

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Factors influencing neutralizing antibody titers elicited by coronavirus disease 2019 vaccines

Yu-An Kung, Sheng-Yu Huang, Chung-Guei Huang, Kuan-Ting Liu, Peng-Nien Huang, Kar-Yee Yu, Shu-Li Yang, Chia-Pei Chen, Ching-Yun Cheng, Ing-Kit Lee, Shu-Min Lin, Han-Pin Chang, Yueh-Te Lin, Yen-Chin Liu, Guang-Wu Chen, Shin-Ru Shih

PII: S1286-4579(22)00114-9

DOI: https://doi.org/10.1016/j.micinf.2022.105044

Reference: MICINF 105044

To appear in: *Microbes and Infection*

Received Date: 30 June 2022

Accepted Date: 2 September 2022

Please cite this article as: Y.-A. Kung, S.-Y. Huang, C.-G. Huang, K.-T. Liu, P.-N. Huang, K.-Y. Yu, S.-L. Yang, C.-P. Chen, C.-Y. Cheng, I.-K. Lee, S.-M. Lin, H.-P. Chang, Y.-T. Lin, Y.-C. Liu, G.-W. Chen, S.-R. Shih, Factors influencing neutralizing antibody titers elicited by coronavirus disease 2019 vaccines, *Microbes and Infection*, https://doi.org/10.1016/j.micinf.2022.105044.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Masson SAS on behalf of Institut Pasteur.

1 Factors influencing neutralizing antibody titers elicited by coronavirus disease 2019 vaccines

Yu-An Kung^{a,#}, Sheng-Yu Huang^{a,#}, Chung-Guei Huang^{b,c,#}, Kuan-Ting Liu^{a,d,#}, Peng-Nien
Huang^{a,e}, Kar-Yee Yu^{a,d}, Shu-Li Yang^b, Chia-Pei Chen^b, Ching-Yun Cheng^b, Ing-Kit Lee^{f,g}, ShuMin Lin^{g,h,i}, Han-Pin Chang^a, Yueh-Te Lin^{a,d}, Yen-Chin Liu^a, Guang-Wu Chen^{a,b,j,k,*}, Shin-Ru
Shih^{a,b,c,l,*}

6

⁷ ^a Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University,

8 Taoyuan, Taiwan

⁹ ^b Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan

- ¹⁰ ^c Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang
- 11 Gung University, Taoyuan, Taiwan
- ¹² ^d Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University,

13 Taoyuan, Taiwan

- ¹⁴ ^e Division of Pediatric Infectious Diseases, Department of Pediatrics, Linkou Chang Gung
- 15 Memorial Hospital, Taoyuan, Taiwan
- ¹⁶ ^f Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung
- 17 Memorial Hospital, Kaohsiung, Taiwan
- ^g College of Medicine, Chang Gung University, Taoyuan, Taiwan

	2		
-	1	٠	
	ł		
	۰.		
-		-	

19	^h Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
20	ⁱ Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
21	^j Artificial Intelligence Research Center, Chang Gung University, Taoyuan, Taiwan
22	^k Department of Computer Science and Information Engineering, School of Electrical and
23	Computer Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan
24	¹ Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety,
25	and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung
26	University of Science and Technology, Taoyuan, Taiwan
27	
28	* Corresponding author
29	Guang-Wu Chen, Ph.D.
30	Department of Computer Science and Information Engineering, Chang Gung University,
31	No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan
32	Phone: +886-3-2118800 ext. 3368
33	E-mail: gwchen@mail.cgu.edu.tw
34	and
35	Shin-Ru Shih, Ph.D.
36	Research Center for Emerging Viral Infections, Chang Gung University,
37	No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan
38	Phone: +886-3-2118800 ext. 5497
39	Fax: +886-3-2118174

- 40 E-mail: srshih@mail.cgu.edu.tw
- 41 [#] These authors contributed equally to the study.

44 Abstract

45	The World Health Organization has highlighted the importance of an international standard (IS)
46	for severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) neutralizing antibody titer
47	detection to calibrate diagnostic techniques. We applied an IS to calibrate neutralizing antibody
48	titers (NTs) (international units/mL) in response to coronavirus disease 2019 (COVID-19)
49	vaccination. Moreover, the association between different factors and neutralizing antibodies was
50	analyzed. A total of 1,667 serum samples were collected from participants receiving different
51	COVID-19 vaccines. Antibody titers were determined by a microneutralization assay using live
52	viruses in a biosafety level 3 (BSL-3) laboratory and a commercial serological MeDiPro kit. The
53	titer determined using the MeDiPro kit was highly correlated with the NT determined using live
54	viruses and calibrated using IS. Fever and antipyretic analgesic treatment were related to
55	neutralizing antibody responses in ChAdOx1-S and BNT162b2 vaccinations. Individuals with
56	diabetes showed a low NT elicited by MVC-COV1901. Individuals with hypertension receiving
57	the BNT162b2 vaccine had lower NTs than those without hypertension. Our study provided the
58	international unit (IU) values of NTs in vaccinated individuals for the development of vaccines
59	and implementation of non-inferiority trials. Correlation of the influencing factors with NTs can
60	provide an indicator for selecting COVID-19 vaccines based on personal attributes.

Keywords: COVID-19 vaccines, neutralizing antibody titers, international standard

1. Introduction

63	Identification of the immune correlates of protection against severe acute respiratory syndrome-
64	coronavirus 2 (SARS-CoV-2) remains a challenge. While neutralizing antibody (NAb) titer (NT)
65	is not the only determinant of vaccine efficacy, the neutralization level is highly predictive of
66	immune protection [1-3]. The NT can be determined using many approaches, such as plaque
67	reduction assay, focus reduction assay, microneutralization assay using real viruses, and
68	pseudovirus assay [4, 5]. The assays differ substantially, including variations in protocols for
69	similar assay types and among laboratories [6, 7]. For calibration, establishment of international
70	standards (ISs) for SARS-CoV-2 NT detection remains a major goal of the World Health
71	Organization (WHO). Various standards are widely used to establish a baseline for comparing NTs
72	across different datasets (laboratories, protocols, and assays) [6]. An IS was established based on
73	the pooled human plasma data from convalescent patients [8]. For different pooled cohorts,
74	different standard sera were obtained, each having predetermined international units (IUs) for
75	converting NTs. This enabled the conversion of immunogenicity characteristics for accurate
76	comparison across laboratories and vaccine developers. Although many laboratories have applied
77	IUs to represent NTs in patients with coronavirus disease 2019 (COVID-19) or vaccinated
78	individuals, the reference data are still insufficient. Furthermore, neutralization tests using live
79	viruses in biosafety level 3 (BSL-3) laboratories are laborious and time-consuming. Binding assays

80	based on the anti-spike (S) protein or anti-receptor-binding domain (RBD) are widely used to
81	evaluate NAbs [9-11]. However, the correlation between antibody titers from enzyme-linked
82	immunosorbent assay (ELISA) binding assays and NTs (IU/mL) remains unknown.
83	In this study, serum samples were obtained from participants vaccinated with different
84	COVID-19 vaccines and were analyzed before vaccination, as well as after the first and second
85	doses, to estimate the correlation between titers obtained via microneutralization assays using live
86	viruses in a BSL-3 laboratory (IU/mL) and antibody titers measured using a commercial MeDiPro
87	serological assay. Serum samples of vaccinated individuals from Taiwan, where the local COVID-
88	19 infection rates were low during the period of sample collection, were also examined. We
89	analyzed whether factors, such as sex, age, side effects of vaccines, and underlying diseases, could
90	affect NAb response, and estimated the half-life of NTs after primary vaccination.
91	

92 **2. Materials and Methods**

93 2.1. Serum sample collection

A total of 1,667 serum samples were collected from vaccinated individuals at the Chang Gung Memorial Hospital and Chang Gung University (ethics approval number: 202001041A3C) between January 20, 2021, and April 8, 2022. An additional 120 serum samples from vaccinated individuals were purchased from Access Biologicals (Vista, CA, USA). The samples were collected as per protocol SDP-003, *Human Biological Specimens Collection*, data September 22, 2017, and qualifications of the principal investigator (Robert Pyrtle, M.D.) were reviewed and approved by the Diagnostics Investigational Review Board (Cummaquid, MA, USA).

101

102 2.2 *Cell culture and virus*

African green monkey kidney (Vero E6) cells (CRL-1586) were purchased from the American
Type Culture Collection (Bethesda, MD, USA) and maintained in Dulbecco's modified Eagle
medium (DMEM; Gibco, Waltham, MA, USA) containing 10% fetal bovine serum (FBS; Gibco)
at 37 °C. The SARS-CoV-2/human/TWN/CGMH-CGU-01/2020 isolate was used in the live virus
microneutralization assay.

108

110 2.3. Live virus microneutralization assay

111	Vero E6 cells (2×10^4 cells/well) were seeded in 96-well plates and incubated at 37 °C for 24 h.
112	The medium was then replaced by 100 μL fresh DMEM containing 2% FBS. The assay was
113	performed in a BSL-3 laboratory using the SARS-CoV-2/human/TWN/CGMH-CGU-01/2020
114	strain. All serum samples were heat-inactivated at 56 °C for 30 min and then serially diluted two-
115	fold in DMEM without FBS. From a starting dilution of 1:8 for each sample, ten 2-fold dilutions
116	were performed to obtain a final dilution of 1:8,192. Each serum sample was incubated with 100
117	median tissue culture infectious doses of SARS-CoV-2 at 37 °C for 1 h prior to infection of Vero
118	E6 cells. Subsequently, the virus-serum mixtures (100 μ L) at each dilution were added to a 96-
119	well plate containing a confluent Vero E6 monolayer. Infected cells were incubated at 37 °C for 5
120	d and then fixed with 10% formaldehyde and stained with crystal violet. The neutralization titer
121	was calculated as logarithm of the 50% endpoint using the Reed-Muench method, based on the
122	presence or absence of cytopathic effects. Each serum sample was tested in four replicates.
123	Geometric mean titers (GMTs) were calculated with 95% confidence intervals (CIs) using
124	GraphPad Prism version 8 (GraphPad Software, San Diego, CA, USA).

125

126 2.4. Serological assay

127	Each serum sample was analyzed by MeDiPro SARS-CoV-2 antibody ELISA according to the
128	manufacturer's instructions. The assay detected antibodies against S1 and RBD, and values <
129	34.47 IU/mL were considered negative.
130	
131	2.5. WHO IU conversion
132	WHO IS sera (NIBSC code 20/136) and WHO Reference Panel for anti-SARS-CoV-2 antibody
133	(NIBSC code 20/268, including NIBSC codes 20/150, 20/148, 20/144, and 20/140) were obtained
134	from the National Institute for Biological Standards and Control (NIBSC). The WHO IS (NIBSC
135	code 20/136) involves pooled plasma from 11 patients that recovered from SARS-CoV-2 infection
136	and has an arbitrarily assigned unitage of 1,000 IU/mL for neutralizing and binding activities. It is
137	used to standardize and calibrate SARS-CoV-2 serological assays across different laboratories.
138	The WHO Reference Panel (NIBSC code 20/268), including NIBSC codes 20/150, 20/148, 20/144,
139	and 20/140, was prepared from four pools of plasma from convalescent patients that tested SARS-
140	CoV-2-positive. Negative control plasma (NIBSC code 20/142) was obtained from healthy donors.
141	Antibody titers of the WHO Reference Panel were determined via neutralization assays based on
142	live virus or pseudovirus, and by ELISA that targeted S1, RBD, and N of SARS-CoV-2. Serum
143	characteristics in the Reference Panel were as follows: NIBSC code 20/150 (high titer), 20/148
144	(mid titer), 20/144 (low anti-S, relatively high anti-N protein antibodies), and 20/140 (low titer).

145	Convalescent plasma (NIBSC code 20/130) with a relatively high antibody titer was obtained from
146	an individual donor. The 50% neutralization titer (NT $_{50}$) values for the WHO IS and Reference
147	Panel sera were determined using a live virus microneutralization assay (Table S1). Each standard
148	serum sample was tested in duplicate, except for 20/130.
149	
150	2.6. Statistical analysis
151	Statistical analyses were performed using GraphPad Prism version 8. Pearson's correlation
152	coefficients (r) were used to determine the correlation between the titers obtained using different
153	serological assays and those from live SARS-CoV-2 NT assay. Data were analyzed using

Student's two-tailed unpaired t tests. Significance was set at P < 0.05. 154

155

3. Results

157	The NT is an important factor for evaluating the protection against viral infections after
158	vaccination. Varying NTs were observed in fully vaccinated individuals. Serum samples were
159	obtained from 336 individuals receiving homologous vaccinations with Vaxzevria (previously
160	called COVID-19 vaccine, AstraZeneca, ChAdOx1-S), Spikevax (previously called COVID-19
161	vaccine Moderna mRNA-1273), Pfizer BioNTech162b2 (BNT162b2), and Medigen MVC-
162	COV1901. To convert the NT to IU, NT50 values for the WHO IS and Reference Panel for anti-
163	SARS-CoV-2 immunoglobulin (obtained from NIBSC) were determined using a live virus
164	neutralization assay (Table S1) with linear regression, defining the conversion of NT50 values to
165	IU/mL (Fig. 1A). A total of 336 serum samples were tested to determine NTs using a live SARS-
166	CoV-2 microneutralization assay. We obtained NT ₅₀ values that represented 50% protection
167	against SARS-CoV-2-induced cell death. We further determined antibody titers using a
168	commercial serological assay, the MeDiPro SARS-CoV-2 antibody ELISA [12]. MeDiPro is a
169	Taiwan FDA-approved kit for quantifying S1- and RBD-binding antibodies. The assay analyzed
170	data of S1 and RBD fusion proteins to accurately predict NTs. We used live virus NT_{50} (IU/mL)
171	values as a standard to assess whether the MeDiPro assay reflected NTs based on the detection of
172	antibodies against S1 and RBD (Fig. 1B). A good correlation was observed between titers obtained
173	using MeDiPro and live SARS-CoV-2 NT assays ($r = 0.853$). The sensitivity and specificity of the

174	MeDiPro assay were 92.5% and 91.1%, respectively (Table 1). Therefore, the MeDiPro assay
175	represented an efficient tool for detecting SARS-CoV-2 NAbs without requiring a live virus
176	neutralization assay in a BSL-3 laboratory.
177	We collected serum samples from 916 individuals vaccinated with the first or second dose of
178	COVID-19 vaccines in Taiwan to further compare homologous COVID-19 vaccination. Although
179	the highest (292 IU/mL) and lowest (21 IU/mL) GMTs elicited by Moderna mRNA-1273 and
180	MVC-COV1901 were observed after the first dose, respectively (Fig. 2A), all GMTs elicited by
181	different vaccines increased after the second dose (Fig. 2B). However, NTs elicited by AZ
182	ChAdOx1-S varied to a greater extent than those elicited by the other three vaccines (Fig. 2), and
183	approximately 22% of individuals had NTs below the cut-off value (34.47 IU/mL). We collected
184	144 serum samples from individuals vaccinated with heterologous primary or booster COVID-19
185	vaccines. Heterologous primary COVID-19 vaccination (ChAdOx1-S/mRNA-1273 or ChAdOx1-
186	S/BNT162b2 combination) elicited higher GMTs than homologous primary COVID-19
187	vaccination (ChAdOx1-S/ChAdOx1-S) (Fig. 2C). Moreover, a significant increase in GMTs was
188	observed after heterologous booster COVID-19 vaccination (booster mRNA-1273 or BNT162b2),
189	except for MVC-COV1901, which was comparable to homologous primary COVID-19
190	vaccination (ChAdOx1-S/ChAdOx1-S) (Fig. 2C).

191	Next, we analyzed the factors that influence NTs elicited by COVID-19 vaccines, including
192	sex, age, fever, antipyretic analgesic medication, and underlying diseases. Sex was independently
193	related to NTs in different COVID-19 vaccination groups (Fig. 3A). Participants vaccinated with
194	MVC-COV1901 (aged \geq 61 years) showed the lowest GMTs compared to those in other younger
195	age groups (Fig. 3B). However, NTs elicited by two doses of COVID-19 vaccine were not
196	correlated with age (Fig. 3B). Side effects of vaccines, such as fever, were positively associated
197	with NTs in the ChAdOx1-S vaccination group; however, an opposite trend was observed for NTs
198	in the BNT162b2 vaccination group (Fig. 3C). Fever was not observed in the MVC-COV1901
199	vaccination group. Antipyretic analgesic treatment increased the NTs elicited by ChAdOx1-S
200	vaccines, but not by other vaccines (Fig. 3D). Underlying medical conditions are known to be
201	associated with a high risk of severe COVID-19; however, the correlation between underlying
202	medical conditions and NTs elicited by COVID-19 vaccines remains unknown. Our results
203	indicated that underlying diabetes may not affect NAbs elicited by primary ChAdOx1-S and
204	mRNA-1273 vaccination. However, participants with diabetes, who were vaccinated with MVC-
205	COV1901, had lower GMTs than those without underlying diabetes (Fig. 3E). Moreover,
206	BNT162b2 vaccination elicited fewer NAbs in participants with hypertension than in participants
207	without hypertension (Fig. 3F).

208	Since NTs are known to reduce over time, we analyzed the half-life of NTs in serum samples
209	from participants vaccinated with different COVID-19 vaccines after 14 and up to 185 d. The NTs
210	elicited by different COVID-19 vaccines reduced over time. However, the NTs elicited by the
211	homologous mRNA-1273 vaccine reduced with an estimated half-life of 79 d during this period,
212	representing the longest half-life of NTs compared to other vaccines. Although the NTs in
213	participants vaccinated with different COVID-19 vaccines declined over time, very few NTs
214	reached the cut-off value (34.47 IU/mL), except for those elicited by homologous ChAdOx1-S
215	vaccination. Moreover, the one-phase decay curve of NTs elicited by ChAdOx1-S and MVC-
216	COV1901 vaccination almost reached the cut-off value at 150 d after a second dose of vaccination
217	(Fig. 4A and D), in contrast to that by the mRNA-1273, BNT162b2, and ChAdOx1-S/mRNA-
218	1273 combination group (Fig. 4B, C, and E).
219	

4. Discussion

Antibody titers gradually increase over a few weeks after vaccination and the time span may vary 222 223 across individuals [13, 14]. Therefore, testing for NAbs to determine whether protective antibody titers are elevated after vaccination is highly essential. Vaccinated individuals may still need to 224 225 take measures to prevent infection. Hence, such assays are important for protecting vaccinated individuals and for the control and prevention of epidemics [15]. 226 In this study, we used standard serum samples to develop an approach that utilizes a 227 228 commercial kit to quantify antibody titers after vaccination. Titers determined using MeDiPro, 229 which is designed to detect NTs, were strongly correlated with those determined using live SARS-CoV-2 NT assays via IS calibration. Previous studies had indicated that mRNA vaccines (mRNA-230 231 1273 and BNT162b2) elicit higher NTs than adenovirus-based vaccines (ChAdOx1-S) [16, 17]. In the present study, we compared the protein subunit COVID-19 vaccine (MVC-COV1901), which 232 has been approved for use in Taiwan [18], with other vaccines used worldwide. We obtained 233 234 GMTs of 100, 922, 844, and 399 for NAbs in serum samples from recipients of ChAdOx1-S, mRNA-127, BNT162b2, and MVC-COV1901 vaccines, respectively, after two doses. Our results 235 236 are consistent with other studies reporting low antibody titers after the first dose followed by their dramatic increase after the second dose [19]. Moreover, the NT for individuals vaccinated with 237

heterologous COVID-19 vaccines was determined in our study. The estimates may be valuable to

239	vaccine developers for implementing non-inferiority tests.
240	Studies have shown that antibody titers are correlated with the risk of COVID-19 infection
241	and vaccine efficacy [1, 3]. However, many factors may influence NAb responses. Individuals
242	aged > 80 years show a lower neutralization response than younger individuals after BNT162b2
243	vaccination [20, 21]. The antibody response is higher in women than in men, and decreases with
244	age in those receiving BNT162b2 and ChAdOx1-S [22, 23]. However, we did not observe a
245	significant difference in NTs between males and females, which was consistent with findings of a
246	study in which participants received BNT162b2 vaccination [24-26]. Moreover, we did not
247	observe an association between NTs and age of individuals vaccinated with ChAdOx1-S, mRNA-
248	1273, BNT162b2, or ChAdOx1-S/ mRNA-1273 combination, except for the MVC-COV1901
249	group. The results for MVC-COV1901 were consistent with those of a previous study [27]. In our
250	study, fever intensity or antipyretic analgesic medication was significantly related to NTs after two
251	doses of ChAdOx1-S or BNT162b2 vaccination. The results were inconsistent in the fact that fever
252	was not significantly associated with anti-S IgG titers in individuals who received ChAdOx1-S or
253	BNT162b2 [28]. However, Tani et al. observed fever grade to be positively associated with anti-
254	RBD IgG titer and not with antipyretic medication after two doses of BNT162b2 vaccination [29].
255	Underlying medical conditions are associated with a high risk of COVID-19 [30]. NTs are higher

256	in patients without diabetes than in those with type-2 diabetes mellitus, who received the
257	BNT162b2 vaccine [24]. Hypertension is not associated with low NTs [22, 24, 31]. However,
258	Watanabe et al. had reported that hypertension is associated with low Ab titers [26]. We found that
259	NTs were reduced in individuals with diabetes that received MVC-COV1091 and in those with
260	hypertension that received BNT162b2 vaccines. The difference in immunogenicity observed in
261	our study may be attributed to ethnicity; the population analyzed in this study mainly represented
262	Asians living in Taiwan. Although the NTs elicited by the homologous mRNA-1273 vaccine
263	represented the longest estimated half-life of NTs compared to those of other vaccines, the higher
264	initial NT levels elicited by mRNA-1273 vaccine were observed at 14 d after the second-dose
265	vaccination compared to those of ChAdOx1-S and MVC-COV1091. The one-phase decay curve
266	of NTs elicited by ChAdOx1-S and MVC-COV1091 reached the cut-off value after 150 days of
267	vaccination and might depend on lower initial neutralization level. The lower estimated half-life
268	of NTs elicited by BNT162b2 and ChAdOx1-S/ mRNA-1273 combination might be caused by the
269	smaller sample size than in the other vaccination group; however, the NTs were still maintained
270	in high levels in BNT162b2 and ChAdOx1-S/ mRNA-1273 combination groups compared to that
271	in ChAdOx1-S and MVC-COV1091 groups.

In this study, we used commercially available kit for detecting COVID-19 antibodies based on its binding affinity to S1 and RBD. We found antibody titers, measured using the MeDiPro

274	SARS-CoV-2 antibody ELISA, to be strongly correlated with NTs determined via IS calibration.
275	The correlation between reactogenicity and NTs after COVID-19 vaccination would, however,
276	require further investigation. Several factors, such as different types of COVID-19 vaccines,
277	ethnicity, and collection period after vaccination, may affect the findings of different research
278	groups. More evidence would be required to determine the factors associated with NTs after
279	vaccination. Our current study described several factors that may lower the NAb response elicited
280	by COVID-19 vaccines, especially MVC-COV1901, which is a protein subunit vaccine approved
281	for use in Taiwan. Moreover, since the COVID-19 infection rates were low in Taiwan during the
282	period of sample collection, it might have excluded some factors affected by SARS-CoV-2
283	infection. We also observed that vaccine efficacy and antibody level declined over time, following
284	full immunization, which was consistent with previous studies [19, 32]. NTs are highly correlated
285	with protection. Therefore, monitoring the dynamics of antibody responses after vaccination would
286	be important to determine whether an additional vaccine booster would be required. Moreover,
287	our findings provided information that could be used to select vaccines based on the physical
288	condition and personalized needs of individuals.

290 Acknowledgements

291	This work was supported by the Research Center for Emerging Viral Infections and the Featured
292	Areas Research Center Program within the framework of the Higher Education Sprout Project by
293	the Ministry of Education, Taiwan; the Ministry of Science and Technology (MOST), Taiwan
294	[MOST 111-2634-F-182-001 and 109-2221-E-182-043-MY2]; the Research Center for Epidemic
295	Prevention Science by the MOST, Taiwan [MOST 109-2327-B-182-002]; the Chang Gung
296	Memorial Hospital [grant numbers BMRP367 and CMRPG3G1931], and the National Institutes
297	of Health, USA (grant U01 AI151698) for the United World Antiviral Research Network.
298	
299	Author contributions
300	C.G.H., G.W.C., and S.R.S. designed the experiments. Y.A.K., S.Y.H., P.N.H., Y.T.L., and Y.C.L.
301	performed the live virus neutralization assays at the BSL-3 facility. K.T.L., K.Y.Y., S.L.Y., C.P.C.,
302	and C.Y.C. performed the serological assays. S.Y.H., I.K.L., S.M.L., and H.P.C. collected the
303	serum samples. Y.A.K., S.Y.H., K.T.L., and C.G.H. analyzed the data. Y.A.K. and S.R.S. wrote

304 the manuscript. All authors have read and approved the manuscript to be submitted.

305

306

Conflict of interest 308

- The MeDiPro SARS-CoV-2 antibody ELISA was transferred from the Research Center for 309
- 310 Emerging Viral Infections, Chang Gung University, Taiwan to Formosa Biomedical Technology
- Corp., Taiwan. We hereby declare that Formosa Biomedical Technology Corp. did not financially 311
- 312 support any research at the Research Center for Emerging Viral Infections, Chang Gung University,
- Journal Prendroc and Chang Gung Memorial Hospital, Taiwan. 313
- 314
- 315

316 **References**

- 317 [1] Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing
- 318 antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2
- 319 infection. Nat Med 2021.
- 320 [2] Chia WN, Zhu F, Ong SWX, Young BE, Fong SW, Le Bert N, et al. Dynamics of SARS-
- 321 CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study. Lancet
- 322 Microbe 2021;2:e240-e9.
- 323 [3] Earle KA, Ambrosino DM, Fiore-Gartland A, Goldblatt D, Gilbert PB, Siber GR, et al.
- Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021;39:44238.
- 326 [4] Bewley KR, Coombes NS, Gagnon L, McInroy L, Baker N, Shaik I, et al. Quantification of
- 327 SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization,
- 328 microneutralization and pseudotyped virus neutralization assays. Nat Protoc 2021;16:3114-40.
- 329 [5] Supasa P, Zhou D, Dejnirattisai W, Liu C, Mentzer AJ, Ginn HM, et al. Reduced
- neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell
- 331 2021;184:2201-11 e7.
- [6] WHO/BS.2020.2403. Establishment of the WHO International Standard and Reference Panel
- for anti-SARS-CoV-2 antibody. 2020.

- 334 [7] WHO/BS.2020.2402. Collaborative Study for the Establishment of a WHO International
- 335 Standard for SARS-CoV-2 RNA. 2020.
- [8] Kristiansen PA, Page M, Bernasconi V, Mattiuzzo G, Dull P, Makar K, et al. WHO
- 337 International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet 2021;397:1347-8.
- 338 [9] Tan CW, Chia WN, Qin X, Liu P, Chen MI, Tiu C, et al. A SARS-CoV-2 surrogate virus
- neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein
- 340 interaction. Nat Biotechnol 2020;38:1073-8.
- [10] Patel EU, Bloch EM, Clarke W, Hsieh YH, Boon D, Eby Y, et al. Comparative Performance
- 342 of Five Commercially Available Serologic Assays To Detect Antibodies to SARS-CoV-2 and
- 343 Identify Individuals with High Neutralizing Titers. J Clin Microbiol 2021;59.
- [11] Huynh A, Arnold DM, Smith JW, Moore JC, Zhang A, Chagla Z, et al. Characteristics of
- 345 Anti-SARS-CoV-2 Antibodies in Recovered COVID-19 Subjects. Viruses 2021;13.
- 346 [12] Liu KT, Gong YN, Huang CG, Huang PN, Yu KY, Lee HC, et al. Quantifying Neutralizing
- 347 Antibodies in Patients with COVID-19 by a Two-Variable Generalized Additive Model.
- 348 mSphere 2022;7:e0088321.
- [13] Goel RR, Apostolidis SA, Painter MM, Mathew D, Pattekar A, Kuthuru O, et al. Distinct
- antibody and memory B cell responses in SARS-CoV-2 naive and recovered individuals
- 351 following mRNA vaccination. Sci Immunol 2021;6.

- 352 [14] Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments.
- 353 Nat Rev Immunol 2021;21:83-100.
- 354 [15] Bartsch SM, O'Shea KJ, Ferguson MC, Bottazzi ME, Wedlock PT, Strych U, et al. Vaccine
- 355 Efficacy Needed for a COVID-19 Coronavirus Vaccine to Prevent or Stop an Epidemic as the
- 356 Sole Intervention. Am J Prev Med 2020;59:493-503.
- 357 [16] Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing
- antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2
- 359 infection. Nat Med 2021;27:1205-11.
- 360 [17] Cromer D, Steain M, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralising
- 361 antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of
- boosting: a meta-analysis. Lancet Microbe 2022;3:e52-e61.
- 363 [18] Hsieh SM, Liu MC, Chen YH, Lee WS, Hwang SJ, Cheng SH, et al. Safety and
- 364 immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein
- 365 vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-
- 366 controlled phase 2 trial in Taiwan. Lancet Respir Med 2021;9:1396-406.
- 367 [19] Pegu A, O'Connell S, Schmidt SD, O'Dell S, Talana CA, Lai L, et al. Durability of mRNA-
- 368 1273 vaccine-induced antibodies against SARS-CoV-2 variants. Science 2021.

- 369 [20] Collier DA, Ferreira I, Kotagiri P, Datir RP, Lim EY, Touizer E, et al. Age-related immune
- 370 response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 2021;596:417-22.
- [21] Muller L, Andree M, Moskorz W, Drexler I, Walotka L, Grothmann R, et al. Age-dependent
- 372 Immune Response to the Biontech/Pfizer BNT162b2 Coronavirus Disease 2019 Vaccination.
- 373 Clin Infect Dis 2021;73:2065-72.
- [22] Ward H, Whitaker M, Flower B, Tang SN, Atchison C, Darzi A, et al. Population antibody
- responses following COVID-19 vaccination in 212,102 individuals. Nat Commun 2022;13:907.
- 376 [23] Wei J, Stoesser N, Matthews PC, Ayoubkhani D, Studley R, Bell I, et al. Antibody
- 377 responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United
- 378 Kingdom. Nat Microbiol 2021;6:1140-9.
- 379 [24] Ali H, Alterki A, Sindhu S, Alahmad B, Hammad M, Al-Sabah S, et al. Robust Antibody
- 380 Levels in Both Diabetic and Non-Diabetic Individuals After BNT162b2 mRNA COVID-19
- 381 Vaccination. Front Immunol 2021;12:752233.
- 382 [25] Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C, et al. Neutralising antibody
- 383 activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet
- 384 2021;397:2331-3.

- 385 [26] Watanabe M, Balena A, Tuccinardi D, Tozzi R, Risi R, Masi D, et al. Central obesity,
- 386 smoking habit, and hypertension are associated with lower antibody titres in response to COVID-
- 387 19 mRNA vaccine. Diabetes Metab Res Rev 2022;38:e3465.
- 388 [27] Lien CE, Lin Y-J, Lin Y-L, Tai I-C, Chen C. The age-dependent immunogenicity after two
- 389 doses of MVC-COV1901 vaccine. medRxiv 2021;2021.12.12.21267573.
- 390 [28] Hwang YH, Song KH, Choi Y, Go S, Choi SJ, Jung J, et al. Can reactogenicity predict
- 391 immunogenicity after COVID-19 vaccination? Korean J Intern Med 2021;36:1486-91.
- 392 [29] Tani N, Chong Y, Kurata Y, Gondo K, Oishi R, Goto T, et al. Relation of fever intensity
- 393 and antipyretic use with specific antibody response after two doses of the BNT162b2 mRNA
- 394 vaccine. Vaccine 2022;40:2062-7.
- [30] CDC. Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19:
- 396 Information for Healthcare Professionals. 2022.
- 397 [31] Pellini R, Venuti A, Pimpinelli F, Abril E, Blandino G, Campo F, et al. Initial observations
- 398 on age, gender, BMI and hypertension in antibody responses to SARS-CoV-2 BNT162b2
- 399 vaccine. EClinicalMedicine 2021;36:100928.
- 400 [32] Shrotri M, Navaratnam AMD, Nguyen V, Byrne T, Geismar C, Fragaszy E, et al. Spike-
- 401 antibody waning after second dose of BNT162b2 or ChAdOx1. Lancet 2021;398:385-7.
- 402

404 **Legends of figures**

405	Fig. 1. Correlation analysis of commercial MeDiPro serological assay with SARS-CoV-2 NT. (A)
406	A calibration curve (standard curve) was used for the conversion of NT ₅₀ values to IU/mL. Results
407	are presented in technical duplicate and error bars show the standard deviation. (B) Correlation
408	between the live virus neutralization titer (IU/mL) and titers obtained using MeDiPro SARS-CoV-
409	2 antibody assay (IU/mL) in 336 serum samples. The vertical dashed line indicates the limit of
410	detection ($NT = 34.47 \text{ IU/mL}$). The horizontal dashed lines indicate the cut-off values for MeDiPro
411	(34.47 IU/mL). Correlations were checked using Pearson's correlation coefficients (r). Geometric
412	mean titers with 95% confidence interval are shown for pre-vaccination, after the first dose, and
413	after the second dose. IU, international unit; NT, neutralizing antibody titer; SARS-CoV-2, severe
414	acute respiratory syndrome-coronavirus 2; NT50, 50% NT

415

416 Fig. 2. Antibody response in 1,060 serum samples obtained from individuals receiving 417 homologous or heterologous COVID-19 vaccination. The responses of neutralizing antibodies 418 were determined using the commercial MeDiPro serological assay. (A) NT₅₀ values for serum 419 samples from recipients of ChAdOx1-S, mRNA-1273, BNT162b2, and MVC-CoV1901 after the 420 first dose (range, 14–40 d). (B) NT₅₀ values for serum samples from recipients of ChAdOx1-S, 421 mRNA-1273, BNT162b2, and MVC-CoV1901 after the second dose (range, 14–40 d). (C) NT₅₀

422	values for serum samples from recipients of heterologous primary or booster vaccines. The GMTs
423	with 95% CI are shown, after the vaccination. Vertical dashed lines indicate the limit of detection
424	(NT = 34.47 IU/mL). Data were analyzed using Student's two-tailed unpaired t tests. ****, $P <$
425	0.0001. NT, neutralizing antibody titer; NT50, 50% NT; GMTs, geometric mean titers; CI,
426	confidence interval; ns, not significant
427	
428	Fig. 3. Factors influencing the titers of neutralizing antibodies (range, 14–40 d). NTs elicited by
429	homologous or heterologous primary COVID-19 vaccination were analyzed based on (A) sex,
430	(B) age, (C) fever grade after vaccination, (D) use of antipyretic medicines, (E) diabetes, and (F)
431	hypertension. The GMTs with 95% CI are shown, after the vaccination. Vertical dashed lines
432	indicate the limit of detection (NT = 34.47 IU/mL). Data were analyzed using Student's two-
433	tailed unpaired t tests. *, $P < 0.05$; ***, $P < 0.001$. NT, neutralizing antibody titer; GMT,
434	geometric mean titer; CI, confidence interval; ns, not significant
435	
436	Fig. 4. Reduction in neutralizing antibody titers following homologous or heterologous primary
437	COVID-19 vaccination. Estimated half-life of neutralizing antibody titers in the recipients of (A)
438	ChAdOx1-S, (B) mRNA-1273, (C) BNT162b2, (D) MVC-CoV1901, and (E) ChAdOx1-S
439	/mRNA-127 combination. The x-axis shows the 14–185-day period after the second-dose

- 440 vaccination. The *y*-axis shows the NT₅₀ values (IU/mL). Antibody half-life was estimated using a
- 441 one-phase decay exponential regression on GraphPad Prism 8. NT₅₀, 50% neutralizing antibody
- 442 titer
- 443
- 444

Tables

Table 1. Comparison of a commercial serological assay with SARS-CoV-2 neutralizing

Total samples (336)		MeDiPro SARS-CoV-2 antibody ELISA	
Live virus NT		Positive	^b Negative
Positive	280	259	21
^a Negative	56	5	51
Sensitivity=T	P/(TP+FN)	92.5% (88.8%-95.0%)	
Specificity=T	N/(TN+FP)	91.1% (80.79	%-96.1%)
PPV=TP/(TP+FP)		98.1% (95.69	%-99.2%)
NPV=TN/(TN+FN)		70.8% (59.5%-80.1%)	

TP, true positive; FP, false positive; TN, true negative; FN, false negative; PPV, positive predictive

value; NPV, negative predictive value

 $^{a,\,b}$ Negative < 34.47 IU/mL (limit of detection)

Α

