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Reconstruction of cell spatial organization from single-cell
RNA sequencing data based on ligand-receptor mediated

self-assembly

Xianwen Ren', Guojie Zhong', Qiming Zhang', Lei Zhang', Yujie Sun' and Zemin Zhang

1

Single-cell RNA sequencing (scRNA-seq) has revolutionized transcriptomic studies by providing unprecedented cellular and
molecular throughputs, but spatial information of individual cells is lost during tissue dissociation. While imaging-based
technologies such as in situ sequencing show great promise, technical difficulties currently limit their wide usage. Here we
hypothesize that cellular spatial organization is inherently encoded by cell identity and can be reconstructed, at least in part, by
ligand-receptor interactions, and we present CSOmap, a computational tool to infer cellular interaction de novo from scRNA-seq.
We show that CSOmap can successfully recapitulate the spatial organization of multiple organs of human and mouse including
tumor microenvironments for multiple cancers in pseudo-space, and reveal molecular determinants of cellular interactions. Further,
CSOmap readily simulates perturbation of genes or cell types to gain novel biological insights, especially into how immune cells
interact in the tumor microenvironment. CSOmap can be a widely applicable tool to interrogate cellular organizations based on

scRNA-seq data for various tissues in diverse systems.

Cell Research (2020) 30:763-778; https://doi.org/10.1038/s41422-020-0353-2

INTRODUCTION

High-throughput single-cell RNA sequencing (scRNA-seq) has
emerged as a revolutionary approach to dissect cellular composi-
tions and characterize molecular properties of complex tissues,’
and has been applied to a wide range of fields resulting in
profound discoveries.> However, spatial information of individual
cells is lost during the process of tissue dissociation. While it is
paramount to investigate the molecular composition of individual
cells in the spatial contexture, current methods such as RNA
hybridization,® in situ sequencing,* immunohistochemistry,”> and
purifying predefined subpopulations for subsequent transcrip-
tomic profiling® are limited by the throughput and complex
experimental procedures that are only accessible by a handful of
laboratories. The combination of scRNA-seq with in situ RNA
patterns or tissue shapes provides computational solutions for
high-throughput mapping of the spatial locations of many
individual cells,”~"® but such methods rely on the availability of
spatial references, limiting their wide applications. It is of pressing
need to develop a novel method to reconstruct cell spatial
organizations de novo from scRNA-seq data to further release the
great power of such technology.

The spatial organization of individual cells has recently been
shown to be self-assembled via ligand-receptor interactions,'"'?
implying that cellular spatial organization is inherently encoded by
their identity. We argue that the spatial relationship of cells may
be reconstructed de novo, at least in part, by integrating scRNA-
seq data with ligand-receptor interaction information. Here we
formulate this hypothesis as a mathematical model, referred to as

CSOmap (Cellular Spatial Organization mapper), and evaluate its
performance computationally and experimentally on a diverse
scRNA-seq datasets for various human and mouse tissues. All
results support that CSOmap not only can reconstruct cell spatial
organizations de novo from scRNA-seq data alone, but also can
quantify the statistical significance of cell-cell interactions and
reveal the potentially critical ligand-receptor pairs mediating such
interactions. In particular, CSOmap allows in silico perturbations to
evaluate the potential effects of gene overexpression or knock-
down and cell adoptive transfer or depletion on the changes of
cell spatial organizations. We applied CSOmap to tumor-
infiltrating immune cells and gained new insights into the role
of regulatory T cells in tumor immunity.

RESULTS

Overview of CSOmap

With the hypothesis that cell spatial organization is inherently
encoded by cell identity, we formulate the computation process
from scRNA-seq data to cell spatial organization based on three
assumptions: (1) the potential of cellular interactions can be
approximated by a function of the abundance of interacting
ligands and receptors, and their affinity; (2) cells with high
interacting potentials tend to locate in close proximity; (3) cells
compete for their interacting partners due to physiological and
spatial constraints. We formulate these hypotheses as a mathe-
matical optimization model (named as CSOmap) that predicts
coordinates of each cell in a three-dimensional pseudo-space
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based on input scRNA-seq data and known ligand-receptor
interactions'>'* (Fig. 1). The algorithmic process is composed of
two main steps. The first is to estimate the cellular interacting
potentials by integrating thousands of ligand-receptor pairs,
resulting in a cell-by-cell affinity matrix (Fig. 1a). The second is
to embed the inherently high-dimensional affinity matrix into
three-dimensional space (Fig. 1b). The limited availability of space
determines that it is not feasible to position cells with the same
interacting potentials equally close to their partners. Thus, we
applied Student’s t-distribution to resolve the cell competition
problem, enlightened by the widely used visualization technique
t-SNE."> After embedding cells into three-dimensional space,
spatial structures/patterns of cells can be analyzed by density-
based clustering'® (Fig. 1c), connections and corresponding
statistical significance among predefined cell types can be
summarized (Fig. 1d), and the dominant ligand-receptor pairs
underlying a specified pair of cell types can be calculated (Fig. 1e).
When a critical gene or cell population was determined, CSOmap
can be further applied to examine the effects of in silico
perturbations including gene overexpression or knockdown and
cellular depletion or adoptive transfer (Fig. 1f).
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Evaluating the validity of CSOmap based on public scRNA-seq
datasets

We first evaluated CSOmap on various publicly available scRNA-
seq datasets. In a scRNA-seq dataset of pancreas,'” the spatial
separation of the endocrine and exocrine compartments provides
a natural reference for assessing the performance of CSOmap. On
both the human and mouse pancreatic scRNA-seq data, CSOmap
successfully recapitulated such spatial separation (Fig. 2), with
endocrine cells forming one structure and exocrine cells compos-
ing the other compartment. The visual separation in human was
further supported by random permutation-based statistical
testing, with endocrine rather than exocrine cells showing
significant interactions with endothelial cells (Fig. 2). CSOmap
was then applied to the scRNA-seq data of human placenta and
decidua.'® CSOmap successfully reconstructed the early maternal-
fetal interface, i.e., fetal placenta cells, rather than maternal blood
cells, showing significant interactions with maternal decidua cells
(Supplementary information, Fig. S1). Quantitative evaluation
based on the scRNA-seq data of mouse liver lobules® showed
that CSOmap reached high consistence (R =0.85, P < 0.01, Spear-
man correlation, Supplementary information, Fig. S1b) with the
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Fig.1 Schematics of single-cell spatial reconstruction by CSOmap. a CSOmap takes the gene-by-cell expression matrix generated by scRNA-
seq and the known ligand-receptor network as inputs, upon which a cell-by-cell affinity matrix is estimated. b The inherently high-dimensional
cell-by-cell affinity matrix is embedded into a three-dimensional space via resolving cell competitions. ¢ Density can be estimated for
individual cells based on their three-dimensional coordinates obtained from b, which allows the identification of spatially-defined cell clusters.
d Given the cell cluster labels, the number of connections among cell clusters and their statistical significance can be summarized and
evaluated by CSOmap. e For a pair of cell clusters, the contributions of each ligand-receptor pair to their interactions can be calculated.
f CSOmap allows in silico interference of the original dataset including gene knockdown/overexpression and cell depletion/adoptive transfer

to examine the corresponding effects on cellular spatial organizations.
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Fig. 2 The exocrine and endocrine compartments of pancreas can be recapitulated by ligand-receptor based inference with CSOmap.
a The 3D visualization of CSOmap prediction of the human pancreatic scRNA-seq data (left), the cross-section of z= 0 of the 3D visualization
(middle), and the statistical significance of interactions between different cell types (right). b The 3D visualization of CSOmap prediction of the
mouse pancreatic scRNA-seq data (left), the cross-section of z=0 of the 3D visualization (middle), and the statistical significance of
interactions between different cell types (right). Enriched: cells of one cell type are enriched in the neighborhood of the other cell type,
P (right tail) < 0.05 and q < 0.05; depleted: cells of one cell type are depleted in the neighborhood of the other cell type, P (left tail) < 0.05 and
q < 0.05. Exocrine: acinar and ductal cells; endocrine: o, B, v, 6 and ¢ cells.

reference.? Due to the inherent difficulty to dissociate endothe-
lial cells from liver cells, paired-cell sequencing has been
customized to resolve the spatial positions of endothelial cells
within liver lobules.” In silico predictions by CSOmap reached
consistent results with paired-cell sequencing (R=0.73, P < 0.04,
Spearman correlation, Supplementary information, Fig. Sic).
Systematic evaluation based on the Tabula Muris datasets?°
demonstrated that CSOmap could reproduce the organ-level
separations by revealing significantly higher intra-organ cellular
interactions than inter-organ interactions for almost all organs
except tongue (15/16, 93.75%, Supplementary information, Fig.
S2), of which 176 out of 199 interacting cell type pairs were from
different cell types. Of 6 organs that have both epithelial and
endothelial cells available in the Tabula Muris dataset (Supple-
mentary information, Fig. S3), we observed that in almost all the
organs except trachea the epithelial cells occupy the outside
space (topologically equivalent to the organ edges) while the
endothelial cells occupy the inner space (topologically equiva-
lent to the organ basement), suggesting the spatial resolution
below the organ level. Such successful applications clearly show
the effectiveness, robustness, and wide applicability of CSOmap
for multiple organs from different organisms and different
technical platforms.

To further demonstrate the effectiveness of CSOmap to
reconstruct the cell spatial organization de novo based on
scRNA-seq data, we applied CSOmap to a human scRNA-seq
dataset consisting of both normal and fibrotic lungs.?' CSOmap
was applied individually for each healthy donor and patient with
pulmonary fibrosis, and then the spatial characteristics of alveolar
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cells were compared among donors and patients. Based on the
scRNA-seq data of normal donors, CSOmap revealed that Type |l
alveolar cells disperse in the outer pseudo-space (topologically
equivalent to the alveolar space) and Type | alveolar cells form
compact basal structures together with endothelial, alveolar
macrophages, and other cells (Fig. 3a). The visual characteristics
were further confirmed by quantifying the distance of Type II
alveolar cells to the center of the pseudo-space (Fig. 3b).
Permutation-based statistical testing suggests that Type Il alveolar
cells are spatially exclusive to themselves and other cell types (i.e.,
depleted in the neighborhood of Type Il alveolar cells), but Type |
alveolar cells show significant interactions with themselves,
endothelial cells, and macrophages (i.e., enriched in the neighbor-
hood of Type | alveolar cells). These spatial characteristics agree
with the histological observations of human alveoli,”? suggesting
the validity of CSOmap.

However, samples from patients with pulmonary fibrosis show
distinct spatial characteristics. For idiopathic pulmonary fibrosis
(IPF), Type Il alveolar cells do not disperse in the outer space but
rather show significant interactions with other cells (Fig. 3¢, d),
consistent with the pathological observation of diffuse alveolar
septal thickening and type Il pneumocyte hyperplasia.® For
systemic sclerosis-associated interstitial lung disease (SSc-ILD),
although Type Il alveolar cells still disperse in the outer space,
Type | alveolar cells do not have significant interactions with
endothelial/lymphatic cells or macrophages (Fig. 3e, f), agreeing
with the pathological characteristics of injured alveolar epithe-
lium.?* By analyzing the dominant ligand-receptor pairs that
mediate the spatial organizations of alveolar cells in normal lungs,
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Fig. 3 CSOmap recapitulates the spatial characteristics of normal alveoli of human lungs and the pathological characteristics of
pulmonary fibrosis. a The spatial organization of normal alveoli in the pseudo-space inferred by CSOmap based on the scRNA-seq data of donor
1. AT2: Type Il alveolar cells; AT1: Type 1 alveolar cells. b The distance of AT2 cells to the center of the pseudo-space compared with other cells
(P < 0.05, rank-sum test). ¢ The section view at z= 0 of a patient with IPF. d Distance of AT2 cells to the center of the pseudo-space compared with
other cells. e The section view at z= 0 of a patient with SSc-ILD. f Distance of AT2 cells to the center of the pseudo-space compared with other
cells for one patient with hypersensitivity pneumonitis (Sample ID: 14) and three patients with SSc-ILD (Sample IDs: 15-17).

we found that SFTPA1-TLR2 was ranked top in mediating
interactions among Type | and Il alveolar cells. However, for
pulmonary fibrosis samples, the scores of SFTPA1-TLR2 were
significantly reduced (Supplementary information, Fig. S4). Since
mutations or aberrant expression of SFTPAT and TLR2 have been

SPRINGER NATURE

associated with pulmonary fibrosis,>?° the identification of the

critical role of SFTPA1-TLR2 in maintaining the normal spatial
organization of human alveoli by CSOmap via an unbiased
approach further underscores the validity of CSOmap and the
molecular insights that it may bring.
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Fig. 4 Performance of CSOmap in reconstructing the spatial organization of a liver tumor sample. a, b Tumor core cells tend to locate in
the center of the pseudo-space reconstructed by CSOmap. ¢ The CSOmap reconstruction revealed that genes encoding HSPs show spatial
preference. d IHC staining of independent liver tumor samples confirmed the spatial preference of Hsp70. Scale bar, 50 pm. e Quantification
based on IHC images confirmed the statistical significance of the spatial preference of Hsp70 and Hsp90 (Student'’s t-test, right tailed, *P < 0.05;
***¥P < 0.01). f 3D plot of the tumor sample by stacking 19 IHC images together after manual rotation, in which six major cell types were
discriminated by the corresponding markers. g Spearman correlation between cell connections based on IHC images (X-axis) and the CSOmap
prediction (Y-axis). Treg: regulatory T cells (Foxp3™); Tex: exhausted T cell (PD-17); CD8: CD8"PD-1" T cells; cDC1: CLECO9A™ dendritic cells; M:
macrophages (CD68™); O: other cells. The median distance of the 3rd nearest neighbor of all cells was used as the cutoff to determine whether
two cells were spatially connected or not. The overwhelming number of “other cells” highlights the fact that millions of cells can crowd in a
compact piece of tissue, posing great challenges for staining/imaging-based analysis.
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and Tregs.

Evaluating the validity of CSOmap based on experimental tissue
dissection and imaging

We further validated the performance of CSOmap with experi-
mental tissue dissection and imaging. First, we dissected a liver
tumor sample into tumor edges and cores, and applied scRNA-
seq separately. With the scRNA-seq data only, CSOmap

SPRINGERNATURE

reconstructed a cell spatial organization with tumor core cells
located interiorly and tumor edge cells exteriorly (Fig. 4a). The
spatial separation was statistically significant by quantitatively
evaluating the distance of tumor core and edge cells to the
center of the pseudo-space (Fig. 4b). The spatial patterns of
genes encoding heat-shock proteins (Hsps; Hsp40, Hsp70 and

Cell Research (2020) 30:763-778



Hsp90) revealed by CSOmap, i.e., with high expression level in
the center while low expression level near the edge (Fig. 4c),
were further experimentally confirmed by immunohistochemical
(IHC) staining on independent liver tumor samples (Fig. 4d, e),
suggesting the effectiveness and robustness of CSOmap in
deriving new biological insights.

We then assessed the CSOmap results in a quantitative manner
by simultaneously generating scRNA-seq and IHC staining data for
a tumor sample derived from hepatocellular carcinoma (HCC). In
brief, six cell types, including regulatory T cells (Tregs, marked by
Foxp3™), exhausted CD8" T cells (Texs, marked by PD-1%),
CD8'PD-1" T cells, type 1 dendritic cells (cDC1, marked by
CLEC9A™), macrophages (marked by CD68™), and other cells, were
labeled by specific antibodies on a 1cm x 1cm x 100 um tumor
tissue. This tumor tissue was consecutively spliced into 1cm X
1cm x5 pm pieces for IHC staining, and then the cell types and
positions of 1,181,790 cells were recorded to serve as the
reference for evaluating the performance of CSOmap (Fig. 4f
and Supplementary information, Fig. S5). With 1,329 scRNA-seq
profiles based on SMART-seq2,”” CSOmap reached high con-
cordance with the results of IHC analysis (Fig. 4g, R=0.69, P=
2.2x107%, Spearman correlation) and recapitulated multiple cell-
cell interactions exemplified by CD8 T cells-macrophages and
Tregs-Texs pairing (Fig. 5). After removing the potential biases
introduced by the uneven cell counts of different cell types, the
consistence score between IHC results and the CSOmap prediction
was still 0.54 (P=2.0x10"* Spearman correlation, Fig. 5) while
the correlations based on random coordinate assignment and
random gene pairs were —0.12 and 0.34, respectively.

CSOmap reveals the critical role of CD63-TIMP1 interaction in
tumor morphology

Besides the spatial reconstruction, CSOmap can also provide
important insights into the underlying molecular mechanisms. We
applied CSOmap separately to a head and neck cancer (HNC)
scRNA-seq dataset®® and a melanoma scRNA-seq dataset.”® Based
on the IHC images of the original report® the spatial
characteristics of HNC tumor microenvironment can be summar-
ized as follows: (1) malignant cells not subject to partial epithelial
to mesenchymal transition (p-EMT) were located close to each
other and formed a loose structure; (2) malignant cells subject to
p-EMT were located at the interface between malignant cells and
cancer-associated fibroblasts (CAFs); (3) CAFs were connected to
each other and formed a compact structure (Fig. 6a). CSOmap not
only qualitatively recapitulated all these IHC characteristics
(Fig. 6b), but also highlighted the distinct spatial patterns of
malignant cells between HNC and melanoma, i.e., malignant cells
in HNC tended to form a loose structure (adjusted P> 0.05,
permutation-based test, Fig. 6¢, d) while tumor cells in melanoma
tended to form a compact structure (Fig. 6e, adjusted P < 0.05,
permutation-based test). By analyzing the dominant ligand-
receptor pairs contributing to this spatial organization, we
identified that the interactions between CD63 and TIMP1
contributed ~66% to the cellular interaction potential of
melanoma malignant cells (Fig. 6f) while HNC cells expressed
CD63 and TIMP1 at much lower levels. Using CSOmap, we were
able to readily perform “in silico perturbation” of CD63 and re-
calculate the spatial characteristics. Indeed, in silico knockdown of
CD63 expression in melanoma malignant cells resulted in the
transition from compact to loose structures while overexpression
of CD63 in HNC malignant cells resulted in compact structure
(Fig. 6g). The association of CD63 with the morphology of
melanoma has been experimentally supported by a previous
in vivo and in vitro study,*® in which the mechanism underlying
such association was attributed to the negative linkage between
CD63 signaling and EMT. This notion is recapitulated by CSOmap
since the p-EMT program was observed in the HNC dataset but
absent in melanoma, suggesting the effectiveness of CSOmap in

Cell Research (2020) 30:763-778
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spatial reconstruction and the potential in revealing the under-
lying molecular mechanism.

Further biological insights were also provided by the spatial
reconstruction of CSOmap based on the melanoma and HNC
scRNA-seq data. First, the malignant cells of both melanoma and
HNC did not show significant interactions with T cells according to
our CSOmap analyses, which may partially explain the immune
evasion of these tumors. By contrast, while the CAFs, endothelial
cells and macrophages account for much smaller fraction of the
datasets, they showed statistically significant interactions with
almost all the other cell types. These results recapitulate the
critical roles of these cells in the spatial organization of tumors and
in the regulation of tumor-infiltrating lymphocytes.®' Second,
comparison of the spatial organizations between melanoma
samples that are treatment-naive (TN)?° and on immunotherapy??
highlights the tumor and T cell compartments observed by IHC
(Fig. 6h). Upon treatment, increased tumor-T interactions were
observed by IHC (also revealed by CSOmap), indicating the
potential effects of immunotherapy. Differential gene expression
analysis based on the CSOmap prediction indicated that
malignant cells not interacting with T cells show lower levels of
class | major histocompatibility complex (MHC) molecules and JUN
but higher level of CDK6. These results recapitulate the cancer cell
program contributing to resistance of immune checkpoint
blockade in melanoma identified recently,®® suggesting the
effectiveness of CSOmap in generating valid biological insights.

CSOmap provides new insights into the roles of regulatory T cells
in tumor immunity
Since CSOmap also allows in silico cellular perturbation, we
applied CSOmap to three scRNA-seq datasets based on T cells
from the peripheral blood, tumors and tumor-adjacent normal
tissues of patients with HCC>® non-small cell lung cancer
(NSCLC),>* or colorectal cancer (CRC).>® Since blood, tumor and
normal tissues have distinct morphologies, and tertiary lymphoid
structures (TLSs) are frequently found in tumors,® we hypothesize
that T cells infiltrating into different tissues may also demonstrate
distinct spatial organization characteristics. CSOmap analyses on
all three datasets suggest that T cells from tumors tend to have
significantly more interactions with themselves while T cells from
the peripheral blood tend to disperse from each other (Fig. 7a),
confirming our hypothesis. Cellular density analysis clearly
indicated the existence of tightly-linked structures (Fig. 7b), with
tumor-derived T cells forming the major part of these structures
(Fig. 7c). It has been reported that Tregs tend to trap tumor-
infiltrating CD8" T cells into TLSs or draining lymph nodes.’
Consistently, our analysis indicated that Tregs and tumor-
infiltrating Texs are the major parts of these compact structures
(Fig. 7d), which we speculate to correspond to TLSs in or near
tumors. Interestingly, although blood-derived T cells did not show
significant interacting potential to each other compared to tumor-
derived T cells, those compact structures composed of blood-
derived T cells were also observed in the HCC and NSCLC datasets,
supporting the colony-forming capacity of T lymphocytes from
peripheral blood as reported previously.>®

Among T cells, Tregs and Texs exhibited significant interaction,
and the ligand-receptor pair CCL4-CCR8 drove such interaction
(Fig. 7e). While CCL4 was highly expressed in most activated CD8™
T cells, its expression level in Texs was two-fold of that in other
cells. CCR8 was specifically and highly expressed in tumor Tregs.
According to the spatial organization reconstructed by CSOmap,
Texs could be further divided into two subgroups: Texs interacting
and not interacting with Tregs. Consistent with a previous
report,®® MKi67 was depleted in Texs interacting with Tregs
(Fig. 7f), suggesting reduced proliferation by Tregs. Since Texs are
characterized by high expression of T cell exhaustion markers
including PDCD1, CTLA4, HAVCR2, TIGIT and LAG3, we examined
the expression levels of their ligands in Tregs. CD274™ (or PDLI,
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Tregs were significantly enriched in Tregs interacting with Texs
while CD86" Tregs were enriched in Tregs not interacting with
Texs in CRC (Fig. 7g). These results suggest that Tregs might
suppress CD8™ T cells via PD-1 and CTLA-4-mediated co-inhibitory
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axes. Similar trends were found in HCC and NSCLC despite varying
significance. In addition to Texs, Tregs also showed significant
interactions with a set of CD8" effector memory T cells (Tems). In
CRC, T cell receptor (TCR)-based tracking suggests frequent state
transitions between Tems and Texs in tumor.>® The ratio of Tems
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Fig. 6 CSOmap reveals CD63-TIMP1 as a critical ligand-receptor pair in determining the spatial characteristics of HNC and melanoma
malignant cells. a Cartoon illustration of spatial characteristics observed in IHC images of HNC patients.?® b Global (left) and cross-section
(right) views of reconstructed spatial organization of HNC cells. ¢ Compactness of different cell classes of HNC estimated by the density of
each cell. d P-EMT cells showed significantly higher interactions with fibroblasts than other malignant cells. e Global (left) and cross-section
(right) views of reconstructed spatial organization of melanoma cells. f Contributions of ligand-receptor pairs to the interactions among
melanoma malignant cells. g Spatial characteristics of melanoma (left) and HNC (right) after altering the expression levels of CD63. h Cartoon
illustration of spatial characteristics of melanoma on immunotherapies observed by IHC staining (left), reconstructed spatial organization
(middle), comparison of interactions with T cells between treatment-naive (TN) melanomas and melanomas with resistance to immune
checkpoint blockade (ICR) (bottom right in the middle), and differential usage of JUN and CDK6 between T cell-interacting and not interacting

malignant cells in the ICR dataset.

to Texs in tumor has also been associated with better survival in
lung adenocarcinoma patients®* and better response to immu-
notherapies in melanoma recently.”® The notable interaction
between Tregs and Tems in tumor may suggest a role of Tregs in
the early stage of immune evasion of tumors. Similar to Texs, Tems
interacting with Tregs showed higher expression levels of IFNG
and TNF than those not interacting, and the expressions of IFNG
and TNF showed significant correlations with CCL4 in Texs/Tems
interacting with Tregs rather than those not interacting, suggest-
ing that functional CD8" T cells were prone to be targeted by
Tregs due to high level of CCL4 secretion. IHC analysis of HCC and
CRC samples confirmed the interactions of Tregs with Texs and
Tems based on the colocalization of Tregs and CD8" T cells in
tumor (Fig. 5 and Supplementary information, Fig. S6).

In silico Treg depletion by CSOmap revealed that a subset of
blood-enriched recently activated effector memory T cells (Tem-
ras) demonstrate significantly increased interactions with Texs via
the CXCR3-CCL5 axis (Supplementary information, Fig. S7), which
is different from the CCR8-CCL4 axis mediating the Treg-Tex
interactions. It has been recently reported in murine and human
melanoma that, compared with CCR2 and CCR5, CXCR3 is
necessary for the successful trafficking of tumoricidal T cells
across tumor vascular checkpoints,*' consistent with our finding
that CXCR3 might mediate the migration of blood T cells into
tumor via the CCL5 gradient. Treg depletion also increased the
interactions of CD4TCXCR6™ tissue-resident helper T cells (Ths)
with Texs via the CXCR3-CCL5 axis (Supplementary information,
Fig. S7), supporting the role of T cell competition in immune
regulation as revealed previously.*?

In silico cell transfer reveals phenotypic determinants in T cell-
based tumor cell killing

CSOmap also enables computational simulation of adoptive cell
transfer, which has proven to be effective immunotherapy for
cancer treatment.”® It is currently difficult to experimentally
evaluate the phenotypic outcome of adoptively transferred
T cells. We used the HNC and melanoma datasets as foundations
to simulate their tumor microenvironments and used blood- and
tumor-derived T cells for in silico adoptive transfer. We simulated a
gradient of TCR-pMHC affinity between the adoptively transferred
T cells and the malignant cells and quantified the numbers of
tumor-T interactions, tumor-infiltrating T cells and targeted
malignant cells. Interestingly, while the numbers of interactions
between T and malignant cells increased in a linear function of the
TCR-pMHC affinity, those infiltrating T cells and targeted
malignant cells increased in a logarithmic function (Fig. 8). Visually,
an interface formed between T cells and malignant cells (Fig. 8).
This phenomenon observed in silico might recapitulate and
explain the morphological patterns frequently observed in tumor
microenvironment by IHC and multiplexed ion beam imaging.**
While the TCR-pMHC affinity was the dominant determinant of T-
malignant cell interactions, the phenotypes of T cells and
malignant cells also contributed significantly (Fig. 8 and Supple-
mentary information, Fig. S8). In particular, tumor-derived T cells
showed significantly higher efficiency in tumor infiltration than
blood-derived T cells (Fig. 8) while malignant cells of melanoma
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were more prone to be targeted than those of HNC (Supplemen-
tary information, Fig. S8) according to ANOVA analysis with
repeated measures. Computationally, these results recapitulated
the variations of T cell transfer-based therapies across cancers and
the predictive values of immunophenotypic characterization of
infused T cell product in engraftment and responses observed in
various clinical trials.*®

Robustness of CSOmap to its technical parameters

We used the HNC and melanoma datasets to show the
robustness of CSOmap to its parameter selections. First, we
show that it is necessary to embed the cell-by-cell affinity matrix
estimated by ligand-receptor interactions into 3D space. As
shown by the HNC dataset (Supplementary information, Fig. S9),
eight cluster pairs showed different statistical significance
before and after 3D embedding (Supplementary information,
Fig. S9a), and the changes before and after 3D embedding are
nonlinear (Supplementary information, Fig. S9b), with the spatial
configuration inferred with 3D embedding showing significantly
higher consistence with the IHC images (Supplementary
information, Fig. S9¢). This result suggests that spatial conflicts
may play key roles in shaping cell spatial organization, which is
further confirmed by the low correlations between 2D and 3D
embeddings (Supplementary information, Fig. S10). Determin-
ing the neighborhood of each cell is challenging. However, we
show that our results are robust to the selection of the number
of cells in the neighborhood of a cell. Using the median distance
of the 3rd and 5th nearest neighbors as the cutoff to determine
the neighborhood of each cell, CSOmap generates highly
consistent cell-cell interaction maps (R>0.99, P < 108, Spear-
man correlation, Supplementary information, Fig. S11). We also
evaluated the impacts of the comprehensiveness of ligand-
receptor pairs on spatial inference by including the data in
CellPhoneDB.'”® The results suggest that the cell spatial
organizations inferred by CSOmap are highly reproducible with
or without ligand-receptor pairs in CellPhoneDB (R>0.97, P<
107°°, Spearman correlation, Supplementary information, Fig.
S12), suggesting that the current ligand-receptor pairs may be
adequate for cell spatial organization inference.

DISCUSSION

CSOmap provides a computational tool to reconstruct cellular
spatial organization de novo from scRNA-seq data. The underlying
assumption is that cells can compete and self-assemble into
specific spatial patterns via ligand-receptor interactions. A wide
collection of factors may hinder such computational prediction,
including the incomplete nature of known ligand-receptor
interactions and their affinity parameters (particularly for TCR-
PMHCs), the dropout issue of scRNA-seq, biases or errors of
estimating the protein abundance of ligands and receptors by
transcriptomic data, the distinction of capacity to infer realistic
interactions, and the unavailability of other physical, chemical, and
nutrient factors involved in cell organizations. Despite these
difficulties, evaluations on multiple scRNA-seq datasets spanning
human and mouse physiological and diseased conditions
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demonstrated that CSOmap can recapitulate critical spatial
characteristics qualitatively and quantitatively. Such validity of
CSOmap in reconstructing cell spatial organizations de novo
from scRNA-seq data supports the hypothesis that cell morphol-
ogy may be inherently encoded by cell identity, and suggests that

Cell Research (2020) 30:763-778

ligand-receptor mediated cellular self-assembly may play key roles
in tissue morphogenesis.

Compared with the recently proposed method Novosparc,'®
which computationally maps single cells into predefined
tissue shapes based on the assumption that similar single cells

SPRINGER NATURE



Article

774

have similar spatial locations, CSOmap makes four conceptual
advances. First, CSOmap is a de novo spatial reconstruction
method. In contrast, Novosparc is reference-based although the
reference is a predefined geometric shape. For scRNA-seq datasets
without available tissue shapes, only de novo inferring tools can
be used to reconstruct cell spatial organizations in a pseudo-
space. Second, CSOmap is built on the assumption that ligand-
receptor interactions mediate cell self-assembly. Based on this
assumption, it becomes feasible to reconstruct cell spatial
organizations de novo, and the applications of CSOmap to almost
all the evaluated instances suggest that similar single cells often,
but not always (due to spatial conflicts), have similar spatial
locations. However, the assumption behind Novosparc that similar
single cells have similar spatial locations cannot indicate the roles
of ligand-receptor interactions in cell morphogenesis and spatial
inference. Third, CSOmap enables the evaluation of statistical
significance of cell-cell interactions and the roles of individual
ligand-receptor pairs in dictating such interactions while Novos-
parc does not provide such mechanistic insights. Finally, CSOmap
allows in silico simulations of gene/cell perturbations to evaluate
the roles of specific ligand/receptors and cell types in shaping/re-
shaping a targeted tissue due to its nature of de novo inference.
However, with predefined tissue shapes, it is hard for Novosparc
to evaluate the roles of such changes in tissue shapes. This feature
is important especially when perturbation experiments are hard to
conduct.

In summary, CSOmap is able to generate profound hypotheses
into the molecular mechanisms underlying cell spatial formation
by using its several key features: the de novo reconstruction
nature of CSOmap for cell spatial organization, the quantification
ability for the statistical significance of cell-cell interactions and
the roles of individual ligand-receptor pairs in shaping such
interactions, and the convenience of in silico manipulation
including gene overexpression, knockdown, cell adoptive transfer
and depletion. Such computational modeling can provide
important insights into various biological questions including
development, immune response, and tumor immune escape.
CSOmap will be applicable to interrogation of cellular organiza-
tions in pseudo-space from scRNA-seq data for various tissues in
diverse systems, and it can be greatly enhanced when more
complete knowledge of ligand-receptor interactions and other
critical factors are available.

MATERIAL AND METHODS

Overview of CSOmap

CSOmap reconstructs cellular spatial organization of individual
cells from scRNA-seq data based on three principles: (1) cellular
spatial organization is determined by ligand-receptor mediated
cellular self-assembly, with cells having high affinity spatially close
to each other; (2) the affinity of cells can be defined by the
abundance of ligands and receptors and their interacting
potentials; (3) cells compete with each other to form spatial
structures. Hence, the core algorithm of CSOmap to reconstruct
spatial organization of single cells from RNA-seq data includes two
steps: (1) estimating the cellular affinity matrix based on the gene
expression profiles of individual cells and known ligand-receptor
interactions; (2) embedding the inherently high-dimensional
cellular affinity matrix into three-dimensional pseudo-space
resembling the realistic biological tissues during which cell
competitions are sufficiently considered. CSOmap also includes
additional algorithms for analyzing the resultant three-
dimensional coordinates of single cells, including estimating the
density of each cell, identifying spatially-defined cell clusters/
structures, evaluating the number of connections and statistical
significance between two cell clusters defined by expression
profiles or other characteristics, calculating the contributions of
each ligand-receptor pair to the interaction potential of two cell
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clusters, and in silico molecular and cellular interference. The
details of the core and additional algorithms of CSOmap are
depicted as follows separately.

Estimating cell-cell affinity by ligand-receptor interactions

The estimation of cell-cell affinity is critical to the performance of
CSOmap. To define a valid function of cell-cell affinity, we assume
that the affinity of two cells equals to the affinity summation of all
the protein complexes formed by the proteins from the surfaces
or extracellular matrices of two cells. We applied a series of
approximations to facilitate computation at the genome scale.
Details are stated as follows.

In biological reality, the number of components of a protein
complex varies from two to tens. For computational convenience,
we converted all the interactions of more than two components to
binary interactions regardless of the complicated nonlinear
effects. Given a binary interaction, i.e, one ligand A and one
receptor B, according to the law of mass action in chemistry, the
concentration of the complex AB can be calculated according to
the following formula:

[AB] = k[A]“[B]° m

where [AB] is the concentration of the complex AB, [A] is the
concentration of the ligand A, [B] is the concentration of
the receptor B, k is the reaction constant, and a and b are the
stoichiometric coefficients of A and B, respectively. The parameters
k, a and b vary according to the chemical natures of A and B. For
similarity, we approximate Formula (1) by the following formula to
handle thousands of pairs of ligand and receptor:

[AB] oc wag[A][B] 2

where wpg is introduced to summarize the total effects of the
parameters k, a and b. Upon this approximation, the cell-cell affinity
is defined by the following formula:

]
Acic2 Z ([AciBez] + [Ac2Bar])

i=1

/
x ZWAAB([AUHBCZ] + [Ac][Bci)])
i=1

where Ac; c, denotes the affinity of Cell C1 and Cell C2, [A] or [B]
denotes the concentration of the A or B molecule on Cell ¢, i is the
index of ligand-receptor pairs, and there are a total of / pairs.
Because the ligand and receptor can be simultaneously expressed
by both of the cells, a symmetric term of the concentrations of the
complex is added. Furthermore, we use the mRNA abundance of the
ligand and receptor to approximate their protein concentrations,
and thus Formula (3) can be updated as follows:

I
Acico x Z was(AG xBEY + ALY < BEY) ()
i=

where AZPM or BZPM is the mRNA level of the ligand A or receptor B in
Cell c estimated by the Transcripts Per Million (TPM) measure. Since
there are thousands of ligand-receptor interactions, for which
most of the parameters of their interacting dynamics (summarized
by wag) are not available, we set wag =1 in the current version of
CSOmap while providing wag as a parameter of the software for
incorporating users’ knowledge of the chemical natures of the
ligand-receptor interactions. According to (4), the computational
method is thus established for estimation of cell-cell affinity based
on scRNA-seq data and ligand-receptor interactions. In practice, we
used the human ligand-receptor interaction database FANTOM5
with incorporation of immune-relevant chemokines, cytokines, co-
stimulators, co-inhibitors and their receptors for estimating the cell-
cell affinity matrix'**® (Supplementary information, Table S1). Some
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of these ligands such as chemokines and cytokines are not
membrane-located but secreted proteins. We included these ligands
into the estimation of cell-cell affinity similar to those membrane
proteins because they often form gradients to affect the migration
of other cells, particularly for chemokines. Interactions involved in
B2M were manually filtered because of its housekeeping nature.
Ligand-receptor interactions in the CellphoneDB'® database were
also included to show the robustness of CSOmap predictions
(Supplementary information, Table S2). Because of the potential
noises introduced in the estimation of cell-cell affinity due to noises
in gene expression levels and various approximations, we further
discretize the cell-by-cell affinity matrix by retaining the top k
highest-affinity neighbors for each cell to reduce noise (k=50 by
default).

Embedding the high-dimensional cell-cell affinity matrix into
three-dimensional space

When the discretized cell-by-cell affinity matrix is obtained, this
inherently high-dimensional matrix is further embedded into a
three-dimensional space. The principle behind this operation is
that the realistic biological space is of only three dimensions and
that positive affinity values in the affinity matrix only indicate
the interacting potentials rather than realistically occurred facts.
Cells having interacting potentials with common targets need to
compete the space to change potentials to reality. Considering
this factor, we introduce three constraints to build the
computational model. First, a minimum distance between cells
is pre-defined because all cells have positive sizes and cannot be
ultimately squeezed. Second, the total available space is also
pre-defined by a parameter named as space radius to simulate
the limited realistic space. Finally and most importantly,
Student’s t-distribution is introduced to resolve the crowding
issues of cell-cell interactions, motivated by the visualization
algorithm t-SNE, which allows cells to compete with others to
form the spatial organization. Taken all these considerations
together, we propose the following computational model as the
core of CSOmap:

n ;.
minY Y "p; log% (5)
ij

=1 =i

subject to:
1 K
Pi=7 kZ Wi, 5, (€ x et + et x eft) fori=j (6)
—
1] fori=j
3
di = | vk —yk)forizj ®8)
k=1
dj > rforizj 9)

ly¥| < Rfori=1---nandk =1,2,3 (10)
where et or ef is the TPM values of the kth ligand or receptor in
the ith cell, wy, g, is the weight summarizing the chemical nature
of the kth pair of ligand-receptor, p; is the cell-cell affinity
between i and j estimated by the aforementioned method, y¥ is
the kth coordinate of the jth cell, dj is the Euclidean distance
between the ith and jth cells in the embedded space, and g is
the probability of the jth cell locating in the neighborhood of
the ith cell. Constraints (6)-(8) give out the definitions of p;, g
and d; while constraints (9) and (10) impose the spatial
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limitations. Kullback-Leibler divergence is used to define the
loss function (5). This optimization model is highly similar to the
model used to implementing non-linear dimensional reduction
in the frequently used visualization algorithm t-SNE except that
constraints (9) and (10) are imposed to consider the spatial
limitations. Similarly, a gradient-descent algorithm is used to
solve this optimization problem with random initialization and
then by updating the solution with the guidance of the gradient.
When the maximum number of iterations was reached, the
resultant three-dimensional coordinates were reported for
subsequent analyses. In principle, large r and small R will reduce
the volume of cell space and thus provide repulsive forces while
the cell-cell affinity provides attracting forces. The repulsive and
attracting forces together guide the self-assembly of cells and
finally determine the cellular spatial organizations. Particularly,
large r and small R will introduce fluctuations into the cellular
spatial organizations. To obtain a stable organization, we set r =
1 and R=50 in practice. The initializing solution is randomly
assigned in a 50 X 50 x 50 cube, and the maximum number of
iterations is set to 1000. When the three-dimensional coordi-
nates are obtained, a rotation of the coordination system is
made by principal component analysis to guarantee the X and Y
axes to capture most spatial variations. By default, we set the
number of dimensions as 3 because biological tissues/organs
are in 3D space, but the users can tune this parameter to 2 or 1
to examine specific tissue models.

Density analysis and clustering spatially compact cell clusters
Given the three-dimensional coordinates of all cells, a straightfor-
ward analysis is to check what spatial structures are formed, which
can be examined visually and quantitatively. CSOmap implements
a series of visualization method to facilitate the recognition of
spatially organized structures, including global three-dimensional
views with various rotation angels, cross-section views with
various slicing methods, and even dynamic views to show
how cells self-assemble into organizations via ligand-receptor
mediated interactions. Categorical or numerical features can be
used to color cells to highlight the patterns. Quantitatively, the
compactness of the neighborhood of a cell, named as density, can
be calculated by counting the number of cells within a predefined
radius. By default, the radius is set to the median distance of each
cell to its third nearest neighbor because the number of neighbors
of a cell cannot be too large due to limited space. When the
density of individual cells are defined, clustering based on fast
searching and finding density peaks'® can then be applied to
identify spatially compact cell clusters and dissociative cells.
Sensitivity analysis suggested that the identification of compact
structures is robust to the selection of the radius.

Evaluating the statistical significance of cellular interactions
between cell clusters

The resultant three-dimensional coordinates of CSOmap also allow
us to examine whether two cell clusters tend to interact with each
other significantly and thus locate close to each other. Given a
threshold defining the neighborhood radius of a cell, e.g., the
median of the third nearest distance, a pair of cells can be
assumed to “directly” interact with each other if their distance is
less than the cutoff. Therefore, the total number of cell-cell
interactions between two clusters can be counted. The statistical
significance of the observed number of cell-cell interactions can
be further evaluated by random permutation of the cluster labels
of individual cells. With 1000 random permutations, the distribu-
tion of the randomly expected cell-cell interaction numbers of the
given two cell clusters can be constructed, and thus right-tailed
and left-tailed tests can be conducted, respectively, to calculate
the P-values for the hypotheses that the observed interaction
number was larger than that randomly expected (enrichment) and
that the observed number was smaller than that randomly
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expected (depletion). When P-values for enrichment between all
clusters are obtained, the Benjamini-Hochberg procedure is used
to estimate the g-values. If the enrichment (depletion) g-value for
a given pair of cell clusters is less than 0.05, these two cell clusters
are claimed to significantly interact with (disperse away from)
each other. Otherwise, if the enrichment and depletion g-values
are both larger than 0.05, the cell-cell interactions are assigned to
the “other” type.

Determining the dominant ligand-receptor pairs underlying cell-
cell interactions

Given a pair of cells, the contribution of a specific ligand-receptor
interaction to the cell-cell interacting affinity can be calculated by
the following formula:

Lo JRe L R ol
Wi, g, (€] xe' +e ><ej)

K Ly Rk Ry Lk
> ket Wi me (€ xe' +exet)

i _
G =

amn

where cz denotes the contribution of the kth ligand-receptor
interaction to the cell-cell affinity of the ith and jth cells. Therefore,
given a pair of cell clusters, the contribution of a specific ligand-
receptor pair to the interactions of the two clusters can be
calculated by the following formula:

1 "
Ca,Cb __ Ul
C = N E Cr

i€cq jecp
di<T

(12)

where ¢, denotes the contribution of the kth ligand-receptor
interaction to the interactions of two clusters ¢, and ¢, and N is
the total number of cell pairs between ¢, and ¢, that conform to
the definition of “direct” cell-cell interaction, i.e., the distance
between two cells i and j should be less than the predefined
threshold T (d;<T). When the contributions of all the ligand-
receptor pairs are calculated, the ligand-receptor pairs with the
highest scores are assumed to be the dominant molecular
contributors underlying the cell clusters.

Evaluating the spatial effects of individual genes or cell clusters by
in silico interference

CSOmap also provides functions to analyze the effects of in
silico interfering genes or cell clusters on the cellular organiza-
tion. In reality, cell-cell interactions form a highly nonlinear
system, and thus it is hard to predict the spatial effects of gene
alterations or cell interference. By simulating the cellular spatial
organization via ligand-receptor mediated self-assembly, CSO-
map provides an easy way to interrogate the nonlinear effects of
ligand/receptor or cellular changes on the cellular organizations,
and thus can provide important insights into the true biological
mechanisms that are too expensive or even impossible to obtain
by experimental methods. Currently, the in silico interference
types of CSOmap include in silico gene knockdown, gene
overexpression, adoptive cell transfer, and cell depletion. When
cellular spatial organization with in silico interference is
obtained, it can then be compared to the original organization
to identify the significant differences. Although the current in
silico interference can only examine the effects of ligand and
receptors, it can be further enhanced by incorporating gene-
gene interactions in the future to introduce dynamics for the
expression levels of ligands and receptors. Since the output
coordinates of CSOmap are in virtual spaces, it is now not
possible to directly compare the changes of cellular spatial
organizations at the coordinate level. All the comparisons in the
current manuscript were conducted after abstracting the
coordinate results into cell-cell interacting graphs. For the HNC
dataset, in silico CD63 overexpression was conducted through
changing all the original CD63 expression values to TPM 5000.
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For the melanoma dataset, in silico CD63 knockdown was
implemented by resetting the original expression values to zero.
For the CRC T cell dataset, Treg depletion was implemented by
removing all the cells belonging to the CD4-CTLA4 cluster.

Performance evaluations of CSOmap

The mouse liver lobule and paired-cell sequencing datasets were
downloaded from the Gene Expression Omnibus database
(https://www.ncbi.nlm.nih.gov/geo/) with accession numbers
GSE84498 and GSE108561, respectively. The human and mouse
pancreas datasets were downloaded with the accession number
GSE84133. The 10x genomics-based human placenta dataset was
downloaded from http://data.teichlab.org (maternal-fetal inter-
face). The 10x genomics-based Tabula Muris datasets were
downloaded with the accession number GSE109774, with neuron
and immune cells removed to investigate the interactions within
and between organs. The scRNA-seq dataset of human lungs from
healthy donors and patients with pulmonary fibrosis was down-
loaded with the accession number GSE122960. The HNC and
melanoma (TN) datasets were downloaded with accession
numbers GSE103322 and GSE72056, respectively. The melanoma
(ICR) dataset was downloaded through the Single Cell Portal
(https://portals.broadinstitute.org/single_cell/study/melanoma-
immunotherapy-resistance). The T cell datasets of HCC, NSCLC and
CRC were downloaded from the Gene Expression Omnibus with
accession numbers GSE98638, GSE99254 and GSE108989. All the
expression values of the original datasets were converted to TPM
for CSOmap analysis. The reconstructed spatial organizations of
HNC and melanoma datasets were compared to the IHC images
published in their original papers by examining the spatial
characteristics of various cell groups. The reconstructed spatial
organizations of the three T cell datasets were validated by
comparing their biological corollaries with published literature.
Because cellular spatial organization is the result of many factors
including cell identity, cellular environment, cell developmental
history, and many physical and chemical ingredients, it is currently
impossible to directly compare the precise structures of the
reconstructed organizations with experimentally obtained images.
Comparison of the spatial characteristics and biological corollaries
is acceptable. The IHC and scRNA-seq experiments of the HCC
sample was conducted in house, with the scRNA-seq operations
following the protocol of SMART-seq2 and the IHC experiment
and image analysis following the protocols provided by Nghiem
et al*’” and the PerkinElmer Vectra automated multispectral
microscope. The scRNA-seq data were deposited into EGA with
accession ID EGAS00001003449. The antibodies used in the IHC
staining were from Abcam: PD1 (EPR4877(2), ab137132), CD8
(144B, ab17147), CD68 (EPR20545, ab213363), FOXP3 (236A/E7,
ab20034), CLEC9A (8F9, ab104910).

T cell adoptive transfer analysis

In the in silico T cell adoptive transfer experiments, the HNC and
melanoma (TN) datasets were used to simulate the correspond-
ing tumor microenvironments. For fair comparison, the adop-
tively transferred T cells were sampled from the HCC T cell
dataset. For each in silico adoptive transfer experiment, the
number of adoptively transferred T cells was set to the same as
the number of T cells of the original datasets. To simulate the
TCR-pMHC interactions between adoptively transferred T cells
and the malignant cells, a pair of pseudo-ligand and -receptor
was added into the ligand-receptor network. The pseudo-ligand
(PMHC) was set to be only expressed in malignant cells with
TPM 5000 and the pseudo-receptor (TCR) was set to be only
expressed in adoptively transferred T cells with varying
expression levels. The TCR-pMHC affinity was represented by
the varying levels of the pseudo-receptor. ANOVA with repeated
measures (implemented by the ranova function of Matlab

Cell Research (2020) 30:763-778


https://www.ncbi.nlm.nih.gov/geo/
http://data.teichlab.org
https://portals.broadinstitute.org/single_cell/study/melanoma-immunotherapy-resistance
https://portals.broadinstitute.org/single_cell/study/melanoma-immunotherapy-resistance

R2016b) was used to evaluate the effects of TCR-pMHC affinity,
origins of T cells, and cancer types.

DATA AVAILABILITY

The mouse liver lobule and paired-cell sequencing datasets were downloaded
from the Gene Expression Omnibus database (https://www.ncbi.nIm.nih.gov/geo/)
with accession numbers GSE84498 and GSE108561, respectively. The human and
mouse pancreas datasets were downloaded with the accession number GSE84133.
The 10x genomics-based human placenta dataset was downloaded from http://
data.teichlab.org (maternal-fetal interface). The 10x genomics-based Tabula Muris
datasets were downloaded with the accession number GSE109774, with neuron
and immune cells removed to investigate the interactions within and between
organs. The HNC and melanoma (TN) datasets were downloaded with accession
numbers GSE103322 and GSE72056. The melanoma (ICR) dataset was downloaded
through the Single Cell Portal (https://portals.broadinstitute.org/single_cell/study/
melanoma-immunotherapy-resistance). The T cell datasets of HCC, NSCLC and CRC
were downloaded from the Gene Expression Omnibus with accession numbers
GSE98638, GSE99254 and GSE108989. The newly added HCC scRNA-seq data were
deposited into EGA with accession ID EGAS00001003449. The scRNA-seq dataset of
human lungs from healthy donors and patients with pulmonary fibrosis was
downloaded with accession number GSE122960.

SOFTWARE AVAILABILITY
The software implementation of our CSOmap method is available at https://doi.org/
10.24433/C0.8641073.v1.
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