Reference Matrix Construction
The most characteristic cells in each cell subtype, rather than all
tens of thousands of cell’s data, were selected to create the custom
signature matrix. We performed a three-step approach to
generate it. First, to utilize the gene expression signature and
reduce the technological noise, we performed differential
expression gene analysis by FindMarkers() function in Seurat
and only retain those informational gene (log2 FC > 0.25) to
construct the custom signature matrix. Second, we defined and
calculated a so-called cell-type-specific signature score SigScore
to select the candidate cells from each cell subtype.

SigScore =oN
i=1(½Markeri� ∗ ki)

where [Markeri] represents the expression level of the marker
gene, i and ki is the value equal tolog2FCMarkeri , which is
calculated using the FindMarkers() function in Seurat. N
denotes the number of the markers in each cell type. Note that
N is variable according to the threshold of log2FC. Specially, 1.25
was selected as the threshold of log2FC in our paper.

We ranked all cells belonging to a special cell subtype in
descending order of their SigScore and chose the top 50 cells to
create the custom signature matrix. In addition, we created
another custom signature matrix by randomly selecting 50 cells
of each cell type, which would then be used as another matrix
for comparison.
Frontiers in Immunology | www.frontiersin.org 3
Infiltration Estimation of the Myeloid Cells
As the last step of our approach, scRNA-seq data of the top 50
cells were uploaded to CIBERSORTx (http://cibersortx.stanford.
edu) to create a customized signature matrix for each myeloid
cell subtype by functional module “Create Signature Matrix” in
CIBERSORTx. “Impute Cell Fraction” module in CIBERSORTx
was used to quantify the infiltrating level of each myeloid cell
subtype. A hundred simulated bulk datasets were created by
random sampling of different numbers of each cell types
(including non-myeloid cells) and were used to validate the
signature matrix. Since count data were uploaded for creating
the signature matrix, count-per-million (CPM) data of
the TCGA LUAD cohort within the genes involved in the
signature matrix were then generated to estimate the
abundance of myeloid cell subtypes in CIBERSORTx.

MSC Subtype Identification and Prediction
Model Building
Based on the infiltration level of myeloid cell subtypes, the
optimal number of TCGA LUAD cohort clusters were
examined using the mclust package (version 5.4.5) (27).
K-Means consensus clustering was conducted in R to
determine distinct clusters of MSC subtypes. Hierarchical
clustering was performed by hclust() in R, and the defined
clusters were compared with the K-Means based clusters to
ensure the robustness of the method we used. The least
absolute shrinkage and selection operator (LASSO) algorithm
was used to reduce the data dimensions and distinguish the most
informative genes for predicting the MSC subtype using the
FIGURE 1 | Conceptual view of study design.
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glmnet package (version 3.0-2) (28, 29). Finally, the MSC score
formula was calculated by considering the correlation estimated
Cox regression coefficients:

MScore =o
Z

i=1
(½Genei� � coefi)

where Z denotes the gene number determined by LASSO, [Genei]
denotes the expression level of gene i, and coefi represents the
coefficient of gene i as determined by LASSO.

Potential Drug-Targeted Gene
Set Selection
To identify the potentially druggable therapeutic targets for the
patients of identified MSC subtype, we collected two datasets, the
genome-scale CRISPR knockout screens dataset in Project
Achilles (https://depmap.org/portal/) and drug-induced gene
expression profiles from the Library of Integrated Network-
Based Cellular Signatures (LINCS; https://commonfund.nih.
gov/LINCS/) L1000 dataset. We then performed a two-step
analysis to identify candidate drugs. First, we filtered the
essential genes for LUAD cell lines based on the genome-wide
CRISPR gene essentiality scores (CERES) from Project Achilles.
The genes whose CERES was lower than −0.5 in half of the total
LUAD cell lines were retained and then intersected with the
upregulated genes in MSC2 patients. We then ranked the gene
expression profiles of LUAD cell lines obtained from LINCS and
performed Gene Set Enrichment Analysis (GSEA) using the
clusterProfiler package based on the above target gene set (30).
Only when the target gene set was significantly enriched in the
bottom of ranked gene list, the drug was then considered to
have potential.

Calculation of Ligand–
Receptor Interaction
For the cell–cell interaction analysis, the expression level was
normalized according to the total reads count and converted into
a TPM-like scale. The expression values were averaged within
each cell subtype. We retrieved the ligand–receptor pairs from a
systematic research including known ligand–receptor pairs from
the existing databases and predicted the ligand–receptor pairs
with high confidence (31). The threshold of 1 TPM was used as
the cut-off for ligand–receptor pairs within each cell subtype for
further analysis.

Statistical Analysis
The differentially expressed genes (DEGs) were calculated using
the DESeq2 package for R (32). DEGs satisfying |log2 fold change|
> 1.5 and adjusted p < 0.05 criteria were considered statistically
significant. Clusterprofiler was used to perform Gene Ontology
(GO) function enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway annotation. Within a specific cohort,
patients were divided into two groups based on the mean value of
MScore in all samples. Survival curves were constructed using the
Kaplan–Meier (KM) method and compared using the log-rank
test provided in the survival package for R (33). Multivariate Cox
proportional hazard regression modeling was used to verify the
Frontiers in Immunology | www.frontiersin.org 4
prognostic significance for OS. Histological grade, gender, and age
were used as variables. To identify the relationship between
clinical state and myeloid cells, we queried the clinical data of
the TCGA LUAD cohort. In particular, the tumor–node–
metastasis (TMN) stages were categorized to a numeric level.
The correlation between the infiltration level of myeloid cells and
clinical variables was examined using Pearson’s correlation
coefficient (CC), which was considered statistically significant by
FDR < 0.05. Area under the curve (AUC) of the receiver operating
characteristic (ROC) curve was used to assess the predictive ability
of the predicted signature.
RESULTS

Construction and Validation of SigScore-
Based Reference Matrix
In recent researches and applications, purified-cell-based reference
matrix has been widely used to perform deconvolution analysis.
For example, LM22, a reference matrix generated by Newman
et al. (18), distinguishes 22 human hematopoietic cell
phenotypes, including seven T-cell types, naive and memory B
cells, plasma cells, natural killer (NK) cells, and myeloid
subsets. This matrix was employed to infer the infiltration
level of above hematopoietic cells in bulk transcriptomic
profiles. However, it leads to some limitations at the same
time. First, cell transcriptome was tissue specific, so publicly
available reference matrix cannot represent the real condition
appropriately in different tissues. Besides, with the development
of single cell sequencing, more and more researchers notice that
there are still many functional subtypes even in one cell type (for
example, M0 macrophages and M1 macrophages). This means
that purified-cell-based matrix may not reflect the complexity of
cellular compositions. Thus, we choose the scRNA-seq data to
generated our reference matrix.

We downloaded the scRNA-seq data from Zilionis et al. (14)
in which the authors demonstrated the major aspects of the lung
tumor immune microenvironment. Twenty subtypes of myeloid
cells were identified using Seurat (Supplementary Figure 1A).
The corresponding scRNA-seq data of the top cells with the
highest SigScore were then uploaded to CIBERSORTx, and the
underlying reference matrix was obtained.

We examined the SigScore-based reference matrix compared to a
randomly selected reference matrix within 100 simulated datasets.
Our reference matrix showed better performance (Figure 2A).

Identification of Two Distinct Myeloid Cell
Infiltration Subtypes in LUAD Patients
We applied the SigScore-based reference matrix to investigate the
fractions of infiltrated myeloid cells in the TCGA LUAD dataset
(Supplementary Figure 1B). Among the total samples, 485
tumor samples were eligible for CIBERSORTx under p < 0.05
and CC > 0.5. We performedK-means clustering with the optimal
number (k = 2) and identified two distinct myeloid cell infiltration
clusters, namely, MSC1 and MSC2, according to the contextures
of the myeloid cells (Supplementary Figures 1C, D). To evaluate
September 2021 | Volume 12 | Article 723908
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the robustness of K-Means clustering, we performed hierarchical
clustering, and we noted that those two methods showed high
consistency (Supplementary Figure 1E, left). Meanwhile,
random signature failed in the patient stratification
(Supplementary Figure 1E, right). Thirteen of the 20 had
distinct enrichment patterns between MSC1 and MSC2 (|log2
fold change| > 1.25, p < 0.05) (Figure 2B). MSC2 was significantly
associated with a shorter OS compared with MSC1 (Figure 2C,
p = 0.019). GO analysis suggested that the MCS1 subtype, with its
favorable outcome, has a stronger immune response ability
including both innate and adaptive immunity. Conversely, the
MCS2 subtype was significantly associated with the cell cycle and
negative regulation of cell apoptosis, in line with unfavorable
outcomes (Figure 2D).
Frontiers in Immunology | www.frontiersin.org 5
We queried the distribution of distinct TIM cell types within
tumors and adjacent tissues. The statistical result is showed in
(Supplementary Table 1). Some of those cell types are strongly
related with OS. A high fraction of LAMP3+DC3, S100A8+N3,
PI3+N4, TIMP1+M3, and TUBB+Mcyl were identified as poor
prognostic factors, while high fraction of CLEC9A+DC2 were
identified as a protective (Supplementary Figure 2).

We then observed that SELENOP+M4, the most enriched cell
type in MSC1, was the subtype of macrophages that highly
expressed SELENOP and TM4SF1 mRNAs. TUBB+Mcyl, the
most enriched cell type in MSC2, was the subtype of the
monocytes which highly expressed TUBB. The infiltration
levels of two subtypes between the tumor and paired adjacent
tissues of all patients, MSC1 patients and MSC2 patients, were
A B

C D

E

FIGURE 2 | TIM infiltration landscape of myeloid cells in LUAD. (A) Performance comparison of two reference matrixes. (B) Different infiltration levels of myeloid cells
between MSC1 and MSC2 patients. For brevity, myeloid cells were named as marker gene plus short name. M, N, DC, Mcyl, Mono, pDC, and MonoDC represent
macrophages, neutrophils, dendritic cells, monocytes highly expressing cell-cycle-related gene, monocytes, plasmacytoid DCs, and one cell type showing the signatures
of both monocytes and DCs, respectively. (C) KM plot for MSC subtypes in TCGA LUAD cohort. (D) GO functional annotation of MSC1 and MSC2. (E)Infiltration levels
of two myeloid cell subtypes (SELENOP+M4 and TUBB+Mcyl) in tumor and tumor-adjacent tissues.
September 2021 | Volume 12 | Article 723908
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further analyzed, respectively. SELENOP+M4 showed
preferential enrichment in normal tissues. While considering
the MSC subtype, we found a significant lower infiltration level
of SELENOP+M4 in MCS2, while TUBB+Mcyl showed the
opposite trends (Figure 2E). The infiltration levels of other cell
subtypes in three states are shown in Supplementary Figure 3.

Association of Predicted MSC Subtype
With Prognostic Impact in TCGA and
Two Independent LUAD Cohorts
To predict the MSC subtype for bulk RNA-seq or microarray
data, we determined the most informative genes and constructed
a resulting 14-gene signature (i. e.,MScore) (Supplementary
Table 2). The TCGA LUAD cohort were randomly divided
into a training set (n = 292) and a test set (n = 193). The
LASSO Cox regression model with 20-fold cross-validation was
performed to train the model in the training set. We then
assessed the model performance in the test set. According to
the MScore, LUAD patients were well classified into MSC1 and
MSC2 subtypes. The AUC of the ROC curve achieved 0.91 and
0.89 in the training and test sets, respectively, indicating a strong
prediction ability to stratify the patients (Figure 3A).

The prediction capability of 14-gene signature was executed
to further examine the prognostic significance in two
independent LUAD microarray cohorts (GEO72094 and
GEO31210). Similarly, a poor prognostic impact of MSC1
compared with MSC2 was found in both cohorts (p < 0.0001
and p = 0.0012, respectively) (Figures 3B, C). We also observed
that nearly twice the relapse rate had occurred in MSC2
compared with MSC1 in the GSE31210 dataset. This suggested
that the myeloid cell distribution might be associated with cancer
relapse (Figure 3D).

To determine whether MSC subtype is an independent
predictor of the prognosis, we performed multivariate analysis.
In the TCGA LUAD and GSE72094 cohorts, MSC2 strongly
predicted a shorter OS compared with MSC1, independent of
known risk factors [hazard ratio (HR), 1.765; 95% CI, 1.172–
2.567; p = 0.0065 for TCGA; HR, 2.680; 95% CI, 1.789–4.020;
p < 0.001 for GSE72094), including age, gender, and cancer stage
(Figure 3E; Supplementary Figure 4A).

MSC Subtype Significantly Associated
With Tumor Stages of LUAD
We analyzed the distribution of MScore in different tumor and
TNM stages. The higher MScore was associated with a higher
tumor stage (Figure 3F). We also observed a similar positive
correlation in both T, M, and N stages, suggesting that the
distribution of myeloid cells were potentially related to the
clinical stage (Supplementary Figures 4B–D). To further
investigate whether the relative presence of these myeloid cell
subtypes was associated with tumor progression, we calculated
the correlation between each myeloid cell subtype and cancer
stage. Five cell types, TIMP1+M3, S100A8+N3, TUBB+Mcyl,
LAMP3+DC3, and TCL1A+pDC, all of which were enriched in
MSC2, were positively associated with tumor progression
(FDR < 0.05). Four cell types, SELENOP+M4, CXCL9+M2,
Frontiers in Immunology | www.frontiersin.org 6
CD1C+DC1, and CLEC9A+DC2, were negatively associated
with tumor progression (FDR < 0.05) (Figure 3F).

MSC Subtype Associated With
Immunotherapy Response
Myeloid cells have been reported to be associated with ICB (34).
In the TCGA LUAD cohort, we introduced the tumor immune
dysfunction and exclusion (TIDE) algorithm to explore the
relationship between the MSC subtype and ICB response (35).
TIDE is a computational framework for predicting the clinical
response to ICB in patients. A low TIDE prediction score
indicates that the patients would potentially exhibit a greater
immune therapy response. We observed the TIDE score as
significantly lower in MSC1, suggesting that the MSC1 is more
likely to respond to ICB therapy (Wilcoxon rank-sum test,
p < 0.05) (Figure 4A). This association was verified in two
independent cohorts using univariate analysis (Wilcoxon rank-
sum test, p < 0.05) (Figure 4B). In the other independent cohort
(i.e., GSE126044), which includes the RNA-seq data and
response states of 16 patients before antiprogrammed cell
death protein 1 (PD-1) treatment, we compared the TIDE and
MScore to evaluate the prediction performance of ICB response.
All five responders of 16 patients were clearly identified as MSC1
(Figure 4C). MScore showed the best predictive power (AUC =
0.891) as compared to TIDE and PD-1 (Figure 4D).

Identification of Potential Drug for
MSC2 Patients
Since MSC2 patients seem more unlikely to respond to ICB
therapy and show a worse survival state compared with MSC1
patients, we next focused on identifying the potential drugs for
patients of the MSC2 subtype. The upregulated DEGs in MSC2
patients are supposed to be the therapeutic target. Note that MSC
subtypes are classified according to the marker genes of myeloid
cells, leading us to query whether the DEGs represent the
diversity of tumor microenvironment. Using a hypergeometric
test, we found that the myeloid cell markers were almost
irrelevant with DEGs between MSC1 and MSC2 patients
(Supplementary Figure 5A). This suggests that the DEGs
might reflect differences in tumor cell state.

We screened the data of lung adenocarcinoma cell lines in
Project Achilles (https://depmap.org/portal/). The genes with a
CERES lower than −0.5 in half of the lung adenocarcinoma cell
lines were retained. We then intersected the DEGs, which were
upregulated in MSC2 patients with survival-related genes and
obtained 29 genes that represent the targets for ICB therapy in
MSC2 patients (Supplementary Figures 5B, C).

Eight of 29 genes were related to the cell cycle, suggesting that
the tumor cells in MSC2 patients might be in a relatively strong
state of cellular proliferation. The remaining genes were
involved in a wide range of cancer-related pathways, such as
DNA replication, Ras signaling, and mTOR signaling
(Supplementary Figure 5C). Twenty-eight of 29 genes have
been reported to be related with LUAD (36–40). However,
TOPBP1 interacting checkpoint and replication regulator
(TICRR) had only been previously reported to be important in
September 2021 | Volume 12 | Article 723908
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DNA replication (41). TICRR seems to be a promising
therapeutic target for LUAD, especially in MSC2 patients.

Since the potential drug target gene set was obtained, we
employed LINCS L1000 dataset to identify potential drugs. We
focused on four LUAD cell lines, DV90, SKLU1, NCIH2073, and
NCIH596. Testing was conducted of 361 drugs on the four cell
lines, with a total of 1,498 gene expression profiles extracted.
Frontiers in Immunology | www.frontiersin.org 7
After computing the robust z-scores for each profile relative to
control, we ranked the gene based on the expression levels and
performed GSEA analysis. We totally identified 129 drugs
showing potential inhibition effect for at least a particular cell
line (FDR < 0.05, Figure 4E). To obtain more reliable drugs, we
selected the drugs that showed significant suppression effects on
all four cell lines and discovered 10 drug candidates (Figure 4E).
A B C

D F

E

FIGURE 3 | Clinical traits of MSC subtypes. (A) ROC curve of MSC subtype classifier in the training data and the test data. Training set, red; test set, blue.
(B, C) KM plots for MSC types in GSE72094 (B) and in GSE31210 (C). MSC1, yellow; MSC2, blue. (D) Rate of relapse in MSC1 and MSC2 patients in GSE31210.
Patients with relapse (n = 28) and non-relapse (n = 105) in MSC1 type; patients with relapse (n = 36) and non-relapse (n =57) in MSC2 type. (E) Multivariable Cox
proportional hazard regression analysis in TCGA LUAD cohort. (F) Correlation of tumor stages and the infiltration of myeloid cells in TCGA LUAD cohort. Left: MSC
score in different tumor stages (stage I, n = 257; stage II, n = 115; stage III, n= 81; stage IV, n =24); Right: correlation between tumor stages and myeloid cell types.
The size of the circle represents log10 (FDR); the dark blue circle indicates a significant correlation (FDR < 0.05).
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Identification of New Myeloid Cell
Subtypes Related With ICB Response
To further understand which myeloid cell subtype contributed to
ICB response, we further investigated the fractions of infiltrated
myeloid cells in GSE126044 dataset by applying CIBERSORTx.
We observed that IFIT3+N5 and PPARG+M7 were enriched in
responders, while LAMP3+DC3 was the only subtype enriched
in non-responders (Figure 5A). CD1C+DC1 highly expressed
CD1C, FCER1A, and CLEC10A, corresponding to conventional
cDC2, while CLEC9A+DC2 highly expressed CLEC9A, BATF3,
and CADM1, corresponding to conventional cDC1 (42,
43) (Figure 5B).

According to existing knowledge, there is no LAMP3+DC3
counterpart in the classic DC subsets; we thus compared
transcript profiles among three DC subtypes. We observed that
LAMP3+DC3 highly expressed an “activated” DC signature in line
with the previous study (16) and showed a higher migration ability,
according a gene signature derived from mouse tissue-migratory
cDCs (Figure 5B) (44). We then compared the ratio of LAMP3+
DCs/total DCs in GSE131907 dataset (23). The result showed that
LAMP3+DCs were enriched in the lymph nodes in LUAD patients,
which further demonstrates its migration ability (Figure 5C).
Interestingly, GO analysis showed that LAMP3+DC3 was
associated with negative regulation of the immune system
(Supplementary Figure 6A), which seems to explain its
Frontiers in Immunology | www.frontiersin.org 8
enrichment in non-responders. We also note that CD274 (PD-L1)
was highly expressed in LAMP3+DC3 (Supplementary Figure 6B).
Altogether, LAMP3+DC3 might play an important role in
immunosuppression, especially in T-cell dysfunction, albeit more
mature (16).

The degree of cytotoxic T-cell infiltration (CTL) has been
reported to influence ICB effectiveness and has been used as a
parameter of TIDE (35, 45). We used the average expression of
PRF1, GZMA, GZMB, CD8A, and CD8B to estimate the CTL
levels and examined the correlation between MScore and CTL
levels. Interestingly, a significant but moderate negative
correlation was found (r = −0.26, p = 9e−9), suggesting that
myeloid cells might affect the CTL level (Figure 5D). It could be
considered that the genes with high correlation with CTL level
not only exist as a biomarkers but also as a clue of potential useful
cell subtype. Notably, the unique marker gene of IFIT3+N5 was
enriched in the gene set, which highly correlated with CTL level
(Figure 5E). Ten of the top 20 highly correlated genes were
unique markers of IFIT3+N5. IFIT3+N5 was found to be
involved in the viral defense response, response to INF-gamma,
and type I interferon signaling pathway. KEGG pathway analysis
showed that IFIT3+N5 was strongly associated with NOD-like
receptor signaling pathway and NF-kappa B signaling pathway
(Figure 5F). We noted that three guanylate-binding family
proteins (GBP5, GBP4, and GBP1) in the top 20 correlated
A B

C D

E

FIGURE 4 | Exploration of treatment for two MSC type. (A, B) TIDE score in different MSC subtypes for TCGA LUAD and two independent cohorts. (C) Rate of ICB
response in MSC1 and MSC2 patients in GSE126044. Patients with response (n = 5) and non-response (n = 2) in MSC1 type; patients with relapse (n = 0) and non-
relapse (n = 9) in MSC2 type. (D) ROC curve of ICB response prediction. MScore, red; expression of PD-1, black; TIDE score, blue. (E) Enrichment score for each
drug in four cell lines. On the left most column, red box indicates the drug has therapeutic potential in total four cell lines, which are listed on the right side.
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genes had been identified to be linked to the inflammasome
activation (46, 47) and were also highly correlated with CTL level
(0.804, 0.725, and 0.701). Altogether, IFIT3+N5 might play a role
in activate the CD8+ cytotoxic cell response in LUAD, which act,
in part, through inflammasome activation.

TIMP1+M3 Macrophages Recruit S100A8+
Neutrophils via CXCL5–CXCR2 Axes to
Promote LUAD Progression
We used predefined ligand–receptor pairs (31) to examine the
interactions between the myeloid cells. In terms of cell
communications, we observed that macrophages showed
Frontiers in Immunology | www.frontiersin.org 9
higher proportions than other cell types (51% in ligand and
45% in receptor), suggesting macrophages may act as a hub for
other myeloid cells (Figure 6A).

The macrophage subtypes included both proinflammatory
(M1), anti-inflammatory (M2), and a mixed phenotype,
suggesting that the M1 and M2 types are underestimates of
tumor-associated macrophage complexity (Figure 6B).
CCL18+M1, CXCL9+M2, and TIMP1+M3 were enriched in
tumor tissues and were regarded as TAMs, whereas
SELENOP+M4, MMP7+M5, CHIT1+M6, and PPARG+M7 were
enriched in normal tissues and considered as resident tissue
macrophages (RTMs) (Supplementary Figure 7A).
A B

C

D F

E

FIGURE 5 | Characteristics of the myeloid cell subtypes related to ICB response. (A) Differences of myeloid cell infiltration levels between ICB responders and non-
responders. (B) Transcriptome traits of dendritic cells. Activation and migration signatures are shown on the right. (C) Ratio of LAMP3+DCs of total DCs. mLN, nLN,
nLung, and tLung denote metastatic, normal lymph nodes, normal lung tissues, and lung tumor tissues, respectively. (D) Correlation between MScore and CTL level.
(E) Correlation of myeloid cell signature and CTL level. Marker genes were ranked based on the Pearson’s correlation coefficient. Left, the marker genes of IFIT3+N5
are denoted in red. Top 10 enriched marker gene sets of myeloid cells as identified by GSEA analysis. (F) GO and KEGG functional annotation of IFIT3+N5.
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We then focused on the subtypes enriched in either MSC1 or
MSC2 type. TIMP1+M3 was the unique subtype enriched in
MSC2, suggesting its potential ability to promote tumor
progression. CXCL9+M2, the subtype also enriched in tumor
tissues, showed an opposite enrichment pattern. By further
comparing the RNA expression profiles between two TAM
subtypes (i.e., TIMP1+M3 and CXCL9+M2), we observed that
CXCL9+M2 exhibited a high expression of C1Q family genes,
apolipoprotein family genes, and antigen-presentation-related
genes (Figure 6C). In contrast, TIMP1+M3 showed specific
expression of TIMP1, VCAN, and CXCL5. GO analysis
revealed a strong enrichment of complement activation,
immune response, and antigen processing and presentation
pathway in CXCL9+M2, while positive regulation of
angiogenesis and neutrophil chemotaxis showed significant
Frontiers in Immunology | www.frontiersin.org 10
enrichment in TIMP1+M3 (Figure 6D). Meanwhile, we found
that TIMP1+M3 showed a functional relationship with
neutrophil, as indicated by GO annotation. By the cell–cell
interaction analysis, TIMP1+M3 was predicted to interact with
neutrophils (IFITM2+N2 and S100A8+N3) via CXCL5–CXCR2
axes, suggesting that TIMP3+M3 attracted the neutrophil via the
chemokine (Figure 6E). S100A8+N3, which was attracted by
TIMP1+M3 via the CXCL5–CXCR2 axes, was identified as a risk
factor and showed moderate positive correlation with
TIMP3+M3, while its correlation with IFITM2+N2 was
negative (Supplementary Figures 2 and 7B). We also observed
the higher value CXCL5 × CXCR2 was associated with an
unfavorable OS, whereas no such association was observed for
either CXCL5 or CXCR2 (Figure 6F). Interestingly, TIMP1+M3
and S100A8+N3 were positively correlated with N stage,
A B

C D

E F

FIGURE 6 | Tumor-associated macrophages in tumor microenvironment. (A) Cell communication in LUAD immune microenvironment. The ligand (left) is displayed
separately from the receptor (right). (B) Functional gene expressions in each macrophage subtypes. Tissue and MSC subtype enrichment state is shown as
annotations. (C) Differentially expressed genes between CXCL9+M2 and TIMP3+M3 subtypes. Top 20 genes in each macrophage subtype were labeled. (D) GO
functional annotation of CXCL9+M2 and TIMP3+M3. (E) Circos plot for predicted interactions mediated by CXCL5-CXCR2. (F) KM plots for TCGA LUAD cohort
stratified by the expression levels of CXCL5 and CXCR2 and the product of CXCL5 and CXCR2.
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suggesting their important role in lymph node metastasis
(Supplementary Figure 4C).

We also investigated other macrophage subtypes. SELENOP
+M4 showed high expressions of CCL4L2, CCL3L3, CCL3, and
CLL4. GO analysis revealed leukocyte chemotaxis and positive
regulation of cytokine production pathway as enriched in
SELENOP+M4 (Supplementary Figure 7C). SELENOP+M4
also highly expressed antigen presentation and T-cell
activation-related genes, suggesting it might play an
important anticancer role and involvement in immune
activation (Figure 6B). PPARG+M7 was identified as resident
alveolar macrophage with high expressions of PPARG, FABP4,
INHBA, and ALDH2 (48). We noted that PPARG+M7 was
enriched in ICB responders, suggesting that it may also play a
key role in regulating antitumor immunity as a tissue-
specific macrophage.
DISCUSSION

We generated a TIM-related genes-specific reference matrix
based on scRNA-seq data set and calculated the infiltration of
TIM subtypes in the TCGA LUAD cohort. According to
intratumor TIM heterogeneity, patients were stratified into two
groups, MSC1 and MSC2. We found that MSC subtype was
strongly associated with OS and ICB responses. Specific TIM
subtypes showed particular functions in tumor progression. In
discussing this work, we focused on the results that have
promising applications and those that are closely related to
clinical treatment.

We proved that the MSC subtype represents the states that
either may or may not respond to ICB therapy in multiple
datasets. In particular, the MSC subtype was useful for the
estimation of differences in TIMs infiltration states. We
validated the effectiveness of MSC subtype by comparing it
with the TIDE score, which mainly considered the function of
cytotoxic T cells as predictive of ICB response. The TIDE
score shows significant differences within two MSC subtypes
in TCGA and in the two GEO datasets. Since both
lymphocytes and myeloid cells have been reported to be
related with ICB response (49), we believe that MSC
subtypes and TIDE score reflected different aspects of ICB
responses of patients and that MSC subtypes could be jointly
used with TIDE score to achieve a better estimations in a
clinical context.

In our paper, three TIM subtypes were identified as ICB
response related, including LAMP3+DC3, IFIT3+N5,
and PPARG+M7. LAMP3+DC3 was enriched in ICB
nonresponders and was identified as a more mature DC
subtype. Compared with other two DC subtypes, CD1C+DC1
and CLEC9A+DC2, the negative regulation of immune system
process pathways were enriched in LAMP3+DC3. CCR7 is
necessary for the migration of tumor-infiltrating DCs into
tumor-draining lymph nodes (50). LAMP3+DC3 highly
expressed CCR7 and showed the strongest migration ability,
Frontiers in Immunology | www.frontiersin.org
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indicting LAMP3+DC3 might migrate to the lymph node and
suppress immune activation. Similar DCs were identified in the
single cell study of hepatocellular carcinomas and were described
to be related with T-cell dysfunction by interacting with
T lymphocytes (16). Zhang et al. also suggested that
LAMP3+DCs in tumors might originate from cDC1 and
cDC2. Thus, LAMP3+ DCs may not only be a predictive factor
of ICB response but also could be considered as a new target
for immunotherapy.

As multiple studies have demonstrated that tumor infiltrating
neutrophils are related to cytotoxic T cells in various ways
(51–53), we confirmed that our identified IFIT3+N5, a subtype
of neutrophil, was enriched in ICB responders and showed
positive correlation with CTL. Functional annotation indicated
that IFIT3+N5 might activate CD8+ T lymphocytes, partly via
inflammasome activation. According to a previous study,
IFIT3+N5 corresponds to a group of mature neutrophils that
are expanded in virus-infected tissues (54). Considering that
neutrophils might be converted into different phenotypes, either
anti- or protumoral (55), the clarification of how the precursor
cells are changed to IFIT3+N5 will be an important
consideration for future studies.

It has been reported that CXCR2+ neutrophils are recruited
by CXCL5 in tumor tissues to promote tumor progression in
liver and non-small cell lung cancers (56, 57). However, most of
these studies used cell lines, tissue sections, and mouse models,
which made it difficult to identify the specific cell subtypes
involved. In this article, we clearly identified that TIMP3+M3
recruited S100A8+N3 via CXCL5–CXCR2 axes. TIMP3+M3 and
S100A8+N3 were both identified as protumoral cell types and
related with lymph node metastasis, suggesting that those cells
might promote the tumor progression in synergy. CXCR2 and
CXCR4 were seen as required when neutrophils egress from the
bone marrow and are retained in the lungs (58). Here, we noticed
a repulsive expression pattern between CXCR2 and CXCR4 in
the neutrophils (Supplementary Figure 7D). Thus, a blockade of
CXCR2 might lead to decreasing infiltration of S100A8+N3,
which might partly explain the high performance of CXCR2
antagonists (59).

In summary, the main purpose of this paper was to develop a
time-saving approach to quantify the cell-type proportions
from bulk RNA-seq data at single-cell resolution. We
generated the landscape of myeloid cells in LUAD and
stratified the patients into two infiltrating patterns (MSC1
and MSC2). We observed a significant relationship between
TIM infiltrating pattern and OS and ICB responses and
validated this finding in two external independent cohorts.
We identified special myeloid subtypes related with tumor
progression and ICB response, leading to new insights into
the function of TIMs in cancer. These findings could assist
scientists in understanding the complexity of TIMs and help
optimize related immunotherapy strategies. As the future work,
functional studies, like immunophenotyping, are needed to
clarify the special role of mentioned myeloid cells and their
function in cancer immunotherapy.
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