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Behavioural and cognitive 
mechanisms of Developmental 
Topographical Disorientation
Ford Burles* & Giuseppe Iaria*

Individuals affected by Developmental Topographical Disorientation (DTD) get lost on a daily basis, 
even in the most familiar of surroundings such as their neighbourhood, the building where they have 
worked for many years, and, in extreme cases, even in their own homes. Individuals with DTD report a 
lifelong selective inability to orient despite otherwise well-preserved general cognitive functions, and 
the absence of any acquired brain injury or neurological condition, with general intelligence reported 
to be within the normal range. To date, the mechanisms underlying such a selective developmental 
condition remain unknown. Here, we report the findings of a 10-year-long study investigating the 
behavioural and cognitive mechanisms of DTD in a large sample of 1211 cases. We describe the 
demographics, heritability pattern, self-reported and objective spatial abilities, and some personality 
traits of individuals with DTD as compared to a sample of 1624 healthy controls; importantly, we 
test the specific hypothesis that the presence of DTD is significantly related to the inability of the 
individuals to form a mental representation of the spatial surroundings (i.e., a cognitive map). We 
found that individuals with DTD reported relatively greater levels of neuroticism and negative affect, 
and rated themselves more poorly on self-report measures of memory and imagery skills related 
to objects, faces, and places. While performing interactive tasks, as a group, the individuals with 
DTD performed slightly worse on a scene-based perspective-taking task, and, notably struggled to 
solve tasks that demand the generation and use of a cognitive map. These novel findings help define 
the phenotype of DTD, and lay the foundation for future studies of the neurological and genetic 
mechanisms of this lifelong condition.

Getting lost is a common experience. However, individuals affected by Developmental Topographical Disorienta-
tion (DTD) get lost on a daily basis, even in the most familiar of surroundings such as their neighbourhood, the 
building where they have worked for many years, and, in extreme cases, their own homes1. DTD was first reported 
in a Canadian woman in 20082, a case that was followed by several others around the world3–9. Behavioural and 
neurological evaluations of individuals with DTD reveal a lifelong selective inability to orient despite other-
wise well-preserved general cognitive functions, and the absence of any acquired brain injury or neurological 
condition3,4,10, with general intelligence reported to be within the normal range2,6,7,10. Therefore, despite getting 
lost in extremely familiar surroundings, individuals with DTD do not seem to differ in their general cognitive 
abilities from individuals who have no orientation problems. In all cases, individuals with DTD show the same 
symptoms1: (a) they get lost daily in extremely familiar surroundings, (b) they report experiencing topographi-
cal disorientation from childhood, (c) they have no other cognitive complaints (i.e., attentional, perceptual, 
or memory issues), and (d) they do not report any brain injury or neurological disorders. As suggested by a 
recent pilot study, DTD appears to aggregate in families, suggesting that there may be genetic factors involved 
in manifesting this condition11.

The neurological mechanisms underlying DTD are currently unknown. The handful of case studies, 
and a single group study with nine individuals, have not revealed any gross volumetric or structural brain 
abnormalities3–5,7. However, altered functioning of regions of the spatial orientation/navigational network, par-
ticularly the posterior cingulate and the retrosplenial cortex, have been most consistently implicated in the 
few neuroimaging investigations of DTD. For instance, while control subjects display robust retrosplenial and 
posterior cingulate brain activity when performing tasks requiring the recall of a sequence of landmarks12, indi-
viduals with DTD perform poorly on such tasks and display no significant posterior cingulate activity4,13. Impor-
tantly, three recent independent studies in individuals with DTD3,8,10 documented perturbations of resting-state 
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functional connectivity between the posterior cingulate cortex, the hippocampal complex, and the prefrontal 
cortex, among other regions, again with no notable structural abnormalities. Although not conclusive, these 
findings suggest that DTD may be a disorder best characterized by altered functionality of the brain network 
critical for spatial orientation and navigation, of which the posterior cingulate cortex is an important hub14.

The inability of individuals with DTD to orient in familiar surroundings is related to difficulties in adopt-
ing a variety of cognitive strategies known to be useful for orientation5,6, including associating directions with 
landmarks, or following routes based on left–right body turns. In most cases, however, individuals with DTD 
seem to be unable to form a mental representation of the environment (i.e., a cognitive map) despite extended 
exposure to their spatial surroundings5,6. This specific symptom seems to be in line with a lifelong experience 
of getting lost—given that cognitive maps are critical to successful orientation in familiar surroundings since, 
once formed, they allow individuals to reach any target location from anywhere within the environment, and 
even permit generating alternative, unexplored routes if required15. Therefore, the inability of individuals with 
DTD to form cognitive maps may leave them with a sense of unfamiliarity, frequently triggering topographical 
disorientation even in the most familiar surroundings. Although this hypothesis seems plausible given the cur-
rent knowledge on the critical role that cognitive maps play in spatial orientation, to date, the limited number 
of reported cases of DTD available in the literature is not sufficient to verify this hypothesis and define the 
phenotype(s) of this developmental condition.

Here, we report the findings of a 10-year-long study aiming at describing the behavioural and cognitive 
mechanisms of DTD in a large sample of 1211 cases. We describe the demographics, heritability pattern, self-
reported and objective spatial ability, and some personality traits of individuals with DTD as compared to a 
sample of 1624 healthy controls, and importantly, illustrate that the presence of DTD is primarily related to the 
inability to form spatial cognitive maps.

Results
Acronyms.  ‘BF’ refers to the Bayes Factor for any given variable to be included in a model—larger Bayes Fac-
tors indicates stronger evidence of an effect. The odds ratio, ‘OR’, represents the difference ratio of a categorical 
effect between two groups, and can be interpreted as a measure of effect size. In the present study, odds ratios 
exceeding one indicate a greater proportion of a characteristic in the DTD sample, whereas ratios smaller than 
one indicate a greater proportion of a characteristic in the control sample. The mean difference between the DTD 
sample and control sample on a quantitative variable is indicated by ‘MD’.

Demographics.  The female:male ratio in our DTD sample (a ratio of 5.21:1) was far greater than that in the 
control sample (a ratio of 1.55:1; χ2 = 178.288, p = 1.146e−40, OR 3.351), and the participants in the DTD sam-
ple (age M = 35.66, SD = 13.18 years) were on average older than those from the control sample (age M = 29.07, 
SD = 12.83 years; Welch t2552.870 = 13.250, p = 8.342e−39). While both the DTD and control samples were predom-
inantly drawn from an urban population (urban:rural ratios of 4.659 and 6.382, respectively), the DTD sample 
was proportionally constituted by slightly more rural participants (χ2 = 9.102, p = 0.003, OR 1.370).

Heritability.  Individuals with DTD generally reported more first-degree relatives with orientation difficul-
ties that arose in childhood (χ2 = 266.160, p = 7.796e−60, OR 2.914; see Table 1), and both control (χ2 = 58.850, 
p = 1.702e−14, OR 2.406) and DTD participants (χ2 = 122.743, p = 1.588e−28, OR 2.494) reported more female 
than male first-degree relatives with orientation difficulties that arose in childhood.

Table 1.   First-degree-relative orientation issues contingency table. Affected and Unaffected indicate if the 
family member experienced topographical disorientation, as reported by the proband. Only responses from 
relationships where the presence of topographical disorientation was explicitly affirmed or denied were 
included. FDR first-degree relative.

Affected Unaffected Odds ratio χ2 p

Fathers of controls 26 1152
5.770 75.526 3.607e−18

Fathers of DTDs 103 791

Mothers of controls 109 1047
3.729 119.896 6.668e−28

Mothers of DTDs 250 644

Brothers of controls 63 1004
1.940 15.696 7.437e−5

Brothers of DTDs 94 772

Sisters of controls 101 831
2.420 46.619 8.620e−12

Sisters of DTDs 205 697

Sons of controls 25 203
1.593 3.233 0.072

Sons of DTDs 52 265

Daughters of controls 33 212
2.593 18.558 1.648e−5

Daughters of DTDs 88 218

Overall FDRs of controls 357 4449
2.922 266.160 7.796e−60

Overall FDRs of DTDs 792 3387
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Behavioural self‑report.  A smaller proportion of DTD participants (33.691%) as compared to control 
participants (52.803%) reported playing video games involving walking, navigating, or driving (χ2 = 102.512, 
p = 4.288e−24, OR  0.454). However, for those that play such video games, we did not detect significant dif-
ferences between DTD and control participants in the hours per week currently played (Welch t331.375 = 0.858 
p = 0.392), nor the number of years played (Welch t686.441 =  − 1.489 p = 0.137). As expected, DTD participants 
reported difficulty remembering routes, despite having travelled them multiple times, at far greater rates than 
control participants (χ2 = 937.495, p = 6.935e−206, OR 35.519). DTD participants were also far more likely to 
report getting lost more than once a week while travelling to familiar destinations (without GPS or similar; 
χ2 = 882.238, p = 7.129e−194, OR 13.561), as well as getting lost at least once in their own home in the past year 
(χ2 = 38.242, p = 6.250e−10, OR 2.520).

Self‑assessment and sense of direction.  Unsurprisingly, we detected extremely strong evidence 
that individuals with DTD reported far poorer sense of direction than controls on the Santa Barbara Sense 
of Direction scale (SBSOD16; BF = inf, MD = 34.476 [32.646, 36.346]), as well as strong evidence of a DTD by 
age interaction (DTD*age BF = 188.731) in which older control participants reported better sense of direction 
(b = 0.307, SE = 0.029), whereas in older participants with DTD this effect was attenuated (b = 0.096, SE = 0.027). 
We detected very strong evidence that individuals with DTD report somewhat worse ability than controls in 
recognizing familiar faces (BF = 2.275e+11, MD = 0.506 [0.330, 0.667]) and objects (BF = 8.071e+9, MD = 0.384 
[0.243, 0.521]), and particularly strong evidence for worse reports of their ability to recognize familiar places 
(BF = 3.561e+172, MD = 1.810 [1.655, 1.959]), but no difference in their self-reported ability to recognize facial 
expression (BF = 0.047). Similarly, we detected strong evidence that individuals with DTD reported a poorer capac-
ity to imagine familiar faces (BF = 4.866e+18, MD = 0.690 [0.494, 0.877]), objects (BF = 4.584e+22, MD = 0.594 
[0.448, 0.738]), and places (BF = 3.658e+107, MD = 1.498 [1.336, 1.666]). There was also strong evidence that 
those with DTD report more difficulty discerning left from right (BF = 3.162e+23, MD = 0.836 [0.622, 1.040]), 
and rely on their GPS far more when travelling to familiar (BF = 2.318e+258, MD = 2.904 [2.712, 3.093]) and 
unfamiliar (BF = 1.453e+72, MD = 1.45 [1.249, 1.667]) destinations. Control participants (b = 0.040, SE = 0.004) 
also reported a greater age-related decrease in GPS use than those with DTD (b = 0.015, SE = 0.004) when travel-
ling to unfamiliar locations (BF = 3107.978). These data are summarized in Fig. 1.

Social and personality measures.  No sufficiently-evidenced DTD-related effects were detected for posi-
tive affect (BFs ≤ 0.511), social engagement (BFs ≤ 0.731), self-efficacy (BFs ≤ 1.277), self-esteem (BFs ≤ 1.711), 
locus of control (BFs ≤ 0.276), nor relationship satisfaction (BFs ≤ 2.591), excepting the core self-evaluations 
scale where BFs ≤ 8.776. However, our analyses indicated very strong evidence for individuals with DTD having 
greater negative affect (BF = 2.525e+6, MD = 3.620 [1.999, 5.322]), lower extraversion (BF = 49.203, MD = 12.092 
[3.196, 22.832]), and greater trait neuroticism (BF = 1341.580, MD = 17.480 [6.658, 29.785]). These data are sum-
marized in Fig. 1.

Interactive tasks.  Despite the DTD participants reporting a poorer ability to recognize and imagine famil-
iar faces as compared to controls, we did not detect evidence for such a difference in accuracy (BF = 0.247) 
or reaction time (BF = 0.136) on the Cambridge Face Memory Task17. Similarly, we found no evidence of dif-
ferences in accuracy (BF = 0.169) or reaction time (BF = 0.112) on the Mental Rotation Task. On the other 
hand, individuals with DTD performed more poorly than controls on our assessment of perspective-taking 
ability, the Gettinglost.ca Four Mountains Task (BF = 542.562, MD = 5.4  [2.0,  9.4]%), and, as expected, per-
formed significantly worse than controls in the two different measures of cognitive map formation, i.e. the Spa-
tial Configuration Task (BF = 2495.242, MD = 8.8  [3.0,  14.2]%) and the Cognitive Map Test (BF = 4.178e+16, 
MD = 4.488 [3.155, 5.943] trials  to criterion). Correcting for the different chance-level performances in these 
tasks (i.e., computing the ‘interpretable’ range as the range between the accuracy expected by chance and 100% 
accuracy), the mean difference between DTD and control groups spanned 22.4% of the interpretable range of 
the Cognitive Map Test, 13.1% of the interpretable range of the Spatial Configuration Task, and 7.2% of the 
interpretable range of the Four Mountains Task. These differences are summarized in Fig. 2.

Discussion
In this report, we have described the various demographic, familial, personality, and spatial measures that appear 
to be affected in individuals with DTD. This large sample of individuals with DTD all self-reported difficulties 
orienting and no other cognitive or neurological conditions. Individuals with DTD reported relatively greater 
levels of neuroticism and negative affect, and rated themselves more poorly on self-report measures of object, 
face, and place memory and imagery. From our battery of interactive tasks, as a group, the individuals with 
DTD slightly struggled on a scene-based perspective-taking task (i.e., the Gettinglost.ca Four Mountains Task) 
and clearly struggled with tasks that demanded they generate and use a mental representation of an environ-
ment, i.e., the Spatial Configuration Task and Cognitive Map Test. The performance of individuals with DTD on 
cognitive-map-based tasks appeared to more saliently differ from that of controls, although none of these tasks 
provided a clear differentiation between those who reported orientation difficulties and those who did not. These 
results are largely consistent with our understanding of the importance of cognitive maps for flexible navigation 
and spatial orientation. An individual unable to form and make use of cognitive maps for navigation is largely 
restricted to navigating using rigid, route-based strategies18, relying on navigational aids such as turn-by-turn 
GPS navigation systems19, or relying on others to wayfind. Individuals with DTD regularly report making use of 
these compensatory strategies, but they are often situational and do not ameliorate the deficit these individuals 
experience. Furthermore, the higher reported levels of neuroticism and negative affect in individuals with DTD 
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is likely indicative of an increased level of stress reactivity, with the threat of getting lost a prominent stressor in 
these individuals’ lives. It is possible that higher levels of neuroticism or negative affect are not core features of 
DTD, but are more likely to be associated with DTD causing impairments in performing day-to-day navigational 
activities (potentially via adoption of maladaptive coping strategies20, or even agoraphobia21–23) and therefore 
increasing the likelihood of characterizing oneself as having difficulties orienting. In addition to this possibility, 
neuroticism has been shown to affect the functioning of a wide variety of brain regions, including some impli-
cated in spatial processing e.g., the hippocampus, posterior cingulate, caudate nucleus, and fusiform gyrus24–26. It 
may be the case that neuroticism exists as a risk factor for DTD in a biological sense, in that it may be associated 
with brain network perturbations in a similar manner to those seen in DTD.

Another interesting feature of our DTD sample was the overwhelming ratio of females to males, at over 5:1. 
While a substantial portion of this is likely sampling bias, e.g. men less likely to seek help or report difficulties27–29, 
it seems unlikely that this is a complete account of the preponderance of women in our DTD sample. Our sam-
ple also reported significantly more female than male relatives with orientation difficulties, although at a more 
modest ratio of approximately 2.4:1. The larger number of females reporting difficulties orienting may also be 
partially due to the tendency for males to perform better than females at some spatial tasks30–33; the current bat-
tery detected evidence of a sex advantage for males in Mental Rotation Task accuracy, Spatial Configuration Task 
reaction time, and Four Mountains Task accuracy (reported in Supplemental Table S1). These differences may 

Figure 1.   Data from the navigational self-assessment, sense of direction, social, and personality questionnaires 
from the DTD and control samples. Nested pie charts depict the demographic composition of each variable. 
Histograms or probability density plots have group means marked with vertical lines. Asterisks indicate 
evidenced (i.e., Bayes Factors exceeding 10) group differences between those with DTD and controls, with 
any evidenced effects or interactions including age or sex accounted for. PANAS positive and negative affect 
schedule.
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provide a ‘cognitive reserve’, making males more resilient to DTD as they generally can sustain larger perturba-
tions in their spatial abilities before experiencing deficits in their day-to-day functioning. Furthermore, males 
appear to be noticeably less affected by stress-related impairments to spatial ability as compared to females34–36, 
another mechanism that undoubtedly affects the rates that one would experience getting lost in familiar and 
unfamiliar places.

Previous research in prosopagnosia, i.e., the impaired ability to recognize familiar faces, identified that some 
of those with face processing issues also experience issues recognizing places or forming cognitive maps37,38. This 
relationship is possibly driven by some degree of overlap between the visual cortex processing faces and scenes39, 
and the close proximity of the Fusiform Face Area (FFA) and Parahippocampal Place Area (PPA)40. While our 
participants with DTD self-reported comparatively poorer capacity to recognize and imagine familiar faces, we 
did not detect any evidence for differences in performance between individuals with DTD and controls on the 
Cambridge Face Memory Task. However, it is important to note that our sample would have excluded anyone 
who reported having prosopagnosia, which may appear co-morbidly at rates greater than expected by chance. In 
addition, it is possible that individuals with DTD generally have some issues with face processing that are simply 
not captured by the task we employed41, or this is indicative of a bias in evaluating one’s own abilities42. The Cam-
bridge Face Memory task employed in the present study utilizes static face stimuli, with peripheral information 
(e.g., hair, ears) removed. It is possible that assessing the face processing and memory of individuals with DTD 
with more demanding, ecological stimuli (e.g., short movies43, people embedded in spatial and/or social contexts, 
longer encoding-to-recall delays) would have revealed deficits coherent with their self-report. That is to say that 
the self-reported face processing difficulties in DTD may be attributable to these complementary processes 
that are involved in recalling or recognizing people, but short-term face recognition memory specifically does 
not appear to be grossly impaired in our DTD sample. The generally poorer performance on the Gettinglost.ca 
Four Mountains Task by individuals with DTD does suggest that there may be a substantial proportion of these 
individuals experiencing some difficulty processing and remembering complex visual stimuli, but not faces per 
se. Visual processing of faces and places both are ventral-stream processes, and presumably share a large portion 
of neural resources, but portions of the cortex that specialize in places (e.g. the PPA) and faces (e.g. the FFA) are 
distinct enough that these processes are clearly dissociable; intact face and object processing abilities alongside 
impaired topographical abilities can be seen in some individuals with right posterior cerebral artery infarcts 
resulting in damage to the parahippocampal or anterior fusiform gyri44. While the neurological correlates of 
performing the four mountains task are not well-described in healthy participants, intact functioning of the 
hippocampus and parahippocampus appear to be necessary to perform this task45,46. Kim et al.’s investigation of 

Figure 2.   Interactive face processing and spatial assessments. Nested pie charts depict the demographic 
composition of each variable. Histograms or probability density plots have group means marked with vertical 
lines. Asterisks indicate evidenced (i.e., Bayes Factors exceeding 10) group differences between the DTD and 
control group, with any evidenced effects or interactions including age or sex accounted for. The Gettinglost.
ca Four Mountains task is a measure of scene memory and spatial perspective taking, the Spatial Configuration 
Task and Cognitive Map Task are measures of the ability to form a cognitive map of an environment.
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J.N., a case of DTD, revealed impaired functional connectivity of a handful of brain regions, including the PPA 
and hippocampus3. Such neurological features may be underlying the difficulties that some of those with DTD 
experience on the Gettinglost.ca Four Mountains Task.

Moving to a more nuanced understanding of DTD will be difficult. It is clear that spatial orientation and 
navigation are complex cognitive phenomena that can be supported, compensated for, or perturbed at cognitive47, 
perceptual48, or sensory49 levels, with the potential for genetic11, social-personal50 and neurobiological risk factors 
associated with this condition. There is a need to identify more discrete and objective criteria for identifying DTD, 
as to-date, we have been largely reliant on self-report measures as the primary diagnostic factors, the present 
study included. Such self-reports may be exaggerated, or participants may believe they are expected to respond in 
a certain way (e.g. a social desirability bias), among other possible sources of error51. However, that is not to say 
that subjective reports do not have a place in future investigations in DTD; much like subjective reports of sleep 
quality appear to capture different variance than that typically captured by objective measures of sleep quality52,53, 
subjective reports of spatial ability (e.g., the Santa Barbara Sense of Direction Scale) are not well explained by any 
single objective measure of spatial ability48,54. Strategy use47, acute stressors55, and social and technological factors 
can easily and significantly alter an individual’s subjective wayfinding experiences about that expected from their 
spatial ability directly. Subjective measures can holistically capture this variability that would be overwhelming 
to capture in a series of measures designed to capture each factor independently—and assuming all important 
factors are known and could be captured and combined in this manner. That being said, we feel that there is a 
need for simple objective tasks that we would reasonably expect those with DTD to be unable to solve, and those 
without DTD to be able to solve. From our findings on the inability to form cognitive maps, as well as direct 
experience and reports from those with DTD, the most straightforward task that individuals with DTD struggle 
with is pointing to unseen landmarks (much like the deficit seen in acquired topographical disorientation result-
ing from damage to the retrosplenial/posterior cingulate cortex44). Most adults, as an example, are able to point 
in the direction of their home when sitting in their doctors office (typical errors not withstanding56), whereas 
those with DTD often report they are simply guessing when tasked to do this. Another commonly-reported2,6,7,13 
behaviour in DTD is the spatial-detail-sparse drawings of the layout of their own home or workplace (see Fig. 3). 
Similarly, we would expect individuals with DTD to not have substantial deficits in the ability to perform lower-
level cognitive tasks, such as those measured by the mental rotation task, four mountains task, and face memory 
tasks, that one would reasonably expect would cause their inability to navigate throughout familiar environments. 
While these quick assessments can often complement a subjective report of difficulties navigating, we have not 
yet identified a task with sufficient sensitivity or specificity to diagnose DTD alone. That being said, the present 
study indicates that of the tasks in our battery, performance on cognitive map-style tasks appear to be the most 
affected in those individuals struggling with getting lost in their day-to-day lives.

A clearly delineated cognitive-behavioural characterization of DTD will be critical for and complemented 
by investigations of the neurological correlates of this condition. All individuals with DTD get lost in familiar 
environments, but the degree to which a given individual struggles with getting lost, as well as other related pro-
cesses, varies between cases. For instance, ‘Pt1’, an individual with DTD, required 32 min to generate a cognitive 
map of a simple virtual environment2, whereas ‘Dr. WAI’, another case of DTD, performed this task in 9 min, 
comparable to that of controls6. ‘Dr. WAI’ also struggled on measures of mental rotation and other smaller-scale 
spatial skills, whereas ‘Pt1’ did not. These differences could represent possible taxonomies within DTD57, or 
perhaps simply normal individual variability in spatial skills (and/or compensatory strategies), but regardless, 
should be reflected in investigations of these individuals’ functional brain architecture. Therefore, inconsistent 
cognitive-behavioural descriptions of DTD will preclude consistent neurological descriptions. To address this, we 
suggest that investigations of DTD would greatly benefit from common use of explicit and sensitive assessments 
of scene processing ability, face processing ability, and mental rotation ability, among other related processes, 
such as those provided on our online testing platform (gettinglost.ca) and freely available to anyone. It is appar-
ent that there will be individual variability within the population of individuals with DTD5. However, we will 

Figure 3.   Drawings of the same household by an individual with DTD (A), their unaffected spouse (B), 
and their unaffected child (C). Notice the lack of metric spatial information present in the drawing in (A), in 
which only the rough order of rooms is reported. Individuals with DTD are often using a verbal strategy when 
map-sketching: reporting the order of landmarks experienced on a known route, and using that sequence 
information to produce a rough map.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20932  | https://doi.org/10.1038/s41598-020-77759-8

www.nature.com/scientificreports/

need to carefully categorize cases that are consistent with the original characterization of DTD—in which the 
subject’s disorientation appears to be ‘primary’, with no other factor or lower-level process (e.g., visual agnosias) 
clearly responsible for their navigational deficit—from cases in which another affected cognitive process may be 
responsible for the individual’s disorientation to some degree57, making the subject’s disorientation ‘secondary’ 
to those deficits. Only from a well-defined symptomology can a cohesive neurological profile be identified, and 
perhaps effective cognitive-behavioural rehabilitation programs be developed.

Methods
Participants.  We recruited and tested 4028 participants through an online platform (www.getti​nglos​t.ca) 
between October 2009 and April 2020. This sample included locally-recruited participants as well as participants 
who performed the study unsolicited. From these, we identified 1211 participants (65 years old or younger) 
affected by DTD as indicated by the official inclusion/exclusion criteria for this condition2, that is (a) getting 
lost frequently in extremely familiar surroundings, (b) experiencing the orientation problem consistently from 
childhood or adolescence (i.e., the stage at which we would expect an individual to begin independently navi-
gating), (c) reporting no other cognitive complaints (i.e., attentional, perceptual, or memory issues), and (d) 
reporting no brain injury or neurological conditions. In the present study, these criteria were operationalized as 
follows: (a) participants responded ‘yes’ to the query ‘do you experience difficulties orienting?’, (b) participants 
responded ‘no’ to the query ‘have these difficulties changed over time?’ and responded to ‘how old were you 
when you first became aware of or concerned about your lack of orientation skills?’ with an age of less than 
20, (c) responded ‘no’ to the query ‘do you have any neurological condition or cognitive disorder including 
colourblindness?’, and (d) responded ‘no’ to the query ‘Are you aware of having any brain damage, brain mal-
formation, or brain tumour?’. The DTD sample included 1015 females (M = 35.79, SD = 13.33 years old) and 196 
males (M = 35.00, SD = 12.42 years old), resulting in a female:male ratio of 5.21:1. In addition to the individuals 
identified as affected by DTD, we identified 1624 healthy individuals (65 years old or younger) who did not 
report any orientation problems nor, as for the participants with DTD, any cognitive complaints, brain injuries 
or neurological conditions. The sample of control participants included 986 females (M = 27.80, SD = 12.44 years 
old) and 638 males (M = 31.01, SD = 13.19 years old), a female:male ratio of 1.55:1. The remaining individuals 
were excluded from the study and all analyses due to either being older than 65 years of age, or not providing 
clear information allowing us to classify them as either a DTD or control participant. The recruited participants 
participated in varying assessment batteries, and as such have varying degrees of data completeness. The differ-
ent questionnaires and interactive tasks that participants completed are detailed below. Although not recorded 
formally, we estimated that throughout the decade of recruitment and texting one-third of the individuals with 
DTD reached out to us after completing our assessments, and underwent an unstructured phone interview or 
email conversation in which we confirmed the lifelong inability to orient in extremely familiar surroundings as 
reported in our online questionnaires. As we did not objectively assess the presence or absence of other cognitive 
or neurological conditions in this sample of individuals with DTD, it is possible that some cases are misclassified. 
The Conjoint Health Research Ethics Board (CHREB) of the University of Calgary approved the study and all 
research was performed in accordance with its guidelines and regulations. Informed consent was obtained from 
all participants.

Demographics and questionnaires.  Participants were first asked to complete a demographics question-
naire and answer a series of questions about their navigational and orientation skills and related processes (i.e., 
the Navigational Self-Assessment) and the Santa Barbara Sense of Direction Scale (SBSOD16). Subsequently, 
participants completed a short questionnaire on the spatial skills of their family members (DTD Family-Her-
itability; data reported in Table 1). Participants also completed a battery of social and personality measures, 
consisting of numerous self-report scales including: the Positive and Negative Affect Schedule58, social engage-
ment measured by Lubben’s social network scale59, the Core Self-Evaluations Scale60, the New General Self-
Efficacy Scale61, the Rosenberg Self-Esteem Scale62, and relationship satisfaction measured by the Relationship 
Assessment Scale63, a 5-item version of Levenson’s Locus of Control scale64, the IPIP 60-item Extraversion scale, 
and the IPIP 60-item Neuroticism scale65, 66. Sample items from these scales, as well as data completeness are 
reported in the supplementary materials.

Interactive tasks.  The Cambridge face memory test.  The Cambridge Face Memory Test17 assesses the abil-
ity of the individuals to process facial identity information and recognize familiar faces. The task requires par-
ticipants to memorize six different faces and subsequently identify them among other faces. This specific test 
was included in the experimental protocol due to some preliminary findings suggesting a possible relationship 
between the inability to orient and the inability to recognize familiar faces10,37, as experienced by individuals 
affected by prosopagnosia67.

The mental rotation task.  The Shepard and Metzler -style Mental Rotation Task is a well-established measure 
of the ability to mentally represent and manipulate objects68. In each of the 80 trials of this task, participants are 
required to compare two 3D objects composed of 10 cubes arranged in a non-planar format, placed side-by-side, 
and identify if the two objects are the same or mirror images of each other. Object pairs are presented at varying 
degrees of rotational disparity from one another (ranging from − 120° to 120°), about any of the three canonical 
axes. Participants’ accuracy and reaction times are recorded as metrics of performance.

The Gettinglost.ca four mountains task.  The Gettinglost.ca Four Mountains Task (Fig. 4) was designed to assess 
an individual’s ability to recognize simple scenes from different perspectives, i.e. their perspective taking ability. 

http://www.gettinglost.ca
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This task was created to mimic Hartley et al. four mountains test45, but includes procedurally-generated stimuli 
and foils (i.e., generated randomly from a handful of parameters), as opposed to Hartley et al. categorically-
defined foils (in which each foil has a specific property in which it deviates from the target response), as we felt 
that this would prevent strategic responding via process of elimination. In each of the 20 trials in this task, partic-
ipants are first presented with landscape for eight seconds, with four ‘mountains’ in the foreground. Participants 
are asked to memorize the size, shape, and relative positions of these four mountains. After 2 s of blank screen, 
participants are presented with four different landscapes: one of these landscapes has the same topography as the 
studied landscape, but the camera position, lighting angle, and textures will have changed. The remaining three 
response options depict scenes with disparate topography, but the same camera position, lightning angle, and 
textures as the target option (see Fig. 4). Participants have an unlimited amount of time to select the response 
option that shares the same mountain shapes and arrangement with the studied scene; their accuracy and reac-
tion times are recorded as performance metrics. 

The spatial configuration task.  The Spatial Configuration Task was designed to assess the ability of the indi-
viduals to generate a mental representation, i.e., a cognitive map, of a simple virtual environment69,70. This task’s 
virtual environment is constituted by five simple geometric objects pseudorandomly set in a pentagonal arrange-
ment in a space-like environment. In each of the 60 trials in this task, participants are presented with a view from 
one unseen object, with two other objects in view (see Fig. 5). Participants have all three unseen objects provided 
as response options, and have as much time as they require to select the object that they are currently looking 
from, i.e., the object the camera is currently situated upon. After responding, the camera smoothly translates and 
rotates to a new object, again with only two objects in view, and a new trial begins. To successfully perform this 
task, participants are expected to generate a mental representation of the environment over successive trials, and 

Figure 4.   The Gettinglost.ca Four Mountains task. (A) Depicts a sample landscape participants would be 
asked to memorize, and (B) depicts a sample set of four response options, in which participants would select 
the option that shares the same topography as the memorized landscape (in this case, option 4). This figure is a 
derivative work of materials by Ford Burles, both provided under a CC BY 4.0 license.

Figure 5.   The Spatial Configuration Task. (A) Depicts a sample trial from the task, and (B) depicts a top-down 
view of the environment and a short schematic representation of the camera movement and view within a 
sample pair of trials. Participants never see a top-down view like that presented in (B). This figure is a derivative 
work of materials by Ford Burles, both provided under a CC BY 4.0 license.
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infer the camera’s location from the depicted viewpoint at each trial. Accuracy and reaction times are recorded 
as performance metrics.

The cognitive map test.  The Cognitive Map Test is a well-known test adopted to measure the ability of the 
individuals to create and make use of a mental representation, or cognitive map, of an environment54. This test 
is set in a 5-by-5 rectangular grid of buildings, four of which are distinct landmarks, and the others identical, 
nondescript buildings (see Fig. 6). The environment has no global environmental cues (e.g., directional lighting) 
nor any distal landmarks (e.g., mountains), to force participants to create a mental representation solely from the 
landmarks experienced while navigating. At each trial, participants are first shown a 1-min video clip depicting 
first-person movement along the streets in the virtual city, pausing to view landmarks as they pass them. After 
each video clip, the participants were asked to indicate the positions of the four landmarks on an aerial view of 
the environment, with no restriction on the time allotted to respond. Trials continued until the correct spatial 
layout of landmarks was identified, or if 20 trials elapsed without a correct response, participants would be given 
a score of 21 trials. Performance is scored as the number of trials required to provide the correct layout, with a 
greater number of trials indicative of a poorer performance. All data reported from this task utilized the same 
layout, landmarks, and trial order.

Data analyses.  For the majority of measures we performed Bayesian analyses of covariance with heteroge-
neous covariate slopes in JASP (v0.12.2), with sex, DTD status, age, and all interactions modelled. A uniformly 
distributed prior was used as the initial likelihood for each of the 19 possible models (P(M) = 1/19), and the 
number of Markov chain Monte Carlo iterations was automatically determined by JASP. For each measure, 
effects across all models were inspected, and the model-averaged, i.e. unconditional, posterior estimates from 
evidenced DTD effects (i.e., BFincl > 10, across matched models) are reported alongside their 99% credible inter-
vals. Follow-up analyses of DTD-by-age interactions were performed using simple linear regression to report 
group-specific age slopes for interpretation. Nominal data were analyzed using chi-squared tests to detect differ-
ences in the proportions of a given variable between DTD and control groups (α = 0.01). All reaction time meas-
ures were ln-transformed before analysis. Due to the large number of statistical tests performed in the present 
dataset, we opted to use conservative statistical thresholds to reduce the rate of false positive results.

Data availability
Datasets and analyses are available from the corresponding author upon request.
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