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Abstract

Recent meta-analyses have found no association between heart disease and

dietary saturated fat; however, higher proportions of plasma saturated fatty acids

(SFA) predict greater risk for developing type-2 diabetes and heart disease. These

observations suggest a disconnect between dietary saturated fat and plasma SFA,

but few controlled feeding studies have specifically examined how varying

saturated fat intake across a broad range affects circulating SFA levels. Sixteen

adults with metabolic syndrome (age 44.9¡9.9 yr, BMI 37.9¡6.3 kg/m2) were fed

six 3-wk diets that progressively increased carbohydrate (from 47 to 346 g/day)

with concomitant decreases in total and saturated fat. Despite a distinct increase in

saturated fat intake from baseline to the low-carbohydrate diet (46 to 84 g/day), and

then a gradual decrease in saturated fat to 32 g/day at the highest carbohydrate

phase, there were no significant changes in the proportion of total SFA in any

plasma lipid fractions. Whereas plasma saturated fat remained relatively stable, the

proportion of palmitoleic acid in plasma triglyceride and cholesteryl ester was

significantly and uniformly reduced as carbohydrate intake decreased, and then

gradually increased as dietary carbohydrate was re-introduced. The results show that

dietary and plasma saturated fat are not related, and that increasing dietary

carbohydrate across a range of intakes promotes incremental increases in plasma

palmitoleic acid, a biomarker consistently associated with adverse health outcomes.
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Introduction

Current dietary guidelines recommend that Americans decrease saturated fat to 7–

10% of total energy and to consume the majority of calories from carbohydrate

[1]. To accomplish these goals requires limiting whole foods that contain

saturated fat (e.g., beef, eggs, high-fat dairy). A reduction in dietary saturated fat

typically results in greater carbohydrate intake. The metabolic and clinical effects

of replacing dietary saturated fat with carbohydrate are complicated and vary

from person-to-person, but on a population level such a dietary manipulation

may have untoward outcomes [2].

A consequence of consuming dietary sugars and starches above levels that can

be directly oxidized is that a greater proportion is converted to fat (i.e., de novo

lipogenesis). De novo lipogenesis (DNL) increases several-fold when carbohydrate

is fed above energy needs [3], but isocaloric high-carbohydrate diets [4] and high-

carbohydrate meals [5, 6] also promote DNL and hypertriglyceridemia in

individuals with insulin resistance. The major product of DNL is palmitate (16:0),

a saturated fatty acid (SFA), but monounsaturated fatty acids (MUFA) are also

formed as a result of desaturation, most notably palmitoleic acid (cis-16:1n-7).

Healthy men overfed carbohydrate showed increased very low-density lipopro-

tein-triglyceride (VLDL-TG) palmitic (28.3 to 37.9%) and palmitoleic (3.8 to

10.0%) acids [3]. Thus, high-carbohydrate intake in individuals with an impaired

ability to oxidize glucose stimulates DNL and secretion of SFA- and MUFA-

enriched VLDL particles; a serum profile associated with insulin resistance [7].

In observational studies, the most consistent nonessential fatty acid that

predicts metabolic syndrome [8, 9] and type-2 diabetes [10–14] is palmitoleic acid

measured in erythrocytes, plasma cholesteryl ester (CE), or plasma phospholipid

(PL). Palmitic and total SFA are usually significant predictors as well. In non-

diabetic men that were followed for 5 yr, higher proportions of erythrocyte

palmitoleic acid were significantly associated with worsening of hyperglycemia

[15]. Higher proportions of palmitic acid and total SFA in blood lipids are

associated with increased risk for heart disease [16–20] and more recently cancer

[21]. Thus, a large body of evidence indicates that higher proportions of blood

SFA and palmitoleic acid are associated with the pathophysiology of glucose

intolerance and cardiovascular disease.

It is commonly believed that circulating fatty acids reflect dietary intake, but the

associations are weak, especially for SFA and MUFA. In controlled isocaloric or

hypocaloric experiments, when dietary carbohydrate is reduced, circulating levels

of lipogenic fatty acids (i.e., palmitoleic, palmitic and total SFA) consistently

decrease, despite higher saturated fat intake [22–25]. Proportionately, palmitoleic

acid is the most responsive fatty acid to carbohydrate overfeeding [3] and it drops

precipitously when carbohydrate is limited to less than 50 g/day [24, 25]. The

results of these studies provide credible evidence that plasma SFA correlates

poorly with dietary saturated fat and better with carbohydrate, and that plasma

palmitoleic acid in particular is metabolically aligned with processing of dietary

carbohydrate.
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Although accumulation of SFA in circulating lipid fractions appears to be

modulated by carbohydrate more than dietary saturated fat, there are no

controlled studies examining this premise across multiple levels of carbohydrate

in the same person. The aim of this study was to determine how incremental

increases in carbohydrate, and decreases in fat, affect plasma SFA and palmitoleic

acid in adults with metabolic syndrome who were carefully fed moderately

hypocaloric diets for 21 wk. A primary hypothesis was that, despite consuming

substantially higher amounts of saturated fat, plasma SFA would remain

unchanged in the context of lower carbohydrate intake. Plasma palmitoleic acid

was hypothesized to decrease sharply after a very low carbohydrate diet and

gradually increase as a function of incremental increases in carbohydrate intake.

Methods

Experimental Approach

The experimental design involved a single arm, mildly hypocaloric, ,18-wk

feeding intervention (following a 3-week run-in diet) that incrementally adjusted

carbohydrate and fat levels over six 3-wk phases (Fig 1). Participants (n516) were

fed a low carbohydrate diet first and gradually transitioned to a high carbohydrate

diet over six sequential phases (C1RC2RC3RC4RC5RC6) during which time

saturated fat was decreased. Blood was collected at baseline, after the run-in diet,

and after each phase (before transition to the next diet) to determine fatty acid

composition and other blood-borne markers.

Study Participants

Sixteen overweight/obese men and women 30-66 years old, with a BMI between

27–50 kg/m2 participated in this controlled dietary intervention (Table 1).

Participants had metabolic syndrome defined as having three or more of the

following criteria: waist circumference (>101.6 cm men, >88.9 cm women),

blood pressure (>130/85 mm Hg) or current use of antihypertensive medication,

and fasting plasma glucose (>100 mg/dL), triglycerides (>150 mg/dL), and

HDL-C (,40 mg/dL men, ,50 mg/dL women). Subjects were medically screened

and excluded if they had a diagnosis of Type I or II Diabetes, liver, kidney, or

other metabolic or endocrine dysfunction. Subjects were excluded if they were

trying to lose weight or had a body mass change of ¡3 kg in the previous 3 mo.

Physically active participants were asked to maintain their same levels of activity

(verified by activity records) and sedentary individuals did not begin an exercise

program in order to limit possible confounding effects on the dependent

variables. Subjects were informed of the purpose and possible risks of the

investigation prior to signing an informed consent document approved by the

University of Connecticut Institutional Review Board who approved this study.
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Dietary Intervention

Six diets were developed that spanned a range of carbohydrate from

approximately 50 to 350 g/day (C1RC2RC3RC4RC5RC6) using nutrient

analysis software (Nutritionist Pro, Axxya Systems, Stafford, TX). The highest

carbohydrate phase (C6) was designed to model national dietary recommenda-

tions. While carbohydrate was adjusted every 3 wk, total fat decreased

proportionately so that total energy remained constant. Saturated fat was 40% of

total fat for all phases. Protein was constant at 1.8 g/kg reference body weight

determined from midpoint of Metropolitan Height-Weight Tables. Based on

individual resting metabolic needs and activity factors (1.2–1.5) obtained at

baseline, the diets were designed to provide a 300 kcal/day energy deficit to induce

moderate weight loss and motivation for subjects to continue participation in the

21 wk experiment. Thus, total caloric and protein intake for each individual did

not change throughout the study. Estimated nutrient composition of select diets

showed high concordance with chemical analysis (Exova, Portland, OR).

For each diet phase 7-day rotational menus were developed that included a

wide range of whole foods. Beef, eggs, and dairy were used daily throughout all

diet phases as primary sources of saturated fat. For the low carbohydrate diet

phases, higher-fat beef and meats, whole eggs, and full-fat dairy products (e.g.,

cheese, whole milk yogurt, cream, butter) were emphasized. For the higher

carbohydrate diet phases with lower saturated fat, leaner versions of beef, egg

substitutes, and low-fat dairy (e.g., reduced-fat dairy, skim milk, low-fat/non-fat

yogurt) were used instead. Whole grain and relatively low glycemic index

carbohydrate sources were emphasized.

Prior to the 18-wk controlled feeding intervention, subjects were counseled to

consume a 3-wk very low-carbohydrate run-in diet that mirrored the first low-

carbohydrate feeding phase (C1, ,50 g carbohydrate/day) in order to initiate

metabolic adaptations to carbohydrate restriction. Three-day diet records were

utilized to determine nutrient intake prior to baseline and during the run-in diet.

Following the run-in period, subjects were provided with all food for 18 wk,

which was prepared and packaged by staff in our research kitchen. Food was

packaged and labeled per individual serving sizes based on individual caloric and

Figure 1. Experimental approach. CHO5carbohydrate, SFA 5 saturated fat.

doi:10.1371/journal.pone.0113605.g001
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Table 1. Baseline subject characteristics1.

Sex (M/F) 12/4

Age (yr) 44.9¡9.9

Body mass (kg) 108.4¡15.1

BMI (kg/m2) 37.9¡6.3

Waist Circumference (cm) 116.8¡10.5

Body Fat (%)2 40.0¡3.2

Total cholesterol (mg/dL) 191¡34

LDL-C (mg/dL) 123¡27

HDL-C (mg/dL) 42¡8

Triglycerides (mg/dL) 134¡54

Glucose (mg/dL) 100¡5

Insulin (pmol/L) 93¡70

Insulin Resistance (HOMA)3 3.3¡2.0

Ketones (mmol/L) 0.11¡0.06

Systolic Blood Pressure (mmHg)* 122¡10

Diastolic Blood Pressure (mmHg)* 83¡11

Plasma Triglyceride (wt%)

14:0 1.47¡0.44

16:0 25.22¡2.68

18:0 3.69¡0.94

16:1 3.87¡0.90

18:1 35.98¡2.24

Total SFA 31.05¡3.56

Total MUFA 40.81¡2.44

Plasma Cholesteryl Ester (wt%)

14:0 1.07¡0.90

16:0 11.03¡1.44

18:0 1.04¡0.61

16:1 3.10¡1.17

18:1 16.00¡1.65

Total SFA 13.69¡2.92

Total MUFA 19.55¡2.42

Plasma Phospholipid (wt%)

14:0 0.36¡0.14

16:0 26.32¡1.95

18:0 14.76¡1.57

16:1 0.77¡0.22

18:1 8.76¡0.92

Total SFA 43.51¡1.90

Total MUFA 11.50¡0.98

1Values are mean ¡ SD (range).
2Determined by dual-energy X-ray absorptiometry.
3HOMA 5 homeostatic model assessment 5 [fasting glucose (mmol/L) x insulin (mU/L)]/22.5.
*5 subjects were using anti-hypertensive medications.

doi:10.1371/journal.pone.0113605.t001
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macronutrient needs and was picked up by the subjects 3-4 times/wk. If unable to

travel to obtain the food, arrangements were made to ensure the subject received

his/her food as planned. No other foods or beverages were allowed except very-

low/non-caloric products (e.g., coffee, tea, water, diet soda). All food containers

were returned unwashed and inspected to document that all food was consumed.

Measurements

Subjects arrived to the laboratory following a minimum 12-hr fast and 24-hr

abstinence from exercise, caffeine, over the counter medications, and alcohol.

Body mass was measured using a digital scale (Ohaus Corp., Parsippany, NJ),

height was measured with a stadiometer, and waist circumference was assessed

using a standard tape measure performed by the same person. Resting energy

expenditure and substrate oxidation was measured by indirect calorimetry

(Parvomedics TrueOne 2400 metabolic cart) in a thermal neutral room. The

metabolic carts were calibrated with a standard gas mixture each morning.

Subjects relaxed quietly for approximately 30 min and oxygen consumption

(VO2) and carbohydrate expiration (VCO2) were averaged for 15 min to

determine respiratory exchange ratio (VCO2/VO2). Prior to blood collection,

subjects provided a small urine sample to assess specific gravity as a measure of

hydration. Subjects with a USG>1.025 were asked to consume water and wait

30 min before another urine sample was measured.

Blood samples were obtained from an arm vein after subjects rested quietly for

15 min in the supine position. Whole blood was collected into tubes with a serum

separator and ethylenediaminetetraacetic acid (EDTA). Tubes with serum

separator remained at room temperature for 15 min prior to centrifugation to

allow clotting to occur. Whole blood was centrifuged at 15006g for 15 min and

4 C̊, aliquoted into storage tubes, and stored in ultra-low freezers for batch

analysis. A portion of serum (,7 mL) was immediately sent on ice to a certified

medical laboratory (Quest Diagnostics, Wallingford, CT) for determination of

glucose, total cholesterol (TC), HDL-C, TG, and calculated LDL-C concentrations

using automated enzymatic procedures (Olympus America Inc., Melville, NY).

Subjects returned to the laboratory for a second fasting blood draw 24–48 hr after

visit 1 to repeat glucose and lipid testing. The results from both days were

averaged to account for day-to-day variability.

Blood Analysis

Frozen samples were thawed only once before analysis. Serum insulin was

analyzed in duplicate by ELISA (ALPCO, Salem NH). Intra- and inter-assay

coefficient of variation (CV) were 5.3 and 7.2% respectively. Glucose and insulin

values were used to calculate an index of insulin resistance [HOMA-IR; calculated

as Glucose (mmol/L)?Insulin (mIU/mL)/22.5] [26]. Total ketones were deter-

mined by a cyclic enzymatic method that measures both acetoacetate (AcAc) and

3-hydroxybutyrate (3-HB) (Wako Chemicals USA Inc, Richmond, VA) with a

Carbohydrate Effects on Saturated Fatty Acids and Palmitoleic Acid

PLOS ONE | DOI:10.1371/journal.pone.0113605 November 21, 2014 6 / 16



sensitivity of 1.2 mmol/L, and intra- and inter-assay CV 7.7 and 20.3%

respectively. Plasma TG, CE, and PL were extracted and analyzed for fatty acid

methyl ester composition using capillary gas chromatography as previously

described [24]. Fatty acids were identified by comparison to authentic fatty acid

standards and quantitated with peak area and internal standard and expressed as

percent weight (wt%).

Statistical Analyses

One subject dropped after completing C4 due to a rise in his blood pressure. The

C5 and C6 data were interpolated based on mean percent changes for the group. A

paired samples t-test was used to examine the effects of 6-wk of very low

carbohydrate intake (Baseline vs C1). A repeated measures analysis of variance

(ANOVA) was used to assess changes across the six diet phases

(C1RC2RC3RC4RC5RC6) and Fisher’s LSD post hoc was used to examine

pairwise comparisons when significant main effects were observed. The alpha level

for significance was set at p #0.05.

Results

Dietary Intake

Total daily energy intake at baseline showed an average consumption of

3028 kcal/day with habitual carbohydrate intake at 44% of total energy, slightly

lower than the average American diet, while saturated fat intake was 14% of total

energy, slightly higher than the average American diet (Table 2). Energy intakes

during the controlled feeding periods averaged slightly over 2,500 kcal/day, which

was consistent with the goal to create a moderate caloric deficit. As designed,

energy and protein intakes across the 6 diet phases were constant for each person.

Compared to baseline (46 g/day), saturated fat intake was nearly doubled at C1

(84 g/day) and then gradually decreased to levels below baseline at C6 (32 g/day).

From C1 to C6, carbohydrate increased from 47 to 346 g/day corresponding to 7

and 55% of total energy, respectively. All diets were well tolerated and compliance

was high based on verbal communication and inspection of returned, unwashed

food containers.

Weight and Metabolic Responses

Relative to baseline, cumulative mean weight loss after the free-living, C1, C2, C3,

C4, C5 and C6 phases was -3.7, 26.6, 28.3, 28.8, 29.4, 29.9, and 29.8 kg,

respectively, the majority of which was comprised of fat (Fig 2A). Serum TG

concentrations were lower from C1 to C5 and increased to levels similar to

baseline at C6 (Fig 2B). Total serum cholesterol, LDL-C and HDL-C were not

significantly different across all diets. Compared to baseline, serum glucose

(P50.048), insulin (P50.004), HOMA (P50.006) (Fig 2C), systolic (P50.000)

and diastolic (P50.001) blood pressure (Fig 2D) were significantly lower at C1,

Carbohydrate Effects on Saturated Fatty Acids and Palmitoleic Acid
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but were not significantly different across the 6 diet phases. Compared to baseline,

serum ketones increased approximately 5-fold during C1, 3-fold after C2, 2-fold

after C4 and returned to baseline levels by C5. Respiratory exchange ratio

significantly decreased from baseline to C1 (0.80¡0.05 to 0.75¡0.04), and then

increased linearly at C2, C3, C4, C5, and C6 (0.77¡0.03, 0.79¡0.04, 0.80¡0.04,

0.82¡0.03, 0.84¡0.05, respectively) with values at C3, C4, C5, and C6 being

significantly higher than C1.

Saturated Fatty Acids

Despite a marked increase in dietary saturated fat intake from baseline to C1 (46

to 84 g/day) and then a progressive decrease to 32 g/day at C6, the proportion of

total SFA in plasma TG, CE, and PL were not significantly affected (Table 3).

From C1 to C6 when dietary saturated fat decreased from 84 to 32 g/day, it is

noteworthy that plasma total SFA actually increased in 56%, 88%, and 56% of

participants in the TG, CE, and PL fractions. Plasma 16:0, the predominant

saturated fatty acid, was not significantly different over time in the TG and CE

fractions. Compared to C1, plasma 16:0 in the PL lipid fraction was significantly

decreased at C2, C3, C4, and C5 but not at C6. Plasma 14:0 is a minor constituent

of total fatty acids but in all three plasma lipid fractions it showed more consistent

and significant decreases with carbohydrate restriction, and subsequent increases

with progressively higher levels of carbohydrate. As carbohydrate increased,

plasma 18:0 decreased in the TG fraction, but increased in the PL fraction,

although the absolute changes were relatively modest.

Table 2. Daily nutrient intakes at baseline (habitual diet) and during each dietary phase1.

Controlled Feeding Phases

Baseline2 C1 C2 C3 C4 C5 C6

Energy (kcal) 3028¡1049 2553¡327 2528¡339 2585¡286 2506¡333 2517¡339 2509¡336

Protein (g) 132¡44 129¡7 125¡6 125¡8 123¡10 123¡10 123¡11

Carbohydrate (g) 333¡149 47¡2 83¡4 131¡3 179¡2 251¡12 346¡28

Fat (g) 130¡44 209¡34 193¡35 179¡29 152¡34 121¡32 80¡27

SFA (g) 46¡19 84¡14 76¡15 71¡11 61¡15 49¡14 32¡11

MUFA (g) 33¡13 77¡14 64¡11 57¡8 48¡11 36¡10 24¡8

PUFA (g) 20¡10 31¡5 35¡8 35¡9 27¡7 24¡6 14¡5

Cholesterol (mg) 533¡218 844¡96 878¡91 824¡68 583¡131 448¡136 334¡154

Fiber (g) 27¡15 15¡1 19¡1 23¡4 27¡3 29¡2 35¡5

1Values are mean ¡ SD.
2Determined from 3-day diet records.

doi:10.1371/journal.pone.0113605.t002
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Monounsaturated Fatty Acids

Compared to baseline, palmitoleic acid was significantly (P50.000) decreased at

C1 in plasma TG (233%) and CE (249%) fractions and the response was highly

uniform, with all subjects showing a decrease from baseline to C1. Plasma TG and

CE palmitoleic acid showed a step-wise increase as carbohydrate was progressively

increased from C1 to C6 (Fig 3A). The subjects demonstrated a wide range of

palmitoleic acid levels at any given carbohydrate intake; however there was reduced

variance with lower carbohydrate diets (Fig 3B). There was also a noticeable

uniformity among subjects in their progressively higher palmitoleic acid levels going

from low- to moderate- to high-carbohydrate intakes. Similar to 18:0, as

carbohydrate increased plasma oleic acid (18:1n-9) decreased in the TG fraction,

but increased in the PL fraction, although the absolute changes were small.

Figure 2. Cumulative change from baseline in (A) body mass and fat mass from dual-energy x-ray absorptiometry, (B) fasting lipoproteins, (C)
insulin resistance determined from homeostatic model assessment (HOMA), and (D) blood pressure in 16 subjects who switched to a very low
carbohydrate diet and then incrementally increased carbohydrate every 3 wk over six sequential phases (C1RC2RC3RC4RC5RC6). BL 5

baseline, FL 5 free-living low-carbohydrate diet). Significant differences from Baseline vs C1 were determined by dependent t-test and indicated by an
asterisk. Differences from C1 to C6 were determined by repeated measures ANOVA and Fisher’s LSD post hoc. Different letters at a time point indicate
statistical significance.

doi:10.1371/journal.pone.0113605.g002
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Discussion

A cornerstone of dietary guidelines has been the restriction of saturated fat, but

that position is now being questioned in large part because recent analyses have

found that saturated fat intake is unrelated to risk of disease [2]. However, a

higher proportion of plasma saturated fat is related to increased risk of diabetes

and heart disease. Thus, there is a need to better understand the relationship

between dietary and plasma saturated fat. In this study, we sought to shed light on

the impact of replacing saturated fat with carbohydrate on plasma fatty acid

composition. Subjects were studied over 21 wk while consuming diets that were

progressively higher in carbohydrate and lower in fat. This ‘dose response’

protocol involved six levels of carbohydrate, which allowed us to examine how a

wide range of carbohydrate increments affected plasma fatty acid composition

Table 3. Plasma fatty acid responses1.

Controlled Feeding Phases2 P-Value

Free-Living3 C1 C2 C3 C4 C5 C6 T-Test4 ANOVA5

Triglyceride (wt%)

14:0 1.02¡0.30 0.99¡0.38a 1.09¡0.33a 1.28¡0.44ac 1.27¡0.75ac 1.62¡0.89bc 1.79¡0.98b 0.002 0.000

16:0 23.94¡1.95 24.36¡1.63 23.96¡1.15 24.34¡2.01 24.92¡3.51 25.50¡3.63 25.65¡4.15 0.268 0.150

18:0 4.06¡0.92 4.00¡0.78a 3.84¡0.75ac 3.82¡0.75 ac 3.73¡0.83a 3.61¡0.75bc 3.45¡0.63b 0.078 0.027

16:1 2.92¡0.61 2.59¡0.58a 2.79¡0.77ac 3.15¡0.92bc 3.09¡1.03bc 3.61¡1.22d 3.89¡1.26d 0.000 0.000

18:1 37.04¡3.70 36.83¡2.76a 37.13¡1.89a 35.87¡2.47ab 36.25¡2.97ab 35.81¡3.31ab 35.09¡3.09b 0.126 0.050

SFA 29.72¡2.54 29.82¡1.83 29.45¡1.24 29.95¡2.24 30.43¡4.50 31.19¡4.69 31.38¡5.31 0.242 0.294

MUFA 40.80¡3.90 40.27¡3.14 40.81¡2.50 39.80¡2.43 40.09¡2.70 40.17¡3.31 39.79¡2.95 0.438 0.731

Cholesteryl Ester (wt%)

14:0 0.69¡0.78 0.65¡0.42a 0.67¡0.44ab 0.90¡0.57bc 0.79¡0.41abc 0.80¡0.31abc 1.01¡0.47c 0.005 0.032

16:0 11.31¡1.62 11.17¡1.25 11.07¡1.25 10.88¡1.32 10.66¡0.74 10.66¡1.36 11.34¡1.00 0.579 0.188

18:0 0.99¡0.40 0.92¡0.38 1.01¡0.53 1.20¡0.84 0.94¡0.42 0.96¡0.51 1.06¡0.58 0.168 0.143

16:1 1.90¡0.50 1.72¡0.38a 2.23¡1.35b 2.69¡1.45bc 2.31¡1.00b 2.40¡1.17bc 2.84¡1.28c 0.000 0.001

18:1 15.92¡1.40 15.98¡1.37 15.89¡1.37 15.53¡2.09 15.49¡1.53 15.20¡1.85 16.17¡1.26 0.963 0.338

SFA 13.39¡2.30 13.21¡2.12 13.24¡2.14 13.62¡3.33 12.89¡1.68 12.90¡2.18 14.34¡2.39 0.231 0.113

MUFA 18.23¡1.56 17.95¡1.42 18.50¡2.33 18.73¡3.51 18.18¡1.97 18.03¡2.56 19.44¡1.99 0.034 0.258

Phospholipid (wt%)

14:0 0.27¡0.13 0.30¡0.14a 0.28¡0.09a 0.33¡0.10ab 0.34¡0.12bc 0.38¡0.14cd 0.37¡0.11bd 0.044 0.000

16:0 26.90¡1.63 27.52¡1.49a 26.82¡1.72b 26.29¡1.67b 26.72¡1.87bc 26.24¡1.75b 26.97¡2.09ac 0.001 0.001

18:0 13.68¡1.47 13.13¡1.20a 13.44¡1.55ab 13.79¡1.71b 13.71¡1.44b 13.68¡1.59b 13.88¡1.77b 0.000 0.048

16:1 0.57¡0.17 0.61¡0.31a 0.55¡0.16a 0.60¡0.22a 0.60¡0.23a 0.63¡0.20ab 0.74¡0.26b 0.055 0.030

18:1 8.09¡0.81 8.23¡0.59a 8.05¡0.47ac 8.22¡0.82a 8.37¡0.62a 8.53¡0.81abc 8.75¡0.80b 0.074 0.005

SFA 43.17¡2.49 43.22¡1.41 42.98¡2.17 42.80¡1.65 43.10¡1.70 43.56¡1.65 43.56¡1.74 0.489 0.114

MUFA 11.07¡1.19 11.21¡1.27 11.20¡1.52 10.99¡1.21 11.05¡0.93 11.22¡0.90 11.51¡1.24 0.421 0.396

1Values are mean ¡ SD from 16. SFA 5 total saturated fatty acids; MUFA 5 total monounsaturated fatty acids.
2C1 5 lowest carbohydrate diet and C6 5 highest carbohydrate intake.
33wk run-in diet phase before entering feeding portion of study.
4Dependent t-test (Baseline vs C1).

doi:10.1371/journal.pone.0113605.t003
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within the same person. The results showed that increasing intake of dietary

saturated fat did not accumulate in plasma lipid fractions when carbohydrate was

restricted, and moreover when dietary saturated fat intake was decreased there was

not a consistent decrease in plasma saturated fat. Whereas plasma saturated fat

did not associate with dietary carbohydrate or saturated fat; plasma palmitoleic

acid, a biomarker associated with increased risk of hyperglycemia, insulin

resistance, metabolic syndrome, and type-2 diabetes, tracked incrementally with

dietary carbohydrate.

Several lines of evidence point to endogenously produced palmitoleic acid (i.e.,

cis-16:1n-7) as being associated with dietary carbohydrate intake. In a large

population consuming high-carbohydrate diets, there were incremental increases

in erythrocyte palmitoleic acid across quartiles of carbohydrate intake ranging

Figure 3. (A) Change from baseline in plasma palmitoleic acid (16:1) in triglyceride (TG) and cholesteryl ester (CE) in subjects who consumed a very low
carbohydrate diet (C1) and then gradually transitioned to a high carbohydrate diet over six sequential phases (C1RC2RC3RC4RC5RC6). (B) Individual
responses in plasma TG 16:1 from C1 to C4 to C6 corresponding to 47, 179, and 344 g carbohydrate/day. Open circles are subjects who went from low- to
high-carbohydrate, and shaded triangles are subjects who went from high- to low-carbohydrate intake.

doi:10.1371/journal.pone.0113605.g003
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from 273 to 419 g/day [9]. In our previous hypocaloric and isocaloric very low-

carbohydrate diet studies, we observed consistent decreases in plasma palmitoleic

acid independent of fat composition and weight loss. The current results provide

additional data that dietary carbohydrate is a primary driver of plasma palmitoleic

acid. Subjects who progressively increased carbohydrate from 47 to 346 g/day

showed a step-wise increase in plasma palmitoleic acid.

There was remarkable uniformity in the pattern of plasma palmitoleic acid

responses as a function of dietary carbohydrate, although the individual

trajectories varied. There was also significant variability between individuals

during each diet phase with greater variance as carbohydrate increased (Fig 3B).

For example, at a carbohydrate intake of 47 g/day TG palmitoleic acid varied from

,2 to 4 wt%, whereas at 346 g/day it varied from 2 to 7 wt%. Higher proportions

of palmitoleic acid in blood or adipose tissue are consistently associated with a

myriad of undesirable outcomes such as obesity [27, 28], hypertriglyceridemia

[29], hyperglycemia [15], inflammation [30, 31], metabolic syndrome [8, 9, 30],

type-2 diabetes [10–14], coronary disease [32], heart failure [33], and incidence

and aggressiveness of prostate cancer [21]. It is difficult to assign a specific

threshold above which palmitoleic acid confers an increased risk of developing

these conditions. In the Physician’s Health Study a one standard deviation

increase in plasma palmitoleic acid was associated with a 17% higher odds ratio of

congestive heart failure [33]. In obese subjects who lost significant weight, higher

adipose tissue palmitoleic acid before the diet was associated with failure to

maintain weight loss [27]. Since the presence of palmitoleic acid is an indicator of

de novo fatty acid synthesis [3], as there is little palmitoleate in common dietary

fats, its rising proportion may serve as a proxy of carbohydrate flux through non-

oxidative disposal pathways and a harbinger of adverse clinical outcomes.

In regards to total plasma SFA, the pattern of response was more variable than

palmitoleic acid. Similar to our previous studies [24, 25], when dietary saturated

fat was increased in the context of a very low-carbohydrate intake, the proportion

of total plasma SFA was not increased. In this study saturated fat intake at baseline

was increased by 38 g/day at C1 through regular consumption of whole eggs, full

fat dairy, and high-fat meats. The lack of accumulation of this additional saturated

fat was likely due in part to greater oxidation of SFA, as indicated by the

significant decrease in respiratory exchange ratio during C1. Whole body fat

oxidation increases markedly when dietary carbohydrate is restricted [34], and it

is likely that SFA become preferred substrates for beta-oxidation in low-

carbohydrate-adapted individuals.

Carbohydrate-induced insulin secretion stimulates DNL and potently sup-

presses lipolysis and fat oxidation [35], which would promote accumulation of

endogenous SFA even when they are reduced in the diet. In the current study,

dietary saturated fat was decreased by more than half from C1 to C6 (84 to 32 g/

day), yet the majority of participants showed a numerical increase in plasma SFA

in all lipid fractions over this same time period. The relative contribution of DNL

and fat oxidation and their sensitivity to dietary carbohydrate manipulation likely

varies considerably between people and explains the less uniform response in total
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plasma SFA observed in the current study. However, the pattern of lower plasma

SFA after the low-carbohydrate diet with the highest amount of saturated fat, and

numerically higher plasma SFA after the high-carbohydrate diet with the least

amount of saturated fat, is consistent with the regulation of DNL and fat

oxidation by carbohydrate intake and its effect on the glucose-insulin axis.

The reduced proportion of plasma palmitoleic acid after the low-carbohydrate

diet was associated with positive responses in other traditional risk markers.

Serum triglycerides, glucose, insulin, and estimates of insulin sensitivity were

improved as well. Serum cholesterol responses were variable but consistent with

the known effects of carbohydrate restriction to increase, on average, total

cholesterol, HDL-C and LDL-C relative to low-fat diets [36].

There were several limitations in this study. The diet phases were relatively

short to keep the entire feeding portion of study less than 6 months, and by design

we created menus that were hypocaloric to induce weight loss. The highest

carbohydrate intake was only 55% of total energy and it was consumed in the

context of a daily caloric deficit and ongoing weight loss for most subject.

Whether carbohydrate-induced increases in plasma palmitoleic acid would have

been similar or more pronounced in the context of eucaloric weight maintenance

diets remains unknown. Furthermore, since subjects initially restricted carbohy-

drates and then sequentially added them back over time it is difficult to

disassociate temporal changes that may be influenced by cumulative weight loss or

lingering effects from the previous diet phases. To address this limitation we

provided the diets in reverse order (i.e., high- to low-carbohydrate) to a small

number of participants (n55). In these individuals, plasma palmitoleic acid

responded in the exact opposite pattern as the primary group providing strong

evidence that the major driver of circulating palmitoleic acid was the level of

carbohydrate in the diet, and was not significantly modified by the order of diets,

length of each diet phase, or weight loss (data not shown).

In summary, high intakes of saturated fat (including regular consumption of

whole eggs, full-fat dairy, high-fat beef and other meats) does not contribute to

accumulation of plasma SFA in the context of a low carbohydrate intake. A

progressive decrease in saturated fat and commensurate increase in carbohydrate

intake, on the other hand, is associated with incremental increases in the

proportion of plasma palmitoleic acid, which may be signaling impaired

metabolism of carbohydrate, even under conditions of negative energy balance

and significant weight loss. These findings contradict the perspective that dietary

saturated fat per se is harmful, and underscore the importance of considering the

level of dietary carbohydrate that accompanies saturated fat consumption.
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