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Abstract
The mammalian placenta shows an extraordinary degree of variation in gross
and fine structure, but this has been difficult to interpret in physiological terms.
Transcriptomics offers a path to understanding how structure relates to
function. This essay examines how studies of gene transcription can inform us
about placental evolution in eutherian and marsupial mammals and more
broadly about convergent evolution of viviparity and placentation in vertebrates.
Thus far, the focus has been on the chorioallantoic placenta of eutherians at
term, the reproductive strategies of eutherians and marsupials, and the
decidual response of the uterus at implantation. Future work should address
gene expression during early stages of placental development and endeavor to
cover all major groups of mammals. Comparative studies across oviparous and
viviparous vertebrates have centered on the chorioallantoic membrane and
yolk sac. They point to the possibility of defining a set of genes that can be
recruited to support commonalities in reproductive strategies. Further advances
can be anticipated from single-cell transcriptomics if those techniques are
applied to a range of placental structures and in species other than humans
and mice.
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Introduction
The placenta and fetal membranes of eutherian mammals show 
great diversity in their gross appearance and internal structure1.  
How these diverse placental types evolved has fascinated devel-
opmental biologists since the time of Hubrecht2. The advent of  
molecular phylogenetics placed taxonomy on a surer footing, 
revealing hitherto unforeseen relationships between the mam-
malian orders and offering an improved framework to interpret  
placental evolution3. This led to analyses that focused on  
placental shape, internal structure, and the extent of trophoblast  
invasion of the uterine wall4–8. There was agreement that the 
most recent common ancestor (MRCA) of eutherians likely had a  
placenta that was discoid in shape, labyrinthine in structure, and 
highly invasive (probably hemochorial). Less attention was given 
to the other fetal membranes and to yolk sac (choriovitelline)  
placentation. We found that the embryo of the MRCA would have 
been nourished at first by a yolk sac placenta and subsequently by 
a chorioallantoic placenta4,9. Moreover, in contrast to human and 
other haplorrhine primates, but like many other mammals, the 
MRCA would have had a large allantoic sac4,9. The mammalian tree 
continues to be refined. It is now established that colugos (order 
Dermoptera) are the sister group to primates10, and this supports 
a scenario for the evolution of another unique feature of human  
placentation: villous trees with fetal capillaries immersed in an 
intervillous space containing the maternal blood11. This pattern is 
shared only by apes and Old World monkeys12, although something 
similar emerged through convergent evolution in armadillos and 
South American anteaters13.

The diversity of placental structure seemingly implies variations in 
function. The evolutionary basis for this is explored elsewhere14. 
Placenta-specific genes are few but sometimes have arisen by  
duplication of existing genes and acquisition of a new function 
by the duplicate. An interesting exception highlighted by current  
research is the capture of retroviral envelope genes and their  
expression during trophoblast syncytialization15. However, most 
recent advances in our understanding of the evolution of placental  
function are the fruits of transcriptomics. They are afforded  
particular weight in this review.

Although the focus has been on eutherians, it is important to  
recognize that all marsupials have a yolk sac placenta and that, 
to some degree, the koala, wombats, bandicoots, and certain  
dasyurids have a form of chorioallantoic placentation. The repro-
ductive strategy of marsupials is different, of course, with a  
highly altricial neonate undergoing much of its development in 
the pouch16. There is physiologically significant overlap in gene 
expression among the eutherian placenta, marsupial yolk sac, and 
marsupial mammary gland17. Comparative transcriptomics can 
even explore patterns of gene expression common to mammals 
and viviparous reptiles and fish18–20. Because convergent evolution  
of placentation has occurred many times in vertebrates21, the  
findings bear on the wider issue of how new organs and new  
functions have evolved; for other major organs, this would entail 
comparison between whole phyla and a much deeper timescale22.

Endogenous retroviral genes and the placenta
Human placental villi are clothed by two layers of trophoblast. 
The syncytiotrophoblast faces the intervillous space where the  
maternal blood circulates. The inner layer of cytotrophoblast is  
continuous in the first trimester, although the cells are more 
scattered at term23. Syncytiotrophoblast lacks inner cell  
boundaries but contains multiple nuclei. These undergo apoptosis  
and the apoptotic nuclei accumulate in syncytial knots that are  
shed into the maternal bloodstream24,25. Syncytiotrophoblast  
therefore requires continual replenishment, and that is achieved 
by fusion with the cytotrophoblasts26. This process requires the 
expression of syncytins, which are coded by endogenous retroviral 
envelope (env) genes. In viruses, the env gene product facilitates 
fusion of the viral membrane with the plasma membrane of the  
host cell. It also has immunosuppressive properties. Capture of  
retroviral env genes has occurred multiple times during the evolu-
tion of mammals and is seen to be essential for the formation of  
syncytial trophoblast27. Indeed, it has been suggested that retro-
viral gene capture was pivotal for the evolution of placentation27. 
An extension of this hypothesis embraces the sushi–ichi-related 
retrotransposon homolog family, an example being Peg10, which 
is required for placental development in rodents28. This imprinted 
gene is conserved in eutherians and marsupials29 and has a  
sequence corresponding to the gag and pol regions of retroviral 
genomes though without the env region.

Two human syncytin genes are known and there are likewise two 
syncytins in the mouse. Because each of these represents a separate 
gene capture, it was pertinent to search for similar genes in other 
mammals. To fulfil the requirements for a syncytin, the gene had to 
be able to promote cell fusion in an appropriate assay and the gene 
or its product shown to be expressed in placental tissue. To date, 
syncytin genes have been verified in the woodchuck (a squirrel-like 
rodent)30, guinea pig31, mole rat32,33, rabbit34, hedgehog tenrec35, and 
pecoran ruminants36,37. The basic structure of the ruminant placenta 
is epitheliochorial. Yet the binucleate trophoblast cells of ruminants 
are able to fuse with uterine epithelial cells to form heterologous 
trinucleate cells (in cattle) or more extensive syncytial plaques  
(in sheep)38. The finding that a syncytin was expressed in  
binucleate cells was of interest, since it provided a mechanism 
for one of the enigmas of mammalian placentation. Syncytiotro-
phoblast also occurs in a few marsupials, where it is associated  
with a yolk sac placenta. Therefore, it is significant that a  
syncytin could be demonstrated in the gray short-tailed opossum 
(Monodelphis domestica)39. Finally, endogenous retroviral env 
genes have been documented in a lizard (Mabuya spp.); one of them 
has the properties of a syncytin and is expressed in the placenta 
at the fetal–maternal junction, including in a maternal syncytial 
layer40.

Transcriptome of the eutherian placenta
Many genes are involved in placental development and function. 
There are, however, rather few placenta-specific genes. Moreover, 
those identified seem not to be expressed in all types of placenta41. 
An example is trophoblast-specific protein (Tpbp) expressed in 
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the mouse during formation of the placenta and in the spongiotro-
phoblast of the mature organ. Orthologous genes are found only  
in rodents41. Placenta-specific genes often arise through gene  
duplication. Thus, placental lactogens have evolved convergently 
in primates, rodents, and ruminants through duplication of the  
growth hormone and prolactin genes14,42. In the absence of  
placenta-specific genes, it follows that placental development is 
organized by the genes that direct similar processes in other organs. 
Starting with a classic set of gene knockouts in the insulin-like 
growth factor system43, genes essential to placental development 
in the mouse were progressively catalogued on the basis of mouse 
mutants44. But those genes may not be important for all types of 
eutherian placentation45.

The risk inherent in relying on the mouse as a model for human  
placenta, let alone other types of placentation, has been underscored 
by transcriptomics. Even a summary comparison of placental  
transcriptomes from mouse and human placenta revealed  
important differences46. A significant first step toward a broader 
approach involved comparing the transcriptome of elephant  
placenta with that of mice, humans, and cows45. In an insightful 
analysis, the authors looked for a subset of 245 genes known to 
give abnormal placental morphology when knocked out in the 
mouse. Only 90 of those genes were expressed in all four placental 
types examined, although an additional 62 were shared by mice 
and humans. Until recently, data for other mammals were limited. 
This was remedied in a study that compared transcriptomes from 
term placentas of 14 species from seven orders representing most 
major branches in the mammalian tree47. The authors were able to 
define a set of 115 core genes that were highly expressed in all 
eutherian placentas. These comprised genes implicated in immune 
tolerance and cell–cell or cell–matrix interactions. Of interest, they 
included four components of annexin complexes, consistent with a 
putative role for annexins in immune regulation48. Another annexin 
in the set (ANXA5) is thought to promote cell fusion and may be  
important for syncytiotrophoblast formation and membrane  
repair49. There was also high expression of key components of the 
epidermal growth factor receptor (EGFR) signaling pathway, which 
is associated with the invasive properties of trophoblast50. One  
limitation of the study was that data were not available from early 
pregnancy, when genes involved in the development of placental 
form might be more highly expressed. This could explain why it 
was not possible to identify genes that correlated with differences in 
placental interdigitation or invasiveness. Nevertheless, this article 
strengthened the case that transcriptomics may be key to under-
standing how the placenta has evolved.

The world was peopled following the migration of anatomically 
modern humans from Africa some 200,000 years ago51,52. Not only 
did humans continue to evolve but also new genes were acquired 
through interbreeding with other hominins, both within53,54 and 
outside51 Africa. An example is introgression of Neanderthal  
HLA haplotypes of import for immune function55. Another is the 
diminished erythropoietic response of Tibetans to low ambient  
oxygen, which is due to introgression of a Denisovan variant of  
the gene (EPAS1) that encodes hypoxia-inducible factor 2α56. It 
is to be anticipated that evolutionary changes will be reflected in  
placental transcriptomes. A step in the right direction is a study 

comparing the transcriptomes of Americans of different ancestry 
(Europe, Africa, South Asia, and East Asia)57. Significant differences 
among groups emerged in pathways related to immune responses, 
cell signaling, tissue development, and metabolism. There was  
evidence for adaptive responses in non-African populations  
following migration out of Africa. However, the African-American 
population of this study was not well characterized. Since Africa 
harbors greater genetic diversity than the rest of the world54, it 
would be informative to see a population-based study of placental  
transcriptomes from that continent. Furthermore, it might be  
useful to examine placental transcriptomes in human populations  
residing at high altitude, as they exhibit many adaptations in  
placental structure and function to counter chronic hypoxia58–60.

Most work on placental transcriptomes has been concerned with 
delivered placentas and focused on the fetal part of the placenta. 
Fetal membranes have usually been discarded, and since much of 
the maternal contribution to the placenta has been retained, it is 
unavailable for study.

Transcriptome of endometrium and decidua
In preparation for pregnancy, the endometrium undergoes a process 
called decidualization. This involves a change in the size, shape, 
and properties of the connective tissue cells (stromal fibroblasts). 
Decidualization is a prerequisite for implantation of the blastocyst 
and often occurs in response to an embryonic signal. This does 
not occur in marsupials61. Based on a phylogenetic analysis, we  
concluded that decidualization was present in the MRCA of  
eutherians but was lost in some lineages, especially those that 
evolved non-invasive epitheliochorial placentation4,62.

Transcriptomic analysis has thrown new light on the evolution 
of the decidualization process63,64. Kin et al.64 compared the tran-
scriptomes of endometrial stromal cells in a marsupial, the gray  
short-tailed opossum, and five eutherians: human, rat, rabbit, and 
mink, where a decidual reaction occurs, and the cow, where it 
has been lost. Eutherian expression patterns differed from those 
of the marsupial in interesting ways, including the loss of genes  
associated with the immune response and inflammation and the 
recruitment of FOXM1, a gene expressed during the decidualiza-
tion process. Noting that marsupial gestation seldom exceeds the  
length of a sterile sexual cycle, whereas eutherian gestation invari-
ably does, these results were leveraged to further the idea that the 
evolution of the decidual reaction was a critical step toward the 
eutherian mode of reproduction64,65. Published data on the decid-
ual reaction and novel observations were marshalled in support of 
this hypothesis65. Importantly, it could be shown that the decidual  
reaction is a transient response in many species and is associated 
mainly with embryo implantation. In a subset of mammals, decid-
ual cells persist and play an additional role in pregnancy mainte-
nance. This happens in humans and many other primates, and this 
new function possibly emerged in the MRCA of Euarchontoglires, 
a clade that includes primates, rodents, lagomorphs, tree shrews, 
and colugos65. These insights should lessen confusion about the  
relationship between the decidual reaction and the concept of 
“deciduate” placentation66, where endometrial components are shed 
with the placenta at birth. Even Mossman67, who was at pains to  
distinguish between the two, wrote of “atypical decidua” in  
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elephants and carnivores. That such a view no longer is tenable 
is a good illustration of the power of transcriptomics to address  
fundamental biology.

In an extension of this work, transcriptomic data were used to 
explore differences and similarities between the decidual response 
and the inflammatory response68,69. It was shown for the opossum 
that the brief period of attachment between fetal membranes and 
the uterus was characterized by expression of the full repertoire of 
genes characterizing the inflammatory response63,69. In eutherians, 
on the other hand, some components were missing. These included 
genes associated with the recruitment of neutrophils (CXCL8 and 
IL17A), an immune response that would prove detrimental to an 
implanting embryo. There was also downregulation of prostag-
landin (PG) F

2α synthesis. Expression of many other components 
was retained and beneficial to implantation. These included genes 
promoting vascular permeability through PGE

2
 signaling, activa-

tion of regulatory immune cells, and production of acute-phase 
proteins. As the authors acknowledged68,69, the validity of this 
hypothesis needs to be tested with endometrial transcriptomes from  
mammals at the basal nodes of the eutherian tree, including  
Afrotheria (for example, elephants and tenrecs) and Xenarthra  
(for example, armadillos and sloths).

Transcriptome of marsupial yolk sac and mammary 
gland
In marsupials, gestation is supported by a yolk sac placenta. There 
is evidence for a division of function between distinct areas of 
the yolk sac. The non-vascular part (bilaminar omphalopleure) is 
responsible for the uptake and metabolism of nutrients, and the  
vascular part (trilaminar omphalopleure) is important for respira-
tion. A recent article compared the transcriptomes of marsupial  
(tammar wallaby, Macropus eugenii) and eutherian (mouse and 
human) placentas and mammary glands17. It confirmed that  
marsupials have fully functional placentas expressing many of the 
same genes as eutherian ones. A fascinating detail was that the 
yolk sac endoderm of the tammar had assumed functions that in  
eutherians are served by trophoblast; these had to do with the  
trafficking of nutrients. Because much of the development in 
the wallaby is supported by lactation, it was interesting to find  
considerable overlap in the transcriptomes of the marsupial  
mammary gland and eutherian placenta. Several eutherians,  
including the mouse, have a yolk sac that supports early embryonic  
development and continues to function alongside the chorioal-
lantoic placenta until term9. Perhaps owing to unavailability of a  
mouse yolk sac transcriptome, this was not included in the  
comparison.

Transcriptome of the yolk sac in humans, mice, and 
chickens
Some mammals, including higher primates, have a yolk sac that  
does not make contact with uterine tissues and therefore is not 
regarded as a placenta9. A case in point is the secondary yolk sac 
found in the first trimester of human pregnancy. Apart from an 
acknowledged role in hematopoiesis, it is widely regarded as a  
vestigial organ. This view needs revision in light of a recent study 
of its transcriptome18. The results justify the conclusion that the  

placenta, exocelomic fluid, and yolk sac together represent 
an important route for maternal–fetal transfer early in human  
gestation. Thus, the most highly expressed genes included those 
for the solute carrier (SLC) transporters as well as ABC transport-
ers that transport cholesterol and lipids and facilitate the excretion 
of toxins. As expected, the role of the yolk sac in hematopoiesis  
was reflected in the expression of associated genes, including that 
for the β-chain of embryonic hemoglobin (HBZ).

The same study had a comparative aspect, contrasting the  
transcriptomes of chicken, mouse, and human yolk sacs18. While 
this provided evidence for conservation of function, analysis of 
the mouse yolk sac transcriptome was not as thorough as might  
be desired and mouse placenta was not included.

Viviparity and placentation in other vertebrates
Live birth, often in association with placentation, occurs in every 
class of vertebrate (though not in birds)21 as well as in tunicates70 
and invertebrates71. However, only amniotes have the full comple-
ment of fetal membranes familiar from mammals. A recent study19 
compared transcriptomes from the chorioallantoic membranes 
of the chicken, oviparous and viviparous lizards, and the horse.  
Focusing on hormone-related genes, they found 91 that were 
expressed in all four species. These included genes coding for 
enzymes involved in cholesterol and steroid synthesis; insulin- 
like growth factor II (IGF2) and its receptor (IGF1R); and 
genes associated with thyroid hormone receptor binding. It was  
concluded that the chorioallantoic membrane had an endocrine 
function in the MRCA of amniotes that was subsumed in those  
with chorioallantoic placentation. Interestingly, no gene in their 
data set was expressed exclusively by the two viviparous species.

Another study on the evolution of placentation in lizards 
focused on the Australian southern grass skink (Pseudemoia  
entrecasteauxii), which has both yolk sac and chorioallantoic  
placentation72. Gene ontology analysis reinforced the view that 
the two sets of fetal membranes support different functions. Thus, 
chorioallantoic membranes were enriched in SLC transporters,  
suggesting that they are the primary site of solute transport, while  
the yolk sac expressed genes associated with lipid transport in  
vesicles. Moreover, identification of the chorioallantoic placenta 
as the primary site of respiratory gas exchange was consistent 
with increased  uterine expression of vascular endothelial growth  
factor at this site. In contrast, no strong differences in gene  
expression occurred between gravid and non-gravid uteri in two 
species of oviparous skink.

Viviparity in seahorses and pipefish involves incubation of the 
embryos in the brood pouch of the male. Recently, Whittington  
et al.20 analyzed the transcriptome of the brood pouch of the  
pot-bellied seahorse (Hippocampus abdominalis) for genes that  
are upregulated during pregnancy and in transition to the postpar-
tum state. Genes upregulated in pregnancy were associated with 
tissue remodeling, nutrient transport (for example, the SLC family), 
and immune regulation. Many of the same genes or their homologs 
are upregulated during pregnancy in mammals and other viviparous 
taxa. Genes downregulated in the pregnant brood pouch included 
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some associated with the inflammatory response. The authors  
suggest the possibility that a common toolkit of genes is recruited  
to support pregnancy in mammals, reptiles, and live-bearing fish.

Concluding remarks
Transcriptomics is a powerful tool for understanding placentation 
and its evolution in eutherian mammals. It is important that future 
studies cover all major groups, including the basal Afrotheria and 
Xenarthra. Whereas studies hitherto have focused on the placenta 
at term, it is important to know what genes are expressed during 
the early development of the placenta. Even findings from a more  
limited set of mammals would be welcome in that respect.  
Mammals present an impressive degree of variation not only in  
the chorioallantoic placenta but also in the fate of the yolk sac 
and in paraplacental structures73. These should not go unheeded. 
It is not known, for example, how gene expression is allocated  
between the inverted yolk sac and chorioallantoic placenta of the 
mouse and how these together compare with human placenta.

Single-cell transcriptomics has furthered understanding of embry-
onic development in mice and humans. Studies have appeared on 
lineage commitment in mouse embryonic stem cells74 as well as 
on embryonic and trophoblast fate specification in blastomeres 
from 8- to 12-cell human embryos75. However, these findings may 

not translate to other species. It is, for example, known that Oct4 
expression is repressed by Cdx2 in trophectoderm of the mouse 
blastocyst but not in the bovine blastocyst76, whereas in the tammar 
wallaby, CDX2 seems to play no role in the differentiation of the 
unilaminar blastocyst into trophoblast and pluriblast (the forerun-
ner of epiblast and hypoblast)77. Later in development, the placenta 
has multiple cell types of both fetal and maternal origin. Single-cell 
transcriptomics should enable the interplay between cell types to  
be uncovered as already attempted for human placenta at term78. 
The cells comprising a placenta vary greatly across species. 
Thus, both early in embryonic development and in relation to the 
mature placenta, single-cell transcriptomics has the potential to 
enhance our knowledge of how the placenta has evolved. The sheer  
diversity of placentation has fascinated scientists since the  
19th century. Transcriptomics has the potential to help explain it in 
functional terms.
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