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Abstract: Taxus species have attracted much attention for
their potency in cancer treatment. However, investigating
the bioactivities of Taxus species is a complex task, due to
their diversity, slow growth, and endangered state. The
most important Taxus species in China are Taxus chi-
nensis (T. chinensis), Taxus cuspidata (T. cuspidata), and
Taxus × media (T. media), which mainly grow in the
northeastern region. This article probes deep into the
differences among the leaves of T. chinensis, T. cuspidata,
and T. media, with the aid of gas chromatography-mass
spectrometry (GC-MS). Through GC-MS, 162 compounds
were detected in the samples and found to contain 35
bioactive metabolites. On this basis, 20 metabolites with
significant bioactivities (antibiotic, antioxidant, antic-
ancer, and antiaging effects) were identified via unsuper-
vised learning of principal component analysis and
supervised learning of partial least squares-discriminant
analysis. The results show that T. media has the most
prominent antibiotic, antioxidant, and anticancer effects,
while T. cuspidata has the most diverse and abundant
metabolites that slow down aging.
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1 Introduction

Taxus species are rich in a natural antitumor substance
called taxol [1]. This substance can keep tubulin stable
and inhibit cell mitosis, exhibiting a strong radio-sensi-
tizing effect [2]. There is a good evidence that taxol is a
potent drug against various cancers. As a result, taxol has
been applied alone or with other anticancer agents to
treat breast, ovarian, and lung cancers [2,3]. To date,
more than 400 taxoids and modified taxoids have been
isolated for characterization from the bark, seeds, and
leaves of the genus Taxus [4,5].

Each Taxus species has its unique properties and,
thus, a particular way of use. Most plants in the Taxus
family are endangered evergreen trees or shrubs that
grow rather slowly [1,5]. Of the various Taxus species,
three aremainly used in northeasternChina, namely, Taxus
chinensis (T. chinensis, N), Taxus cuspidata (T. cuspidata,
D), and Taxus × media (T. media, M). T. chinensis is an
evergreen conifer native to China, where it is also referred
to as “Beauteous Taxus” [6]. It grows across southeastern
China, including Jiangxi, Fujian, Hunan, and Taiwan [5].
Being an endemic plant to China, T. chinensis is under pro-
tection for its high value as a natural anticancer plant [7].
The extracts of the plant have been commonly used in
traditional Chinese medicine for cancer treatment [7,8].
T. cuspidata is a low-trailing and evergreen tree or shrub
and the most extensively studied Taxus species. This plant
mainly grows in the northeastern mountains of China, the
Korean Peninsula, and Japan. It is also a very popular orna-
mental tree in Japan andNorth America. Apart from being a
garden tree, T. cuspidata has been used as a crude drug to
treat diabetes, promote diuresis, and stimulate menstrual
flow [9]. More than 120 new taxoids have beendiscovered in
T. cuspidata [3]. T. media is an evergreen shrub with a huge
biomass, a high growth rate, and a strong adaptability to
the environment [10]. It is the natural hybrid from T. cuspi-
data, the female parent, andTaxus baccata (T. baccata), the
male parent [10]. The plant has been growing for almost a
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century in North America [10]. T. media boasts a lush
foliage, a strong resistance to cold, and a high ornamental
value. Overall, the Taxus species are well-known for their
precious medicinal and greening effects. Currently, the
research mainly focuses on the taxol in different Taxus
species. For example, the transcriptome analyses provide
insights into the expression pattern and sequence similarity
of several taxol biosynthesis-related genes [11]. And the
comparative metabolomic analysis reveals the variations
in taxoids and flavonoids among the Taxus species [12].
However, there is not yet a clear comparison of bioactivities
among T. chinensis, T. cuspidata, and T. media in bioactiv-
ities [13]. The bioactivities include antibiotic, antioxidant,
anticancer, and antiaging effects in medical plants [14]. To
make up for the gap, this article compares the difference
among the leaves ofT. chinensis,T. cuspidata, andT.media,
with the aid of gas chromatography-mass spectrometry
(GC-MS).

The GC-MS is the most popular technique used to
identify and quantify plant metabolomics. Metabolomics
approaches have been in the spotlight as a powerful tool
to gain comprehensive information of the metabolic net-
work and to significantly identify the different metabo-
lites related to the defense mechanisms [15–17]. And
GC-MS analysis predominantly focuses on the identifica-
tion and quantification of small polar and volatile com-
ponents, e.g., primary metabolites such as amino acids,
sugars, and organic acids. Through GC-MS, 162 com-
pounds were detected in the samples and found to
contain 35 bioactive metabolites. Then 20 significant
metabolites were identified via principal component ana-
lysis (PCA) and partial least squares-discriminant ana-
lysis (PLS-DA) and divided into four classes based on
bioactivity. The results show that T. media has the most
prominent antibiotic, antioxidant, and anticancer effects,
and T. cuspidata is the most suitable choice to slow down
aging.

2 Materials and methods

2.1 Materials

T. chinensis, T. cuspidata, and T. media were grown in a
growth chamber at the temperature of 25°C (day)/18°C
(night) and the relative humidity of 45%. All necessary
nutrients were supplied to ensure the normal growth of
the plants. Before flowering, the well-grown leaves of

three species were selected and divided into three groups,
each of which contains six repeated samples.

2.2 Sample preparation

Leave tissues of 60 mg were weighted and mixed with
360 μL of cold methanol and 40 μL of internal standards
(0.3mg/mL 2-chlorophenylalanine in methanol). The mix-
ture was homogenized by a Tissuelyser-192 (Jingxin,
Shanghai). After 30min of ultrasonication, the sample
was added with 200 μL of chloroform and 400 μL of
water. The mixture was vortexed for 2 min and sonicated
for 30 min, before being centrifuged at 10,000 g for
10 min at 4°C. Next 400 μL of supernatant was relocated
to a glass sample vial and vacuum dried at room tem-
perature. The residue was derivatized in two steps: first,
80 μL of methoxyamine (15 mg/mL in pyridine) was
added to the vial and the mixture was vortexed for
30 s and kept at 37°C for 90 min; second, 80 μL of
N,O-bis(trimethylsilyl)trifluoroacetamide, 1% trimethyl-
chlorosilane, and 20 μL of n-hexane were added and the
mixture was kept at 70°C for 60 min.

2.3 GC-MS analysis

Each 1 μL of aliquot of the derivatized solution was
injected into an Agilent 7890A-5975C GC-MS system
(Agilent, USA) with a split ratio of 30:1. Separation was
carried out on a nonpolar Agilent J&W DB-5 capillary
column (inner diameter: 30m × 250 μm; Agilent, USA),
with high-purity helium as the carrier gas at a constant
flow of 1.0 mL/min.

The GC temperature was programmed as follows: the
initial oven temperature was set to 50°C, which was
increased at 8°C/min to 125°C, 15°C/min to 170°C, 4°C/
min to 210°C, 10°C/min to 270°C, and 5°C/min to 305°C;
the final temperature of 305°C was maintained for 5 min.
The temperature of injection and ion source was set to
260°C and 230°C, respectively.

Electron ionization (−70 eV) at full scan mode (m/z
30–600) was used, with an acquisition rate of 20 spec-
trum/s in the MS setting. Throughout the analytical run,
the quality control (QC) samples were injected at regular
intervals (every 10 samples) to provide a set of data with
assessable repeatability. Each QC sample was prepared
by mixing aliquots of the tissue samples into a pooled
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sample and then analyzed by the same method as the
analytic samples.

2.4 Data extraction and analysis

The MS data acquired through GC-MS were analyzed by
ChromaTOF (v 4.34; LECO, USA). After being aligned
with Statistic Compare component, the comma separated
vector file was obtained with three-dimensional (3D) data
sets, including sample information, retention time, and
peak intensities. Then each data set was normalized
using the total peak intensity of each sample.

The data sets obtained by GC-MS were separately
imported into SIMCA 13.0 (Umetrics, Sweden). Then PCA
and PLS-DA were carried out to visualize the metabolic
alterations among the test groups, after mean centering
and unit-variance scaling. The default sevenfold cross
validation was applied. To prevent overfitting, 1/7 of the
samples were excluded from the model in each round.

During the experiments, all differentially expressed
compounds were selected by comparing the compounds
among T. chinensis, T. cuspidata, and T. media through
multivariate statistical analysis, Student’s t test, and
Mann–Whitney U test. The metabolites with both multi-
variate and univariate statistical significance (variable
importance in projection [VIP] > 1.0 and p < 0.05) were
identified. The similarity of more than 70%was considered
as the reference standard. According to the PLS-DA
results, the overall contribution of each variable to the
PLS-DA model was ranked by VIP, and the variables
with VIP > 1.0 were deemed as relevant for group
discrimination.

2.5 Statistical analysis

To improve normality, the metabolite data were log2
transformed and normalized. A total of 18 samples were
subject to clustering analysis by R, revealing the

Figure 1: The heat map on the relative differences of compounds among T. chinensis, T. cuspidata, and T. media. Note: The relative content
of each metabolite was normalized to complete the hierarchical clustering; high and low abundances are in red and blue, respectively.
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variations in T. chinensis, T. cuspidata, and T. media in
leaf tissues. Then a heat map and a box plot were drawn
to display the structure of the experimental data with
R-3.2.0 and SigmaPlot 10.0, respectively.

3 Results and discussion

Taxus species is a widely favored landscape plant [18].
But only a few studies have compared the bioactivities of
different Taxus species. In this article, the GC-MS is per-
formed to detect the differences among the leaves of
T. chinensis, T. cuspidata, and T. media. A total of 162
compounds were obtained from the GC-MS analysis.
And 35 metabolites were selected based on antibiosis,
antioxidant, anticancer, and antiaging effects. The con-
tent value of each metabolite was normalized to complete
the linkage hierarchical clustering. Then the heat map
visualization of relative differences of metabolites among
T. chinensis, T. cuspidata, and T. media is shown in
Figure 1. The metabolites were phosphomycin, epicate-
chin, 3,4-dihydroxyphenylacetic acid, anandamide, de-
hydroshikimic acid, catechin, lactobionic acid, 4-nitrocate-
chol, fumaric acid, pyruvic acid, glycolic acid, glutamine,
methionine, fucose,4-aminobutyric acid, spermidine, 2,3-
dihydroxybenzoic acid, synephrine, epigallocatechin,
taxifolin, squalene, kyotorphin, lactic acid, gallic acid,
naringin, tartaric acid, L-malic acid, ferulic acid, caffeic
acid, phytosphingosine, dodecanol, cis-2-hydroxycinnamic
acid, salicin, from top to bottom, in turn.

To identify the significant metabolites, the dimen-
sionality of the GC-MS data was reduced; and the grouping

Figure 2: The PCA score plot (a) and PLS-DA score plot (b) of compounds among T. chinensis, T. cuspidata, and T. media. Note: Blue circle,
yellow diamond, and red square represent T. chinensis, T. cuspidata, and T. media, respectively.

Table 1: Different metabolites among T. chinensis, T. cuspidata, and
T. media

Metabolites VIP Relative
content

Amino
acids

Citrulline 1.26 M > D

Methionine 1.05 D
N-Epsilon-acetyl-L-lysine 1.04 D
Norleucine 1.04 D
3-Hydroxynorvaline 1.01 D
Lysine 1.19 D > M > N
Threonine 1.19 D > M > N
Alanine 1.18 D > M > N
Proline 1.18 D > M > N
Phenylalanine 1.17 N > M > D
Isoleucine 1.16 D > M > N
Nicotinoylglycine 1.16 N > M > D
Beta-alanine 1.16 D > N > M
Serine 1.12 D > M > N
Ornithine 1.10 M > D
Valine 1.10 D > M > N

Sugars Melezitose 1.34 N > M > D
Sedoheptulose 1.33 M > D
Trehalose 1.19 N > M
Salicin 1.18 M > D
Prunin 1.35 N
Levoglucosan 1.16 N > M > D
Lactose 1.15 M > D
Isopropyl-beta-D-
thiogalactopyranoside

1.11 M > D > N

Fucose 1.11 D
Maltotriitol 1.11085 M > D > N
Glucose 1.05 M > D > N

Acids Pelargonic acid 1.34 M
3,4-Dihydroxyphenylacetic acid 1.33 M > D
2-Hydroxybutanoic acid 1.33 M > D > N
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of samples was visualized through the PCA, an unsuper-
vised multivariate analysis technique, and PLS-DA, a
supervised multivariate analysis technique. In the PCA
score plot, three species had significant separations,
whose interpretability and predictability were 35.6 and
24.3%, respectively (Figure 2a).

As shown in Table 1, from the PLS-DA of three species,
a total of 85 significant metabolites were selected under
the criteria of VIP > 1 and p < 0.05. These metabolites

Table 1: continued

Metabolites VIP Relative
content

o-Hydroxyhippuric acid 1.32 M > D
Dehydroshikimic acid 1.31 M > N
2-Methylglutaric acid 1.30 M
Hippuric acid 1.32 M > D
Fumaric acid 1.23 N > D > M
L-Malic acid 1.23 N > M > D
Aminooxyacetic acid 1.20 N > M > D
3-Hydroxypropionic acid 1.19 D
2,3-Dihydroxybenzoic acid 1.19 D > N > M
Pipecolinic acid 1.18 D
Itaconic acid 1.18 N > M > D
2-Hydroxy-3-
isopropylbutanedioic acid

1.18 D > M

Glycolic acid 1.16 D > N
Caffeic acid 1.15 M > D
Pyruvic acid 1.15 D > N > M
4-Aminobutyric acid 1.13 D > M > N
Oxalic acid 1.11 N > D > M
cis-2-Hydroxycinnamic acid 1.10 M > N > D
Galactonic acid 1.08 M > D > N
Threonic acid 1.08 M > D > N
Quinic acid 1.06 M > D > N
D-Glyceric acid 1.05 D > M > N
Tartaric acid 1.05 M > D > N
Allylmalonic acid 1.04 M > D
6-Hydroxy caproic acid 1.02 D

Amines Anandamide 1.37 M > D > N
Ethanolamine 1.19 D > M > N
N-Omega-acetylhistamine 1.17 D
5-Methoxytryptamine 1.14 D > N
Methoxamedrine 1.13 N > M > D
Lactamide 1.12 D
Spermidine 1.11 D > M > N

Alcohols Acetol 1.36 N
2-Amino-1-phenylethanol 1.18 D > M > N
Allo-inositol 1.18 M > N > D
2-Aminoethanethiol 1.16 N > M > D
Dodecanol 1.12 M > D > N
Myo-inositol 1.01 M > N > D

Others Phosphomycin 1.36 M > D
4-Nitrocatechol 1.31 D > M > N
4-Androsten-11 beta-ol-3,17-
dione

1.08 D > M > N

1,3-Diaminopropane 1.07 D > M > N
4-Hydroxybutyrate 1.03 M > N > D
Squalene 1.02 M

Note: VIP is the variable importance in projection (VIP > 1; p < 0.05);
N, D, and M represent T. chinensis, T. cuspidata, and T. media,
respectively.

Table 2: Four classes of significant metabolites among T. chinensis,
T. cuspidata, and T. media

Bioactivities Metabolites Relative
content

Antibiotic
effect

Phosphomycin M > D

Fumaric acid N > D > M
Dodecanol M > D > N
cis-2-Hydroxycinnamic acid M > N > D
Caffeic acid M > D
4-Hydroxybenzoic acid M > N > D
3,4-Dihydroxyphenylacetic acid M > D

Antioxidant
effect

Caffeic acid M > D

4-Hydroxybenzoic acid M > N > D
3,4-Dihydroxyphenylacetic acid M > D
L-Malic acid N > M > D
Tartaric acid M > D > N
Pyruvic acid D > N > M
Epicatechin M > D > N
Anandamide M > D > N
Dehydroshikimic acid M > N > D

Anticancer
effect

2,3-Dihydroxybenzoic acid D > N > M

Caffeic acid M > D
4-Hydroxybenzoic acid M > N > D
Salicin M > D
Fucose D
Squalene M
3,4-Dihydroxyphenylacetic acid M > D
Anandamide M > D > N
Dehydroshikimic acid M > N > D

Anti-aging
effect

4-Aminobutyric acid D > M > N

Spermidine D > M > N
Squalene M
Methionine D

Note: N, D, and M represent T. chinensis, T. cuspidata, and
T. media, respectively.
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differed sharply in abundance within the leaf tissues of
different species and contributed greatly to leaf discrimi-
nation between three species. Then the metabolites were
classified into 16 amino acids, 11 sugars, 28 acids, 6 alco-
hols, 7 amines, and 6 unclassified compounds. Among
them, amino acids and amines were mainly detected in
T. cuspidata (12 and 5, respectively), while sugars, acids,
and alcohols were mainly detected in T. media (6, 14, and
3, respectively).

From Figures 1 and 2, 20 metabolites with different
significant bioactivities (p < 0.05) were identified, includ-
ing anandamide, phosphomycin, epicatechin, 3,4-dihy-
droxyphenylacetic acid, dehydroshikimic acid, fumaric
acid, L-malic acid, 2,3-dihydroxybenzoic acid, salicin,
caffeic acid, pyruvic acid, 4-aminobutyric acid, dodecanol,
spermidine, fucose, cis-2-hydroxycinnamic acid, tartaric
acid, methionine, 4-hydroxybenzoic acid, and squalene.
The identified metabolites were classified by four kinds
of bioactivities, namely, antibiotic effect, antioxidant
effect, anticancer effect, and antiaging effect (Table 2).

As shown in Table 2 and Figure 3, seven metabolites
were found to have significant antibiotic effect. These

metabolites were mainly detected in the leaves of
T. cuspidata and T. media. The highest contents of these
metabolites were observed in T. media. Among them,
dodecanol has an antifungal effect [19]. Phosphomycin,
fumaric acid, caffeic acid, cis-2-hydroxycinnamic acid,
4-hydroxybenzoic acid, and 3,4-dihydroxyphenylacetic
acid boast the broad-spectrum antibacterial property.
Phosphomycin, 4-hydroxybenzoic acid, and 3,4-dihy-
droxyphenylacetic acid can inhibit the synthesis of cel-
lular structure [20–22]. Fumaric acid, cis-2-hydroxycinnamic
acid, and caffeic acid can regulate the osmotic pressure of
cells [23,24]. By antibiotic effect, three Taxus species can
be ranked in the descending order as T. media, T. cuspi-
data, and T. chinensis.

As shown in Table 2 and Figure 4, seven metabolites
were found to have significant antioxidant effects. Among
them, caffeic acid, 4-hydroxybenzoic acid, 3,4-dihydroxy-
phenylacetic acid, tartaric acid, and epicatechin were
prominently accumulated in T. media; L-malic acid was
mainly accumulated in T. cuspidata; and pyruvic acid
wasmainly accumulated in T. chinensis. These metabolites
can effectively suppress the oxidation of free radicals by

Figure 3: The content of metabolites with significant antibiotic effect. (a) Phosphomycin, (b) fumaric acid, (c) caffeic acid, (d) cis-2-
hydroxycinnamic acid, (e) 4-hydroxybenzoic acid, (f) dodecanol, and (g) 3,4-dihydroxyphenylacetic acid.
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directly interfering in or indirectly consuming these radi-
cals [25–27]. By antioxidant effect, three Taxus species
can be ranked in the descending order as T. media,
T. cuspidata, and T. chinensis.

As shown in Table 2 and Figure 5, nine metabolites
were found to have significant anticancer effects. Among
them, caffeic acid, 4-hydroxybenzoic acid, 3,4-dihydrox-
yphenylacetic acid, squalene, anandamide, dehydroshi-
kimic acid, and salicin were observably accumulated in
T. media; only 2,3-dihydroxybenzoic acid and fucose
were dramatically accumulated in T. cuspidata. Their
anticancer effect mainly comes from the interference in
normal metabolism of cancer cells or the destruction of
the cell structure [20,21,27–30]. The best anticancer effect
was observed in T. media.

As shown in Table 2 and Figure 6, four metabolites
were found to have significant antiaging effects: 4-amino-
butyric acid, spermidine, squalene, and methionine.
Specifically, methionine, which was only detected in
T. cuspidata, can affect the key physiologically active
substances of antidepressant [31]. Both 4-aminobutyric
acid and spermidine mainly existed in T. cuspidata. The

former is an inhibitory neurotransmitter capable of acti-
vating the brain and delaying brain aging, while the latter
delays protein aging by inhibiting the synthase of neu-
ronal nitric oxide and mitigates age-related memory loss
[32]. Squalene, which was detected in T. media, exerts
biological redox effect and improves the energy effi-
ciency, thereby enhancing immunity and slowing down
aging [33]. By antiaging effect, the three Taxus species
can be ranked in the descending order as T. cuspidata,
T. media, and T. chinensis. To sum up, T. media is
an excellent ornamental plant with excellent antibiotic,
antioxidant, and anticancer effects; T. cuspidata stands
out in antiaging effect.

4 Conclusions

This article mainly compares the levels and bioactivities
of metabolites in the leaves of T. chinensis, T. cuspidata,
and T. media through untargeted metabolomics GC-MS.
The differences in bioactivity were found to vary with the

Figure 4: The content of metabolites with significant antioxidant effect. (a) L-malic acid, (b) tartaric acid, (c) pyruvic acid, (d) epicatechin,
(e) caffeic acid, (f) 4-hydroxybenzoic acid, and (g) 3,4-dihydroxyphenylacetic acid.
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Figure 5: The content of metabolites with significant anticancer effect. (a) Salicin, (b) fucose, (c) squalene, (d) caffeic acid, (e) anandamide,
(f) dehydroshikimic acid, (g) 2,3-dihydroxybenzoic acid, (h) 3,4-dihydroxyphenylacetic acid, and (i) 4-hydroxybenzoic acid.

Figure 6: The content of metabolites with significant antiaging effect. (a) 4-Aminobutyric acid, (b) spermidine, (c) squalene, and
(d) methionine.
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relative contents of these metabolites in three species.
The results show that T. media has the most prominent
antibiotic, antioxidant, and anticancer effects, while
T. cuspidata is the most suitable choice to slow down
aging. The research results provide a reference for improv-
ing human health with Taxus species and for applying
GC-MS to other ornamental plants.
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