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ORIGINAL RESEARCH

Claims-Based Algorithms for Identifying 
Patients With Pulmonary Hypertension: 
A Comparison of Decision Rules and 
Machine-Learning Approaches
Mei-Sing Ong , PhD; Jeffrey G. Klann , PhD; Kueiyu Joshua Lin, MD; Bradley A. Maron , MD;  
Shawn N. Murphy, MD, PhD; Marc D. Natter , MD; Kenneth D. Mandl, MD, MPH

BACKGROUND: Real-world healthcare data are an important resource for epidemiologic research. However, accurate identifica-
tion of patient cohorts—a crucial first step underpinning the validity of research results—remains a challenge. We developed 
and evaluated claims-based case ascertainment algorithms for pulmonary hypertension (PH), comparing conventional deci-
sion rules with state-of-the-art machine-learning approaches.

METHODS AND RESULTS: We analyzed an electronic health record-Medicare linked database from two large academic tertiary 
care hospitals (years 2007–2013). Electronic health record charts were reviewed to form a gold standard cohort of patients 
with (n=386) and without PH (n=164). Using health encounter data captured in Medicare claims (including patients’ demo-
graphics, diagnoses, medications, and procedures), we developed and compared 2 approaches for identifying patients with 
PH: decision rules and machine-learning algorithms using penalized lasso regression, random forest, and gradient boosting 
machine. The most optimal rule-based algorithm—having ≥3 PH-related healthcare encounters and having undergone right 
heart catheterization—attained an area under the receiver operating characteristic curve of 0.64 (sensitivity, 0.75; specificity, 
0.48). All 3 machine-learning algorithms outperformed the most optimal rule-based algorithm (P<0.001). A model derived 
from the random forest algorithm achieved an area under the receiver operating characteristic curve of 0.88 (sensitivity, 0.87; 
specificity, 0.70), and gradient boosting machine achieved comparable results (area under the receiver operating character-
istic curve, 0.85; sensitivity, 0.87; specificity, 0.70). Penalized lasso regression achieved an area under the receiver operating 
characteristic curve of 0.73 (sensitivity, 0.70; specificity, 0.68).

CONCLUSIONS: Research-grade case identification algorithms for PH can be derived and rigorously validated using machine-
learning algorithms. Simple decision rules commonly applied in published literature performed poorly; more complex rule-
based algorithms may potentially address the limitation of this approach. PH research using claims data would be considerably 
strengthened through the use of validated algorithms for cohort ascertainment.
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Administrative databases capturing longitudinal 
patterns of medical care, such as Medicaid and 
Medicare administrative claims databases, pro-

vide a rich real-world healthcare data resource for per-
forming epidemiologic research at the population level, 

and are increasingly used for the study of pulmonary 
hypertension (PH). The accurate identification of PH 
patient cohorts from administrative claims—a critical 
first step underpinning the validity of subsequent re-
search results—has, however, undergone only limited 
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study and systematic validation. Published studies 
using administrative databases have primarily relied 
upon each investigator’s a priori definition of diagnos-
tic and procedural codes for cohort ascertainment, 
with wide variation in case definition algorithms used 
for identifying PH between studies.1 Furthermore, the 
accuracy of published PH cohort identification algo-
rithms has undergone limited to no validation, bring-
ing into question the fidelity of any individual definition 
used; as such, meaningful evaluation and quantita-
tive comparisons between the results of such studies 
are also challenging. A recent study by Papani et al,2 
which validated claims-based algorithms to distinguish 
pulmonary arterial hypertension (PAH) from other PH 
subtypes, is illustrative: Although the study focused on 
identifying patients with PAH within a cohort of patients 

with PH and did not address the identification of pa-
tients with PH, it clearly demonstrated that case defi-
nition algorithms derived from diagnostic codes alone 
could not provide accurate estimates of the disease 
phenotype of interest.

Within the realm of electronic health record (EHR) 
analyses, however, a recent study by Geva et al3 
developed and validated a high-fidelity computable 
phenotype for identifying children with PH. Although 
this study employed an approach not directly trans-
latable to claims-based studies—a combination of 
chart review, natural language processing of clin-
ical notes, and machine-based learning of institu-
tion-specific codes not captured in administrative 
claims—the success of this approach supports the 
utility of machine-learning algorithms for identifying 
and validating PH cohorts. Here, we leverage a linked 
set of EHR and Medicare data to develop and vali-
date claims-based algorithms for identifying patients 
with PH. Likewise, in other realms, machine-learning 
approaches have been increasingly applied to de-
velop algorithms for patient cohort identification,4,5 
often outperforming decision rules in identifying the 
cohort of interest.6,7

The availability of EHR-linked Medicare data en-
ables a gold standard cohort to be identified through 
chart review on which claims-based definitions can 
be validated. Claims-based algorithms for cohort as-
certainment are typically defined by a set of decision 
rules (eg, having ≥2 healthcare encounters with the 
diagnostic code of interest). We therefore developed, 
applied, and compared the use of decision rules and 
machine-learning algorithms to identify patients with 
PH in administrative claims.

METHODS
The authors declare that all analytic methods are de-
scribed within the article. Because of the sensitive 
nature of the clinical data and risk of reidentification, 
the study data set cannot be made available to other 
researchers.

Data Source and Study Cohort
We analyzed an EHR-Medicare-linked database with 
patients from 2 large academic tertiary care hospi-
tals (Massachusetts General Hospital and Brigham 
and Women’s Hospital), belonging to the Partners 
HealthCare system. Study subjects included patients 
enrolled in Medicare between the years 2007 and 2013. 
An initial cohort of patients with a PH-related health-
care visit, identified using International Classification of 
Diseases (ICD) diagnostic codes for PH (International 
Classification of Diseases, Ninth Revision [ICD-9] 416.0, 
416.8). To ensure adequate follow-up, we confined 

CLINICAL PERSPECTIVE

What Is New?
• We found that conventional, rule-based ap-

proaches for identifying individuals with pul-
monary hypertension (PH) in Medicare claims 
data performed poorly – these methods could 
not achieve an acceptable balance of specificity 
and sensitivity.

• State-of-the-art machine-learning methods out-
performed rules-based approaches for identify-
ing individuals with PH in Medicare claims data 
by a large margin, providing both sensitive and 
specific research-grade case identification for 
conducting claims-based studies in PH cohorts.

What Are the Clinical Implications?
• The imprecision of rule-based PH subject identi-

fication algorithms may substantially bias the re-
sults of claims-based observational studies that 
rely solely upon this method for cohort selection.

• The use of validated methods for PH cohort as-
certainment, and in particular the application of 
validated, machine-learning approaches such 
as those we tested, has the potential to con-
siderably reduce cohort selection biases in ob-
servational PH research using claims data and 
electronic health record sources.

Nonstandard Abbreviations and Acronyms

ICD‐9 International Classification    of 
Diseases, Ninth Revision

PAH pulmonary arterial hypertension
PH pulmonary hypertension
RHC right heart catheterization
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the study cohort to those who were seen at Partners 
Healthcare at least twice within the first 12 months of 
the initial PH-related encounter (index PH diagnosis). 
The medical records of a subset of randomly selected 
patients (n=550) were reviewed to confirm the diag-
nosis of PH. The criterion for diagnosis of PH was a 
mean pulmonary artery pressure ≥25 mm Hg at rest as 
measured by right heart catheterization (RHC).8 Criteria 
for assignment to the control cohort was a mean pul-
monary artery pressure <25  mm  Hg. Although the 
hemodynamic criterion for PH has recently been re-
defined to having a mean pulmonary artery pressure 
of >20  mm  Hg,9 we did not apply the new criterion 
since the study data set was collected before the new 
diagnostic guidelines.

The Partner’s HealthCare Research Review 
Committee approved the study and granted a waiver 
of consent (protocol approval number: 2014P001971).

Rule-Based Algorithms for Cohort 
Ascertainment
We first evaluated rule-based algorithms commonly 
applied in existing PH research that uses administrative 
claims. The primary outcome was the gold standard 
PH status ascertained through chart review (ie, mean 
pulmonary artery pressure ≥25 mm Hg at rest meas-
ured by RHC). To derive rule-based algorithms, we first 
identified claims-based variables (including PH-related 
diagnoses, procedures, medications, and comorbidi-
ties) that were significantly associated with PH status 
in bivariate analysis; we then used these variables to 
derive decision rules for identifying patients with PH, 
including the following rules and combinations thereof: 
(1) ≥2 healthcare encounters with PH-related diag-
noses, (2) evidence for having undergone PH-related 
procedures (RHC, echocardiography), (3) use of PAH 
medications, and (4) presence of comorbidities as-
sociated with PH. Variables corresponding to rules 
terms were extracted from claims data as follows: 
PH-related encounters were identified using ICD diag-
nostic codes for PH (ICD-9 416.0, 416.8); procedures 
were identified using Current Procedural Terminology 
codes (Table S1); PAH medications were identified in 
text descriptions and included epoprostenol, iloprost, 
treprostinil, bosentan, ambrisentan, macitentan, silde-
nafil, tadalafil, vardenafil, and riociguat. We quantified 
the performance of these algorithms using the follow-
ing measures: sensitivity, specificity, positive predic-
tive value, negative predictive value, and area under 
the receiver operating characteristic curve (AUC). As 
a secondary outcome, we compared the sensitivity of 
the algorithms in detecting cases of PAH and other PH 
subtypes. PAH cases were defined as having a mean 
pulmonary artery pressure ≥25 mm Hg at rest in the 
presence of a pulmonary capillary wedge pressure 

≤15 mm Hg and pulmonary vascular resistance >3.0 
Wood Units, as measured by RHC. We further con-
ducted in-depth chart review and excluded patients 
presenting with comorbid cardiac, parenchymal lung, 
thromboembolic, and other diseases predispose to 
abnormal cardiopulmonary hemodynamics.10 Because 
multiple PH subtypes can co-occur simultaneously,11,12 
we did not exclude patients with coexisting cardiopul-
monary conditions who satisfied the hemodynamic 
criteria for PAH and had a physician-confirmed PAH 
diagnosis as stated in the medical charts.

Machine-Learning Algorithms for Cohort 
Ascertainment
We further developed case identification algorithms 
using machine-learning approaches and compared 
their performance against the rule-based algorithms. 
We applied and compared several machine-learning 
methods: penalized lasso regression, random forest, 
and gradient boosting machine. Penalized regression 
methods have been shown to outperform traditional 
regression analysis in the presence of a large number 
of highly correlated covariates,13 while providing mod-
els that are human interpretable. Random forest and 
gradient boosting machine are ensemble machine-
learning algorithms that train and combine multiple 
tree-based models to predict the outcome of interest. 
The performance of an ensemble often exceeds that of 
a single model, and these techniques are particularly 
robust to the noisy data that typically characterize ad-
ministrative claims and EHR data sets.14

For each model, we divided the full data set into 
a training set, which was a random sample of 60% 
of the full data set to guide the building of the mod-
els, and a test set composed of the remaining 40% to 
assess the performance of the models. Inputs to the 
models included the following data elements captured 
in Medicare claims: patient demographics (sex, age), 
the number of PH-related healthcare visits (in the year 
following the index PH diagnosis), PAH medication 
prescriptions or infusions, and procedures commonly 
performed for diagnosing and managing PH and other 
related conditions, including RHC, echocardiography, 
electrocardiography, endomyocardial biopsy, intra-ar-
terial balloon, lung or heart transplantation, cardiac 
computed tomography angiography, ventilation-per-
fusion scan, and pulmonary function test. We further 
incorporated common comorbid conditions of PH as 
model inputs, including valvular heart disease, heart 
failure, cardiomyopathy, angina, myocardial infarction, 
interstitial lung disease, chronic obstructive pulmonary 
disease, obstructive sleep apnea, dyspnea, thrombo-
embolism, pulmonary embolism, portal hypertension, 
chronic liver disease, hemolytic anemia, connec-
tive tissue disease, diabetes mellitus, and essential 
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hypertension. Procedures and comorbid conditions 
were expressed as continuous variables representing 
the number of health encounters associated with each 
procedure/condition in the year before and after the 
index PH diagnosis.

The primary performance metric used for evaluating 
the performance of a model was the AUC. To select 
model parameters, 10-fold cross validation with 3 repe-
titions was conducted to tune the models using a range 
of parameters to optimize the AUC. In the development 
of penalized regression models, we evaluated the per-
formance of varying penalty parameters ranging from 
5 × 10−5 to 1.00. In the development of a model based 
on the random forest algorithm, we varied the number 
of variables randomly sampled as candidates at each 
tree split. In the development of a gradient boosting 
machine, we varied the maximum depth of each tree, 
as well as the learning rate. In addition to AUC, we also 
evaluated the sensitivity, specificity, positive predictive 
value, and negative predictive value of each model, 

and compared the sensitivity of the models in detect-
ing PAH cases and other PH subtypes. To compare 
the performance of rule-based and machine-learning 
algorithms, we compared the receiver operating char-
acteristic curves of the algorithms using a bootstrap 
approach described by Hanley and McNeil.15

Analyses were conducted using the R statistical soft-
ware (version 3.6.1) and machine-learning algorithms 
were developed using the R package caret (version 6.0-
84). The Figure summarizes the study methods.

RESULTS
Reviewing EHR charts for positive RHC findings, we 
identified 550 study participants with ≥1 PH-related 
healthcare visits for whom RHC results were avail-
able; 389 were confirmed to have PH, and PH was 
ruled out in 161 patients using negative RHC findings 
(Table  1). Patients with PH had a higher number of 

Figure 1. Study overview.
EHR indicates electronic health record; PAH, pulmonary arterial hypertension; and PH, pulmonary 
hypertension.
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PH-related healthcare encounters, PAH medications, 
and echocardiograms. Patients with PH were also 
more likely to have heart failure, cardiomyopathy, myo-
cardial infarction, interstitial lung disease, chronic liver 
disease, and diabetes mellitus.

Rule-Based Algorithms

Rule-based algorithms performed poorly (Table  2). 
Defining PH as having ≥2 PH-related healthcare en-
counters achieved an AUC of 0.61, with a high sensitivity 

Table 1. Demographics (n=550)

Attributes PH (n=389) No PH (n=161) P Value

Sex, n (%) 0.614

Male 209 (53.7) 82 (50.9)

Female 180 (46.3) 79 (49.1)

Age, mean 74.3 73.1 0.076

PH subtypes, n (%)

PAH 75 (19.3) NA

Other PH subtypes 314 (80.7) NA

PH-related healthcare encounters, mean 8.8 3.3 <0.001

PAH medications, mean 2.5 0.3 <0.001

Procedures, n (%)

Echocardiography 380 (97.7) 151 (93.8) 0.043

Lung/heart transplant 4 (1.0) 4 (2.5) 0.365

Cardiac computed tomography 15 (3.9) 3 (1.9) 0.351

Ventilation/perfusion lung scan 24 (6.2) 10 (6.2) 1.000

Angiography 143 (36.8) 51 (31.7) 0.300

Electrocardiography 287 (73.8) 122 (75.8) 0.703

Endomyocardial biopsy 13 (3.3) 7 (4.3) 0.747

Intra-arterial balloon 18 (4.6) 3 (1.9) 0.196

Pulmonary function test 52 (13.4) 19 (11.8) 0.720

Comorbidities, n (%)

Valvular heart disease 306 (78.7) 120 (74.5) 0.346

Heart failure 344 (88.4) 118 (73.3) <0.001

Cardiomyopathy 218 (56.0) 66 (41.0) 0.002

Angina 77 (19.8) 36 (22.4) 0.574

Myocardial infarction 143 (36.8) 32 (19.9) <0.001

Interstitial lung disease 80 (20.6) 52 (32.3) 0.009

Chronic obstructive lung disease 47 (12.1) 26 (16.1) 0.254

Obstructive sleep apnea 81 (20.8) 35 (21.7) 1.000

Dyspnea 371 (95.4) 146 (90.7) 0.056

Thromboembolism or pulmonary embolism 88 (22.6) 31 (19.3) 0.448

Portal hypertension 9 (2.3) 4 (2.5) 1.000

Chronic liver disease 48 (12.3) 10 (6.2) 0.048

Hemolytic anemia 7 (1.8) 1 (0.6) 0.510

Connective tissue disease 19 (4.9) 11 (6.8) 0.478

Diabetes mellitus 209 (53.7) 60 (37.3) <0.001

Essential hypertension 366 (94.1) 148 (91.9) 0.457

Diagnostic codes for PH,* n (%)

Primary PH (ICD-9 416.0) 220 (56.6) 84 (52.2) 0.398

Secondary PH (ICD-9 416.8) 358 (92.0) 121 (75.2) <0.001

Other PH (ICD-9 416.9) 94 (24.2) 27 (16.8) 0.073

ICD-9 indicates International Classification of Diseases, Ninth Revision; NA, not applicable; PAH pulmonary arterial hypertension; and PH, pulmonary 
hypertension.

*There was substantial overlap in the use of PH diagnostic codes—233 patients had diagnostic codes for both primary and secondary PH; 96 patients had 
diagnostic codes for both primary and other PH.
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(0.76) but poor specificity (0.47). Increasing the number 
of PH-related healthcare encounters in the case defini-
tion improved specificity but substantially reduced sen-
sitivity. Similarly, algorithms that considered multiple 
diagnoses and PAH medications performed poorly. The 
algorithm that achieved the highest AUC defined PH as 
having ≥3 PH-related healthcare encounters and having 
undergone RHC (AUC, 0.64). Inclusion of comorbidities 
associated with PH (including heart failure, cardiomyo-
pathy, myocardial infarction, interstitial lung disease, 
chronic liver disease, and diabetes mellitus [Table 1]) did 
not improve the performance of the algorithm. All rule-
based algorithms were able to identify PAH cases more 
accurately than other PH subtypes (Table 2).

Machine-Learning Approaches
Machine-learning approaches outperformed the best-
performing rule-based algorithm, with all 3 algorithms 
achieving a significantly improved AUC when tested on 
the validation set (P<0.0001). Random forest attained 
the highest AUC (0.88), with a positive predictive value of 
0.88, a specificity of 0.70, and a sensitivity of 0.87. The 
algorithm detected 83% of PAH cases and 88% of all 
other PH subtypes (Table 3). Gradient boosting machine 
achieved comparable performance (AUC, 0.85). The 
model based on lasso regression achieved a lower AUC 
(AUC, 0.73) compared with random forest and gradient 
boosting machine, but the difference in AUC between 
models did not reach statistical significance. The “im-
portance” and “relative influence” of individual variables 
in each model are provided in Tables 4 through 6.

DISCUSSION
The availability of Medicare data linked with EHR data 
has enabled us to demonstrate that administrative 

claims-based definitions of PH can be rigorously vali-
dated and refined to high fidelity. Specifically, the ma-
chine-learning approaches we have developed offer 
clear evidence that codified data captured in admin-
istrative claims can be used to derive research-grade 
case identification algorithms for PH, to our knowledge 
for the first time in this domain, with both reasonable 
sensitivity and specificity.

Machine-learning approaches outperformed deci-
sion rules in the identification of both PAH and other 
PH subtypes. The most optimal rule-based algo-
rithm—having ≥3 PH-related healthcare encounters 
and having undergone RHC—attained an AUC of 
0.64. In comparison, machine-learning algorithms de-
rived from random forest and gradient boosting ma-
chine achieved AUCs of 0.88 and 0.85, respectively. 
A trade-off between specificity and sensitivity often 
prevents any model from having good predictive ability 
on all measures, which is evident in the performance 
of the rule-based algorithms evaluated in our analysis, 
wherein increasing the stringency of the inclusion cri-
teria improved model specificity and positive predictive 
value at the expense of sensitivity and negative predic-
tive value. Although we chose to optimize AUC as the 
performance measure of interest in refinement of ma-
chine-learning algorithms, naturally the model of choice 
should ultimately be determined by the intended use of 
the algorithm; by using machine-learning techniques, 
it is straightforward to adapt model construction ac-
cordingly. For example, if the algorithm is intended as a 
screening tool to capture all possible patients with PH, 
optimizing sensitivity may be a more appropriate goal 
in model construction.

Consistent with published research in other dis-
ease areas,16–18 our analyses demonstrate the short-
comings of relying on rule-based PH diagnostic codes 
alone for cohort ascertainment and that more reliable 

Table 2. Performance of Rule-Based Algorithms

Algorithm Sensitivity Specificity PPV NPV AUC
Sensitivity 

(PAH)
Sensitivity (Other 

subtypes)

≥2 PH diagnoses+RHC 0.76 0.47 0.77 0.44 0.61 0.92 0.72

≥3 PH diagnoses+RHC 0.63 0.65 0.81 0.42 0.64 0.83 0.58

≥4 PH diagnoses+RHC 0.53 0.72 0.82 0.39 0.63 0.77 0.48

≥2 PH diagnosis+RHC+echocardiography 0.74 0.50 0.78 0.45 0.62 0.88 0.74

≥3 PH diagnosis+RHC+echocardiography 0.61 0.66 0.81 0.41 0.64 0.79 0.61

≥1 PH diagnosis+RHC+PAH medications 0.15 0.98 0.94 0.32 0.56 0.56 0.06

≥3 PH diagnoses+RHC, or ≥1 PH 
diagnosis+RHC+PAH medications

0.63 0.65 0.81 0.42 0.64 0.84 0.58

≥3 PH diagnoses+RHC, or ≥2 PH 
diagnosis+RHC+one or more comorbidities 
associated with PH*

0.74 0.51 0.79 0.45 0.63 0.88 0.57

AUC indicates area under the receiver operating characteristic curve; NPV, negative predictive value; PAH, pulmonary arterial hypertension; PPV, positive 
predictive value; and RHC, right heart catheterization.

*Comorbidities were selected based on bivariate analysis and included heart failure, cardiomyopathy, myocardial infarction, interstitial lung disease, chronic 
liver disease, and diabetes mellitus (see Table 1).
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algorithms can be attained by combining diagnostic 
codes with PH-related workup and treatments (eg, 
RHC and PAH medications). Our analyses further 
showed that rule-based algorithms were able to detect 
PAH cases more accurately than other PH subtypes, 
particularly when use of PAH medications was an in-
clusion criterion. Incorporating comorbid conditions in 
the case definition did not appear to address this im-
balance. Application of these algorithms will therefore 
create a biased cohort that is primarily composed of 
patients with PAH. This limitation was not observed in 
models based on machine-learning algorithms.

Our study evaluated only a limited set of rule-based 
algorithms, guided by algorithms commonly applied in 
published literature. We acknowledge that there may 
be other more complex and performant decision rules 

that we have not considered. A limitation of rule-based 
approaches is that the search for the most optimal 
algorithm requires a trial-and-error approach, a chal-
lenging task when there is a large number of variables 
and different permutations of potential rules. In our 
analyses, we have reduced this “search space” by fo-
cusing only on variables that were significantly asso-
ciated with PH status. To further explore whether the 
addition of other variables improved the performance 
of rule-based models, we conducted additional analy-
ses that combined the best-performing rule-based al-
gorithm using the method described above (ie, ≥3 PH 
diagnosis+RHC) with each PH-related procedure and 
comorbidity under study, including those that were not 
significantly associated with PH status. As shown in 
Table  S2, the results were not substantially different 

Table 3. Performance of Machine Learning Algorithms

Algorithm Sensitivity Specificity PPV NPV AUC
Sensitivity 

(PAH)
Sensitivity (Other 

Subtypes)

Training set

Lasso regression 0.77 0.87 0.86 0.79 0.90 0.76 0.77

Random forest 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Gradient boosting machine 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Validation set

Lasso regression 0.70 0.68 0.85 0.48 0.73 0.73 0.69

Random forest 0.87 0.70 0.88 0.69 0.88 0.83 0.88

Gradient boosting machine 0.87 0.70 0.88 0.68 0.85 0.90 0.86

AUC indicates area under the receiver operating characteristic curve; NPV, negative predictive value; PAH, pulmonary arterial hypertension; and PPV, positive 
predictive value.

Table 4. The Top 15 Most Important Variables in the 
Construction of a Lasso Regression Model for Identifying 
PH Cases

Variable Importance

Age 100.0

Heart failure 87.1

Primary PH 79.8

PH-related health encounters (either primary or 
secondary PH)

71.1

Number of PAH medication prescriptions 68.3

Dyspnea 63.4

Interstitial lung disease 53.9

Hemolytic anemia 37.1

Obstructive sleep apnea 31.1

Heart/lung transplant 27.9

Echocardiography 26.5

Electrocardiography 24.7

Chronic liver disease 23.5

Male 21.6

Diabetes mellitus 20.9

PAH indicates pulmonary arterial hypertension; and PH, pulmonary 
hypertension.

Table 5. The Top 15 Most Important Variables in the 
Construction of a Random Forest Model for Identifying PH 
Cases

Variable Importance

Age 100.0

Heart failure 94.5

Primary PH 57.5

Valvular heart disease 52.6

PH-related health encounters (either primary or 
secondary PH)

52.2

Secondary PH 47.5

Echocardiography 45.0

Dyspnea 42.4

Hypertension 38.6

Electrocardiography 35.3

Diabetes mellitus 34.4

Interstitial lung disease 24.8

Myocardial infarction 21.8

Obstructive sleep apnea 20.4

Cardiomyopathy 20.0

PH indicates pulmonary hypertension.
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from the original algorithm. In contrast to rule-based 
approaches, machine-learning methods are capable 
of empirically identifying the most optimal set of vari-
ables and classification rules that are difficult to dis-
cern by human judgment, particularly in the context of 
high-dimensional data.

Although the machine-learning algorithms de-
veloped in the current study achieved good perfor-
mance, there remained patients who were not readily 
identifiable. Heterogeneity of clinical presentations 
may have impacted the performance of the algo-
rithms, with less common PH subtypes (eg, chronic 
thromboembolic PH) likely to be underdetected. 
Furthermore, published studies have shown poor 
adherence to recommended standards of care for 
patients with PH. McLaughlin et al19 reported poor 
uptake in the use of recommended diagnostic tests 
for PAH across the United States, with only 6% of 
patients receiving a guideline-recommended diag-
nostic workup. A multicenter study reported that 
30% of patients received PAH-specific medications 
before referral to PH centers for diagnostic workup, 
and 57% of the prescriptions did not conform to pub-
lished guidelines.20 Because PH-related diagnostic 
workup and treatments were key input variables to 
the construction of the case identification algorithms, 
inconsistencies in their use may have hampered the 
performance of the algorithms. Importantly, sub-
jects identified through these algorithms may be 
more likely to receive diagnostic workup and treat-
ments, potentially introducing ascertainment bias, as 

patients who received suboptimal care were more 
likely to be left out. To address this limitation, we in-
corporated common comorbidities associated with 
PH in model construction. Our analysis showed that 
comorbid conditions were important predictors for 
PH cases (Tables  4 through 6). To further improve 
accurate determination of PH status, it may be nec-
essary to access other data sources, such as clinical 
notes captured in EHRs. The application of natu-
ral language processing to these unstructured text 
records has been shown to substantially improve 
cohort ascertainment.21–23 Nonetheless, the perfor-
mance of the case identification algorithms we devel-
oped is comparable to published algorithms that are 
widely used in other claims-based research in other 
diseases.

Study Limitations
Our findings and conclusions should be interpreted 
in light of several limitations. First, this work was 
performed at 2 separate academic medical centers 
within a single organization, raising the possibility 
that organization-specific coding and center-specific 
clinical practice patterns may affect the generaliz-
ability of the models. Retraining of the models will 
be necessary if the distribution of the underlying 
data, such as differences in coding practices, dif-
fers by sites. Second, we focused our analyses on 
identifying patients with PH among those with known 
PH-related healthcare visits, as is the standard ap-
proach of case ascertainment in claims-based stud-
ies, and those with RHC results to ensure accurate 
case ascertainment. Thus, patients with PH but 
without the appropriate diagnosis codes and those 
who did not undergo RHC will not be captured in 
our algorithms. To evaluate the extent to which limit-
ing the study cohort to those who underwent RHC 
may have biased the study findings, we examined 
the proportion of patients with PH-related health-
care visits who underwent RHC. Of 7504 patients 
with ≥1 PH-related healthcare visits during the study 
period, 7124 (94.9%) underwent at least 1 RHC. We 
therefore believe that the number of patients missed 
is likely to be minimal. Third, our current algorithms 
rely on ICD-9 codes; additional work will be needed 
to adapt the present algorithms to International 
Classification of Diseases, Tenth Revision (ICD-10) 
coding system to support analyses of more recent 
data. Nonetheless, the algorithms remain relevant in 
longitudinal studies involving data before the intro-
duction of ICD-10, particularly as PH is a relatively 
rare condition and inclusion of multiyear data is often 
necessary to ensure adequate statistical power. Our 
analysis also applied a hemodynamic definition for 
PH that has recently been redefined to having a 

Table 6. The Top 15 Most Important Variables in the 
Construction of a Gradient Boosting Model for Identifying 
PH Cases

Variable
Relative 
Influence

Heart failure 16.7

Age 12.4

Primary PH 8.4

PH-related health encounters (either primary or 
secondary PH)

7.9

Echocardiography 6.5

Dyspnea 6.4

Valvular heart disease 5.5

Electrocardiography 5.4

Essential hypertension 4.8

Diabetes mellitus 4.6

Interstitial lung disease 4.6

Secondary PH 3.1

Obstructive sleep apnea 2.3

Right heart catheterization 1.6

Cardiomyopathy 1.6

PH indicates pulmonary hypertension.
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mean pulmonary artery pressure of >20  mm  Hg.9 
Additional work will be needed to adapt the present 
algorithms to this revised definition. Finally, our study 
focuses only on patients enrolled in Medicare, which 
represents an older, age-biased cohort. Therefore, 
other populations may yield different results because 
of age-dependent presentation of PH, other patient 
demographics, and variability in treatment practices. 
Nonetheless, methods to advance PH research in 
the Medicare population are particularly relevant 
given the rising rates of hospitalization for PH among 
elderly patients in the United States.24

CONCLUSIONS
Although designed primarily for billing purposes, ad-
ministrative claims are an important tool for epide-
miologic research. Our study has established that 
reliable algorithms for identifying patients with PH can 
be defined with high fidelity. PH research using claims 
data would be considerably strengthened through the 
use of validated, quantifiable algorithms for cohort 
ascertainment.
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Table S1. International Classification of Diseases (ICD) and Current Procedural Terminology (CPT) 
codes used for identifying diagnoses and procedures. 
 

Diagnosis or procedure Definition 

Pulmonary hypertension ICD-9 416.0, 416.8 

Right heart catheterization CPT 93451, 93453, 93456, 93460, 93501, 93526 

Cardiac surgery CPT 33737, 33735, 33736, 92992, 92993 

Echocardiography CPT 93350, 93351, 93303, 93304, 93306, 93307, 93308, 

93312, 93313, 93314, 93315, 93316, 93317 

Heart transplant CPT 32851, 32852, 32853, 32854, 33935 

Ventilation-perfusion scan CPT 78580, 78585 

Cardiac computed 

tomography 

CPT 75571, 75572, 75573, 75574 

Vascular heart disease 424.0, 424.1, 424.2, 424.3 

Heart failure 428 

Hemolytic anemia 282 

Portal hypertension 572.3 

Chronic liver disease 571 

Interstitial lung disease 508.1, 515, 516.3, 516.6, 516.8, 516.9 

Thromboembolism, 

pulmonary embolism 

415.1, 416.2, 444, 453 

 
  



Table S2. Performance of rule-based algorithms. 

Algorithm ROC 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + lung/heart transplant 

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + cardiac computed tomography 

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + ventilation/perfusion lung scan 

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + angiography 

0.62 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + electrocardiography  

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + endomycardial biopsy 

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + intra-arterial balloon 

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + pulmonary function test 

0.63 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + one or more other PH-related procedure 

0.62 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + valvular heart disease 

0.63 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + heart failure 

0.63 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + cardiomyopathy 

0.65 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + angina 

0.63 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + myocardial infarction 

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + interstitial lung disease 

0.62 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + chronic obstructive lung disease  

0.63 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + obstructive sleep apnea 

0.63 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + dyspnea 

0.62 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + thromboembolism or pulmonary embolism 

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + portal hypertension 

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + chronic liver disease 

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + hemolytic anemia 

0.64 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + connective tissue disease 

0.63 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + diabetes 

0.65 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + essential hypertension 

0.62 

>= 3 PH diagnosis + RHC, or 
>= 2 PH diagnosis + RHC + one or more comorbidities 

0.61 

PH: pulmonary hypertension; RHC: right heart catheterization 


