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Sumoylation is a powerful regulatory system that con-
trols many of the critical processes in the cell, including
DNA repair, transcriptional regulation, nuclear trans-
port, and DNA replication. Recently, new functions for
SUMO have begun to emerge. SUMO is covalently
attached to components of each of the four major cytos-
keletal networks, including microtubule-associated pro-
teins, septins, and intermediate filaments, in addition to
nuclear actin and actin-regulatory proteins. However,
knowledge of the mechanisms by which this signal
transduction system controls the cytoskeleton is still in
its infancy. One story that is beginning to unfold is that
SUMO may regulate the microtubule motor protein
dynein by modification of its adaptor Lis1. In other
instances, cytoskeletal elements can both bind to
SUMO non-covalently and also be conjugated by it.
The molecular mechanisms for many of these new func-
tions are not yet clear, but are under active investiga-
tion. One emerging model links the function of MAP
sumoylation to protein degradation through SUMO-
targeted ubiquitin ligases, also known as STUbL
enzymes. Other possible functions for cytoskeletal
sumoylation are also discussed. VC 2015 The Authors. Cytoskeleton
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Introduction

Sumoylation is a fascinating regulatory system that dis-
plays several similarities to the more well-known process

of ubiquitination, but is nevertheless a distinct signal trans-
duction system. Like ubiquitin, the SUMO moiety is con-
jugated to target proteins on lysine residues and this can
drastically alter that protein’s localization, protein-protein
interactions, and even its stability. Sumoylation regulates
many of the basic cellular processes, including DNA repli-
cation, translation, ribosomal maturation [Finkbeiner et al.,
2011], DNA repair [Prudden et al., 2011], PML (promy-
elocytic leukemia) nuclear body formation [Nagai et al.,
2011], nucleo-cytoplasmic trafficking [Wang et al., 2012],
kinetochore function and chromosome segregation [Stead
et al., 2003; Yong-Gonzales et al., 2012; Pinder et al.,
2013], transcription and transcriptional repression [Garcia-
Domiquez and Reyes, 2009; Ouyang et al., 2009]. These
have been expertly reviewed elsewhere [Dasso 2008; Ber-
gink and Jentsch, 2009; Stehmeier and Muller, 2009; Gar-
eau and Lima, 2010; Nagai et al., 2011; Praefcke et al.,
2012]. This review covers emerging evidence suggesting
that SUMO regulates the cytoskeleton, an idea that has not
been widely recognized previously.

The cytoskeleton is commonly considered to be comprised
of three polymer networks; the microtubules, the actin cyto-
skeleton also known as microfilaments, and intermediate fila-
ments. However, a fourth polymeric network, the septins,
should be considered as part of the cytoskeleton as well [Glad-
felter, 2010; Mostowy and Cossart, 2012] and we include a
discussion of its sumoylation in this review. Microtubules are
well recognized as a major component of the mitotic spindle
that separates genetic information found in chromosomes.
Actin plays important roles in a large variety of cellular proc-
esses including cytokinesis, muscle contraction, cell motility,
endocytosis, and phagocytosis. Both microtubules and micro-
filaments can serve as railway-like transit systems that allow
the movement of various cargoes by motor proteins along
these tracks to specific destinations within the cell. In contrast,
intermediate filament networks and septins do not serve as
tracks for motor proteins. Instead, intermediate filaments
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provide structural integrity to the cell, and septins promote
cytokinesis by forming a filamentous collar around the neck
of dividing cells [Beise and Trimble, 2011].

It has recently been established that SUMO modifies ele-
ments of all four of the cytoskeletal networks. While some
functions of the SUMO modifications are clear, a plethora
of questions remain concerning the when, how, why and by
what mechanism SUMO signaling controls the various ele-
ments of the cytoskeleton. Elucidating the similarities and
differences in SUMO’s control of the different cytoskeletal
networks will assuredly illuminate new communication cir-
cuits within the cell.

A better understanding of the regulation of the cytoskele-
ton by SUMO is likely to provide significant impacts on
human health. As the cytoskeleton is intimately involved in
numerous disease processes, new knowledge of its regula-
tion will undoubtedly lead to new ways to intervene when
its function is impaired. Sumoylation is well known to
transduce signals from multiple types of stress to influence
various cellular processes [Tempe et al., 2008]. The idea
that a similar signaling paradigm could also modulate the
cytoskeleton is just beginning to emerge. Currently how-
ever, the mechanisms by which the cytoskeleton deals with
these stresses are poorly understood. Indeed, sumoylation is
implicated in several neurodegenerative diseases including
Alzheimer’s [Zhang et al., 2008; McMillan et al., 2011;
Hoppe et al., 2013], Parkinson’s disease [Kim et al., 2011;
Krumova et al., 2011; Weetman et al., 2013], as well as
cancer [Lee et al., 2006; Liu et al., 2011; Bettermann et al.,
2012], and other diseases [Dorval and Fraser, 2007; Sarge
and Park-Sarge, 2011]. However, how sumoylation affects
the cytoskeleton in these diseases remains unclear. Clarifica-
tion of these pathways could ultimately lead to new paths
for therapy development, including new targets for drug
screening.

While it is already widely accepted that the cytoskeleton
is regulated by a multitude of different post-translational
modifications, these often transduce signals from a variety
of inputs and thus produce a variety of outputs. The
sumoylation system may provide a single molecular mecha-
nism to signal to the multiple polymers of the cytoskeleton
simultaneously. Thus, it is possible that a particular input
could result in a coordinated output for multiple cyto-
skeletal polymers.

The Sumoylation Machinery

SUMO is about 100 amino acids in size [Johnson, 2004].
Although SUMO and ubiquitin share only �18% sequence
identity, they are structurally quite similar [Vijay-Kumar
et al., 1987; Bayer et al., 1998] (Fig. 1). Like ubiquitin, the
tertiary structure of SUMO contains a b-grasp fold, which
is a common characteristic of the ubiquitin protein family
[Bayer et al., 1998]. However, there are some differences
between the two molecules. SUMO has an amino-terminal

extension approximately 20 amino acids long that is absent
in ubiquitin. Both are processed to yield a terminal glycine-
glycine motif that is used in conjugation to target proteins
[Ozkaynak et al., 1987; Wilkinson, 1997; Larsen et al.,
1998; Li and Hochstrasser, 1999; Fang and Weissman,
2004; Li and Ye, 2008].

Classically, SUMO is conjugated to a lysine residue lying
within the consensus sequence WKxE/D, where W is a large
hydrophobic residue and x is any amino acid [Melchior,
2000; Johnson, 2004]. However, about half of known con-
jugation events occur within non-consensus or incomplete
consensus sites [Blomster et al., 2009; Matic et al., 2010;
Teng et al., 2012].

There are four SUMO paralogs in humans, SUMO1-4;
but only one in the budding yeast, Saccharomyces cerevisiae
(Smt3p); and one in the fission yeast, Schizosaccharomyces
pombe (Pmt3) [Meluh and Koshland, 1995; Tanaka et al.,
1999]. In humans, SUMO1, SUMO2, and SUMO3 can
be found in multiple tissues, whereas SUMO4 mRNA
expression is most pronounced in lymph nodes and kidney
[Citro and Chiocca, 2013]. SUMO2 and SUMO3 are 97%
identical in sequence and are considered redundant with
each other. Thus, they are often referred to as SUMO 2/3.
SUMO1 shares �50% sequence identity with SUMO2/3
[Saitoh and Hinchey, 2000]. SUMO1 is most similar to the
yeast Smt3p, sharing 50% amino acid sequence identity
and a longer N-terminal extension [Schwarz et al., 1998;
Sheng and Liao, 2002]. For any of the SUMO paralogs,
SUMO is often conjugated to only a small population of
the target protein at any given time [Johnson, 2004; Klug
et al., 2013]. Although SUMO interacting motifs (SIMs)
play a role, it still remains an outstanding question of what
factors specify the conjugation of a particular paralog to a
particular cytoskeletal element [Citro and Chiocca, 2013].

The enzyme cascade of the sumoylation pathway is anal-
ogous with the ubiquitination pathway, but the enzymes are
distinct for each [reviewed in Ulrich, 2009]. Three different
classes of enzymes are required for SUMO conjugation to

Fig. 1. Structure of ubiquitin and SUMO proteins. Ribbon
drawing of ubiquitin, Smt3, SUMO1, and SUMO2. These
molecules share a common secondary structure bbaabbab
that assembles into a ubiquitin-like fold. Renderings were devel-
oped using the crystallography coordinates available from the
Protein Data Bank with the following accession numbers: ubiq-
uitin (1UBQ), Smt3 (3V60), SUMO1 (2UYZ), and SUMO2
(1WM3). The structures for the above molecules were analyzed
using the PyMOL Molecular Graphics System, Version 1.3
Schr€odinger, LLC.
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the target protein: an activating enzyme (E1), a conjugating
enzyme (E2), and a ligating enzyme (E3), which enhances
the efficiency of conjugation and specificity for SUMO tar-
gets [Hochstrasser, 2001; Johnson, 2004] (Fig. 2).

For both moieties, conjugation consists of isopeptide
bond formation between the carboxyl group of the terminal
glycine of SUMO to the epsilon amino group of a lysine
residue within the target protein, thus forming an isopep-
tide bond (Fig. 3A). SUMO can either be attached to one
lysine residue (mono-sumoylation), multiple lysine residues
(multi-sumoylation), or form SUMO chains on the target
lysine residue (poly-sumoylation) [Bencsath et al., 2002;
Hickey et al. 2012].

The conjugation of SUMO to its target substrate requires
ATP. The activation of SUMO is initiated with the adenyla-
tion of the C-terminal carboxyl group of SUMO in an ATP
dependent reaction. The process continues with the
SUMO-activating enzyme, an E1. This enzyme consists of
a heterodimer of Aos1 and Uba2 and is conserved from
yeast to human [Dohmen et al., 1995; Johnson et al., 1997;
Desterro et al., 1999]. The thiol group of cysteine within
the active site of Aos1-Uba2 attacks the adenylated SUMO,
forming a high-energy thioester bond between the Aos1-
Uba2 heterodimer and the C-terminus of SUMO [Olsen
et al., 2010]. Next, the activated SUMO is transferred to a
cysteine within the active site of the E2 SUMO-
conjugating enzyme, Ubc9p, forming a new thioester bond
[Johnson and Blobel, 1997] (Fig. 3B).

The sole E2 SUMO-conjugating enzyme is Ubc9p,
which is also highly conserved from yeast to humans [John-

son et al., 1997; Schwarz et al., 1998]. Ubc9 is regulated by
multiple post-translational modifications, including sumoy-
lation, acetylation, and phosphorylation [Ho et al., 2011;
Su et al., 2012; Hsieh et al., 2013]. Phosphorylation of
Ubc9p by the cyclin-dependent kinase, CDK1, implies that
sumoylation is coordinated with the cell cycle [Su et al.,
2012]. This has significant ramifications for control of the
cytoskeleton with its myriad layers of cell-cycle input.

SUMO conjugation can take place in the absence of a
SUMO E3, however the E3 is thought to bring the Ubc9p
into close proximity with the target substrate to enhance
SUMO conjugation and its specificity [Desterro et al.,
1999; Okuma et al., 1999; Takahashi et al., 2001]. SUMO
E3 enzymes share similar features with the RING-domain
found in the ubiquitin E3s [Hochstrasser, 2001; Johnson
and Gupta, 2001] (Fig. 4). There are several classes of
SUMO E3s; including the protein inhibitor of activated
STAT, known as the PIAS family [Shuai, 2000], polycomb
group protein Pc2 [Kagey et al., 2003], and the nuclear
pore protein complex RanBP2/Nup358 [Pichler et al.,
2002]. In budding yeast, there are four SUMO E3 ligases,
Siz1p, Siz2p/Nfi1p, Mms21p/Nse2p, and Cst9p/Zip3p
[Johnson and Gupta, 2001; Reindle et al., 2006; Duan
et al., 2011; Heideker et al., 2011; Stephan et al., 2011].
Siz1p and Siz2p are responsible for the majority of SUMO
conjugation in vivo, with Siz1p having the larger effect on
global sumoylation levels [Johnson and Gupta, 2001;
Takahashi et al., 2001].

Like ubiquitin, SUMO can form chains, known as poly-
sumoylation [Johnson and Gupta, 2001]. SUMO chains

Fig. 2. SUMOylation Pathway: To portray each state in the sumoylation pathway, surface maps were developed using crystallogra-
phy coordinates available from PDB with the following accession numbers: SUMO1 and Senp1 (2IY1), E1 complex (3KYC), E2
complex (2UYZ), E3 complex (3UIP), and sumoylated PCNA (3V60). The orientation of SUMO is maintained throughout the
sumoylation processes depicted above.

CYTOSKELETON Cytoskeletal Sumoylation 307 �



occur mainly through SUMO’s flexible N-terminal exten-
sion containing a wKxE sequence [Tatham et al., 2001].
SUMO2/3 is more likely to form chains than SUMO1,
which lacks the needed lysines [Tatham et al., 2001].
SUMO1 can also cap the end of a SUMO 2/3 chain, limit-
ing its length [Matic et al., 2008]. The budding yeast
SUMO, Smt3p, although it displays similarity to SUMO1,
also forms chains [Bylebyl et al., 2003].

Two Models for Regulation by SUMO:
Conjugation and Non-covalent Binding

SUMOylation can regulate cellular processes via two major
mechanisms. SUMO can become covalently cross-linked to
a target protein or it can interact non-covalently with a
binding partner [reviewed in Kerscher, 2007]. This latter
type of interaction typically occurs through SUMO interac-

tion motifs (SIMs) on the interacting protein [Minty et al.,
2000; Song et al., 2004; Kroetz and Hochstrasser, 2009].
These are short stretches of the branched hydrophobic
amino acids, isoleucine, leucine, valine, in the pattern (I/L/
V) X (I/L/V) (I/L/V) with x being any amino acid [Kroetz
and Hochstrasser, 2009; Yang and Sharrocks, 2010]. This
motif is sometimes flanked on one side by acidic residues,
and this enhances binding to SUMO [Hannich et al., 2005;
Hecker et al., 2006; Kerscher, 2007; Uzunova et al., 2007].

Fig. 3. Chemical bonds in the sumoylation pathway. (A) Iso-
peptide bond. SUMO is conjugated to the target protein via an
isopeptide bond linkage between the terminal glycine residue of
SUMO and the epsilon amino group of the lysine in the target.
(B) Thioester Bond. Chemical linkage is highlighted between
the terminal glycine carboxy group of SUMO and the active
cysteine in the SUMO activating, and conjugating enzymes.

Fig. 4. Structure of SUMO E1, E2, E3 enzymes. Tertiary rib-
bon structure of the SUMO activating enzyme dimers Sae1 and
Sae2, SUMO conjugating enzyme Ubc9, and SUMO ligating
enzymes Mms21, PIAS3, PIAS2, and Siz1. These renderings
were developed using the crystallography coordinates associated
with the following PDB accession numbers: Sae1 (1Y8Q), Sae2
(1Y8Q), Ubc9 (2GRR), Mms2 (3HTK), PIAS3 (4MVT),
PIAS2 (4FO9), and Siz1 (3I2D).
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Some proteins like the kinetochore kinesin, CENP-E, can
interact both ways, covalently and non-covalently [Zhang
et al., 2008]. Very little is known currently about the extent
to which various cytoskeletal elements interact non-
covalently with SUMO.

Proteases Make Sumoylation a Reversible
Process

Unlike traditional proteases, SENPs/Ulps do not degrade
either SUMO or the targets. These enzymes remove SUMO
from its targets by cleavage of the isopeptide bond between
the glycine of SUMO and the target lysine. This allows the
SUMO moiety to be recycled. The deconjugating enzymes
responsible for this specialized clipping are termed ULPs in
yeast for ubiquitin-like-specific protease [Li and Hoch-
strasser, 1999] and SENPs in plants and metazoans for
SUMO/sentrin-specific proteases. Sentrin was an early name
for SUMO [Kamitani et al., 1997]. Several insightful reviews
have been written recently on SENPs and Ulps [Mukhopad-
hyay and Dasso, 2007; Drag and Salvesen, 2008; Su and
Hochstrasser, 2010; Gillies and Hochstrasser, 2012; Hickey
et al., 2012]. Although the different cytoskeletal polymers
themselves display varying degrees of dynamic subunit turn-
over [Cleveland, 1982; Yoon et al., 2001; Vorobjev et al.,
1999], very little is known about the rates of reversible
attachment of SUMO on each of the cytoskeletal polymers.

In mammals, there are six SUMO-cleaving enzymes,
SENP1, SENP2, SENP3, SENP5, SENP6, and SENP7, in
addition to the recently described DeSumoylating Isopepti-
dase 1 (DESI) protease [Mukhopadhyay and Dasso, 2007;
Shin et al., 2012; Suh et al., 2012]. In Saccharomyces cerevi-
siae, there are only three SUMO proteases, Ulp1p, Ulp2p,
and Wss1p, each belonging to a distinct class [Li and Hoch-
strasser, 1999; Li and Hochstrasser, 2000; Bylebyl et al.,
2003; Gillies and Hochstrasser, 2012].

SENPs

SENP/Ulp enzymes can possess two related cleavage activ-
ities, endopeptidase and isopeptidase activity. Whereas both
the Ulp1p and Ulp2p families of SENPs desumoylate sub-
strates by cleaving the isopeptide bond located between
SUMO and the target, the Ulp1p class (but not the Ulp2
group) can also act as an endopeptidase [Li and Hoch-
strasser, 1999; Mikolajczyk et al., 2007; Drag and Salvesen,
2008; Lima and Reverter, 2008]. This activity processes the
full-length pro-SUMO to a conjugatable form by cleaving
several amino acids from the carboxy-terminus to expose
the terminal-glycine used in conjugation [Drag and Salve-
sen, 2008]. In Saccharomyces cerevisiae, this removes three
amino acids, ATY; but for mammalian SUMOs, two to
eleven amino acids are removed depending on the SUMO
paralog [Hickey et al., 2012].

The Ulp1 and Ulp2 classes display distinct substrate spe-
cificities [Li and Hochstrasser, 2000] as evidenced by the

fact that when either of the two proteases is absent, differ-
ent sets of sumoylated products accumulate [Johnson and
Blobel, 1999; Li and Hochstrasser, 1999, 2000; Schwien-
horst et al., 2000]. These two proteases also display differ-
ent subcellular localizations and virtually non-overlapping
interactomes [Panse et al., 2003; Cubenas-Potts et al.,
2013; Srikumar et al., 2013]. Yet surprisingly, only a few
cytoskeletal substrates are known for each [Hickey et al.,
2012]. The Kerscher lab and others have shown that Ulp1p
in yeast desumoylates the septins [Takahashi et al., 2000;
Elmore et al., 2011]. The sumoylation of septins is
described more fully below. Ulp1p also de-modifies two
proteins important for spindle positioning, Kar9p and
Pac1p [Leisner et al., 2008; Alonso et al., 2012]. These are
described below. We are not aware of any functional evi-
dence that physically links Ulp2p to the major cytoskeletal
polymers.

Wss1p

Wss1p is predicted to be a zinc-dependent metalloprotease,
the original member of a distinct class of SUMO proteases
termed the WLM family of proteases (Wss1-Like Metallo-
proteases) [Iyer et al., 2004; Mullen et al., 2010]. WSS1
was originally identified as a weak suppressor of smt3-1, a
temperature sensitive allele of SUMO [Biggins et al.,
2001], clearly implicating it in SUMO-related functions.
Wss1p contains two SIMs (SUMO interacting motifs)
within its extreme carboxyl-terminal domain [Uzunova
et al., 2007; Mullen et al., 2010], but it also has significant
conservation with deubiquitinating enzymes (DUBs)
[Mullen et al., 2010]. Recent work from the Brill lab sug-
gests the possibility that while Wss1p may have both
SUMO protease and DUB types of activity, it is a much
better SUMO-cleaving enzyme than a ubiquitin-cleaving
one [Mullen et al., 2010].

In addition to its role in sister chromatid recombination,
a type of double- strand DNA break repair, Wss1p has
recently been linked to another SUMO-utilizing process,
microtubule biology. Two-hybrid analysis showed that
Wss1p interacts with four distinct classes of microtubule-
binding proteins, Kar9p, Bim1p, Bik1p and Pac1p
[Meednu et al., 2008; Alonso et al., 2012]. What makes
this finding remarkable is that these different classes of
MAPs carry out a divergent set of functions for microtu-
bules [Berlin et al., 1990; Schwartz et al., 1997; Miller
et al., 1999; Miller et al., 2000; Gundersen and Bretscher,
2003; Hwang et al., 2003; Lee et al., 2003; Sheeman et al.,
2003; Miller et al., 2006; Blake-Hodek et al., 2010; Huang
et al., 2012]. The effect of Wss1p on microtubule binding
proteins has been examined only for the Pac1p adaptor of
the dynein motor protein [Alonso et al., 2012]. These
experiments show that deletion of WSS1 results in higher
molecular weight forms of Pac1p. This is consistent with
the hypothesis from the Brill lab that Wss1p helps direct
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sumoylated proteins to the proteasome [Mullen et al.,
2010; Alonso et al., 2012]. Further work is in progress to
determine whether Wss1p alters the levels of ubiquitin on
Pac1p.

A portion of Wss1p also localizes to foci in the cytoplasm
[van Heusden and Steensma, 2008]. Curiously, this local-
ization is dependent upon the actin-related component of
the dynactin complex, Arp1p, but not on another dynactin
component Jnm1p [van Heusden and Steensma, 2008].
Wss1p is reported to localize only in the mother cell [van
Heusden and Steensma, 2008]. The punctate pattern is
consistent with it also localizing on the ends of cytoplasmic
microtubules in the mother cell, but this is not known
definitively.

SUMO-Targeted Ubiquitin Ligases (STUbLs)

Owing that sumoylation is a reversible process, the levels of
SUMO on a protein are critical and need to be maintained
at an optimal homeostasis [Prudden et al., 2007; Kim and
Baek, 2009; Bawa-Khalfe and Yeh, 2010]. As discussed
above, this can be accomplished by cleaving SUMO from
targets. Another way to remove excess poly-sumoylation is
to degrade the entire sumoylated protein at the proteasome.
For many years, sumoylation and ubiquitination were
viewed as distinct modification systems with limited cross
talk [Ulrich, 2005]. In one paradigm, ubiquitin and
SUMO modify the same lysine at different times, in a com-
petitive relationship [Desterro et al., 1998; Hoege et al.,
2002; Steffan et al., 2004]. In this model, SUMO protects
the protein from ubiquitin-mediated degradation. Another
type of cross talk employs cooperation between the two
modifications in which the target is first modified by
SUMO and then by ubiquitin [Huang et al., 2003].

In 2007, a new class of enzyme was described, the
SUMO-targeted ubiquitin ligase (STUbL). With this, com-
munication between ubiquitin and SUMO became more

interesting [Prudden et al., 2007; Sun et al., 2007; Uzunova
et al., 2007; Xie et al., 2007]. A STUbL is an enzyme with
ubiquitin ligase activity that recognizes a sumoylated pro-
tein and poly-ubiquitinates it [reviewed in Perry et al.,
2008; Praefcke et al., 2012]. Poly-ubiquitination then
targets that protein for degradation via the proteasome.
Thus, sumoylation can be an indirect, upstream signal for
protein degradation (Fig. 5).

Three STUbL families have been characterized, Uls1p-
Nis1p and Slx5p-Slx8p/RNF4, and Rad18p. Both Uls1p-
Nis1p and Slx5p-Slx8p function as heterodimers [Yang
et al. 2006). While both Slx5p and Slx8p contain RING
domains, Slx5p is the subunit that targets the complex to
substrates via its two SIMs [Xie et al., 2007; Cook et al.,
2009; Szymanski and Kerscher, 2013]. Slx5p-Slx8p is the
yeast homologue of the human RNF4, [Sun et al., 2007;
Uzunova et al., 2007; Xie et al., 2007]. Little information
is presently known about Uls1p targets, with only a few
currently identified. These include the microtubule associ-
ated protein Pac1p and the DNA binding protein Rap1p
[Grunstein, 1997; Jain and Cooper, 2010; Alonso et al.,
2012; Zhang et al., 2012].

STUbLs also play an important role in cancer. In one of
the best characterized examples, RNF4 functions in the
degradation of PML in nuclear bodies [reviewed in de The
et al., 2012; Hay, 2013]. In acute promyelocytic leukemia,
the PML protein forms an in frame fusion with the retinoic
acid receptor alpha (RAR a), forming an oncoprotein that
initiates this blood cancer [Tatham et al., 2008]. Arsenic,
the major treatment for acute promyelocytic leukemia,
causes the sumoylation of PML-RARa by SUMO2. RNF4
then polyubiquitinates these SUMO chains, resulting in
degradation of the aberrant PML by the proteasome
[Tatham et al., 2008; Liu et al., 2012; Maroui et al., 2012;
Rojas-Fernandez et al., 2014]. Recently, the novel STUbL,
Arkadia, was found to function similarly in PML degrada-
tion [Erker et al., 2013]. The elegant work describing PML

Fig. 5. STUbL Pathway Model. The Ris1p-Nis1p STUbL complex can direct a sumoylated target protein to the proteasome for
degradation (Adapted from Alanso et al. 2012).

� 310 Alonso et al. CYTOSKELETON



cell biology and its relationship to effective therapeutic
interventions for this disease gives hope to the idea that
cytoskeletal accumulation diseases might one day be treated
by targeting the SUMO system.

In just a few short years, the number of targets for
STUbL enzymes and processes governed by STUbLs has
simply exploded, with STUbLs playing critical roles in
almost as many cellular processes as SUMO itself. It is per-
haps not surprising that STUbLs have now been linked to
the cytoskeleton, including interactions with several
microtubule-associated proteins.

SUMO and the Cytoskeleton

Septins

Septins were originally identified in yeast using screens
searching for cell division cycle (CDC) genes [Hartwell,
1971; Hartwell et al., 1974]. This work identified four of
the five mitotic septins, Cdc3p, Cdc10p, Cdc11p, and
Cdc12p, which are essential. The name septin was later
coined to describe the role of these genes in cell septation in
yeast [Mostowy and Cossart, 2012]. A fifth mitotic septin,
Sep7p/Shs1p was later identified as the seventh homolog of
a septin [Mino et al., 1998]. Shs1p is not essential. Septins
are highly conserved, found in a wide range of organisms
ranging from yeast to human. However, no evidence has
been found for septins in plants [Field et al., 1996; Nguyen
et al., 2000; Gladfelter et al., 2001; Nishihama et al.,
2011]. The reader is referred to a comprehensive review of
septins that was published recently [Mostowy and Cossart,
2012].

In Saccharomyces cerevisiae, septins form the filaments
that encircle the mother-bud neck, the site of cytokinesis in
this yeast [Byers and Goetsch, 1976; Haarer and Pringle,
1987; Ford and Pringle, 1991; Bertin et al., 2012]. A septin

patch is formed initially on the cortex of the unbudded cell,
just before bud emergence [reviewed in Chen et al., 2011].
As the growing bud emerges, the septins then reorganize to
form an hourglass-like collar that is positioned on both
sides of the mother-bud neck [Longtine and Bi, 2003;
Kozubowski et al., 2005; Vrabioiu and Mitchison, 2006].
Electron microscopy studies reveal a gauze-like meshwork
of filaments at the bud neck [Rodal et al., 2005] consisting
of filaments running circumferentially around the neck and
axial filaments running along the mother-bud axis [Garcia
et al., 2011; Bertin et al., 2012; Bertin and Nogales, 2012].
At cytokinesis, the hourglass collar splits into two rings via
rearrangement and reassembly mechanisms, with one ring
facing the mother cell and the other facing the bud (Fig. 6)
[Garcia et al., 2011; Bertin et al., 2012; Ong et al., 2014].

Notably, the two sides of the hourglass collar are not
symmetric, and distinct sets of proteins are localized with
the ring on the mother side and the ring on the bud side.
Still other proteins localize between the two rings [Kozu-
bowski et al., 2005]. Thus, the septins serve as scaffolds for
proteins functioning in cytokinesis, bringing in and organ-
izing components of the actomyosin constriction ring and
the enzymes needed for cell wall synthesis [Gladfelter et al.,
2001; McMurray et al., 2011; Kang et al., 2013].

Septins also play a role in several other cellular processes
that are closely associated with membranes. These include
spindle alignment and the establishment of the diffusion
barrier [Kusch et al., 2002; Dobbelaere and Barral, 2004;
Caudron and Barral, 2009]. Diffusion barriers block mole-
cules in one membrane compartment from diffusing
through the lipid bilayer into another compartment.

The paired filaments formed by septins are approxi-
mately 10 nm in diameter, which can also self assemble in
vitro [Byers and Goetsch, 1976; Bertin et al., 2012]. In
yeast, electron microscopy studies demonstrate that the
basic building block of the septin filament is comprised of

Fig. 6. Sumoylation of septins. During G1, a septin patch forms at the site of bud formation. As the bud emerges through the
patch, the septins form a collar around the mother-bud neck. The five septin proteins involved in this process are Cdc3p, Cdc10p,
Cdc11p, Cdc12p, and Shs1p. Prior to cytokinesis, three of these septin proteins are sumoylated, but only on the mother side of the
mother-bud neck. Cdc3p is sumoylated at lysines 4, 11, 30, and 63. Cdc11p is sumoylated at lysine 412. Shs1p is sumoylated at
lysines 426, and 437 [Johnson and Blobel, 1999; Takahashi et al., 1999]. The sumoylation event is color coded in red. During cyto-
kinesis, the septin “hourglass” collar splits into two rings as the cells divide. After cytokinesis the septin rings dissociates, and the pro-
cess starts again.
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the four essential septins arranged into a hetero-octomer in
the order of Cdc11p-Cdc12p-Cdc3p-Cdc10p-Cdc10p
Cdc3p-Cdc12p-Cdc11p [Bertin et al., 2008]. The two
halves of the octomer fit together around the two-fold rota-
tional symmetry in the Cdc10p-Cdc10p homophillic inter-
action of Cdc10, creating a symmetric rod-shaped subunit
that is the building block of septins [Bertin et al., 2008]. In
mammalian systems, the basic building block is a hetero-
hexamer, rather than an octomer, and it also has a rod-like
shape [Sirajuddin et al., 2007; Garcia et al., 2011]. An
alternative hetero-octomer containing Shs1p rather than
Cdc11p is important for the bundling of filaments and ring
formation in vitro and formation of the septin collar in
vivo [Garcia et al., 2011].

Sumoylation of the Septins

Septins were the first substrates of SUMO identified in
yeast [Johnson and Blobel, 1999; Takahashi et al., 1999].
Indeed, they are some of the most abundant sumoylated
proteins in the cell [Johnson and Blobel, 1999; Wohlschle-
gel et al., 2004]. Sumoylation serves as one of the markers
for the asymmetry of the two septin rings; only the septin
ring on the mother side of the bud neck is sumoylated
[Johnson and Blobel, 1999; Takahashi et al., 1999; Martin
and Konopka, 2004]. This sumoylation occurs during
mitosis, with SUMO addition occurring just before ana-
phase and SUMO removal occurring abruptly at cytokine-
sis [Johnson and Blobel, 1999]. Consistent with this, the
E3 enzyme Siz1p localizes to the septin ring on the mother
side of the neck at the same point in the cell cycle as the
SUMO modification occurs during mitosis [Johnson and
Gupta, 2001]. Additional amounts of GFP-Siz1p are found
inside the nucleus as puncta [Johnson and Gupta, 2001].

Septin sumoylation has been seen to play a role in main-
taining the polymerization state of septins as mutants lack-
ing sumoylation sites display a modest delay in the
disassembly of the septin rings at cytokinesis [Johnson and
Blobel, 1999]. The molecular mechanism of this remains
an avenue for future investigations, as the mutation of these
lysines could alter other aspects of the septin proteins such
as folding and stability. Several questions still remain con-
cerning the roles of septin sumoylation [Oh and Bi, 2011].
While septins are required for cytokinesis, their sumoyla-
tion is not [Johnson and Blobel, 1999; Dobbelaere and Bar-
ral, 2004]. Septins are also not the essential substrate of
sumoylation during the cell cycle, because when all the sep-
tin sumoylation sites are mutated and combined into one
cell, the cells grow and do not display the cell-cycle arrest
observed in SUMO deficient mutants [Johnson and Blobel,
1999].

It is notable that only a subset of the septins is sumoy-
lated [Johnson and Blobel, 1999]. In yeast, only Cdc3p,
Cdc11p, and Shs1p are modified by SUMO [Johnson and
Blobel, 1999]. Cdc3p is sumoylated at four sites, Cdc11p

at one site, and Shs1p at two sites [Johnson and Blobel,
1999]. These modifications are absent in cellular extracts
from a siz1D strain but not nfi1D [Johnson and Gupta,
2001]. Siz1p also enhances the in vitro sumoylation of sep-
tins. Together, these findings suggest that Siz1p is the E3
responsible for septin sumoylation [Johnson and Gupta,
2001].

Two of the sumoylated septins, Shs1p and Cdc11p,
occupy the terminal position in the octomeric building-
block for filament assembly. This prompts one to wonder
whether this modification may modulate the specialized
role of Shs1p in promoting ring formation and filament
bundling [Garcia et al., 2011]. One might also speculate
whether the high levels of phosphorylation on Shs1p might
influence its sumoylation [Egelhofer et al., 2008; Meseroll
et al., 2013]. While the precise function of septin sumoyla-
tion has been evasive, considering that Cdc11p and Cdc3p
are essential, sumoylation is unlikely to play a critical role
for these septins. However, the septin Shs1p is not essential,
and considering that the phenotypes of Shs1p are milder
than mutations in the other two septins, it is possible that
the function of sumoylation is tied to this less critical
septin.

Sumoylation of the septins is regulated by signals passing
through the E2, Ubc9p. The sumoylation levels on the sep-
tins are inversely proportional to the levels of Ubc9p auto-
phosphorylation [Ho et al., 2011]. Determining the extent
to which Ubc9p phosphorylation by CDKs and other post-
translational modifications affect septin sumoylation should
prove to be a worthwhile avenue of future investigation [Su
et al., 2012].

Deregulation of septins has been linked to several major
diseases, including multiple cancers and neurological dis-
eases, including Parkinson’s and Alzheimer’s [Ihara et al.,
2007]. In Parkinson’s disease, the septin SEPT4 has been
shown to modulate the neurotoxity of alpha-synuclein, but
it remains to be determined whether the sumoylation of
alpha-synuclein is a part of this modulation [Ihara et al.,
2007]. In Alzheimer’s, septins have been seen to colocalize
in neurofibrillary tangles, an aberrant structure containing
the MAP, Tau [Kinoshita et al., 1998]. In several types of
cancer, human SEPT9 serves as a biomarker for colon can-
cer [reviewed in Cerveira et al., 2011; Connolly et al.,
2011]. As septins are dynamic structures [Gladfelter, 2010],
it is possible that sumoylation may affect their solubility
and thus influence their dynamicity.

Microtubules

Microtubules are proteinaceous polymers comprised of
alpha-beta tubulin dimers that make key contributions to
intracellular motility and cell division [reviewed in Desai
and Mitchison, 1997; Valiron et al., 2001; Howard and
Hyman, 2003; Conde and Caceres, 2009; Etienne-
Manneville, 2013]. They serve as tracks along which motors
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move various cargoes throughout the cell. As a major struc-
tural element of the mitotic spindle, they are often referred
to as “ropes” owing to their ability to generate pulling
forces on chromosomes. Microtubules are highly dynamic,
continuously growing and shrinking [Cassimeris et al.,
1988; Sammak and Borisy, 1988; Schulze and Kirschner,
1988; Chretien et al., 1995; Akhmanova and Steinmetz,
2008; Gardner et al., 2008]. The faster growing end is
referred to as the plus-end. The less dynamic end is referred
to as the minus-end [Allen and Borisy, 1974; Bergen and
Borisy, 1980]. In many cell types, the centrosome serves as
a major microtubule-organizing center (MTOC) and stabil-
izes the minus-ends of microtubules embedded within it
[Mitchison and Kirschner, 1984]. In yeast, the spindle pole
body serves as the MTOC [reviewed in Rout and Kilmar-
tin, 1990; Kahana et al., 1995; Jaspersen and Winey,
2004].

SUMO and Microtubules

Currently, sumoylation is not widely recognized as a post-
translational modification of either tubulin or microtubules
[Janke, 2014; Song and Brady, 2015]. To date, there is only
limited evidence that tubulin itself may be modified by
SUMO. Alpha and/or beta tubulins have been identified as
candidates in several global sumoylation screens employing
proteomics [Panse et al., 2004; Wohlschlegel et al., 2004;
Rosas-Acosta et al., 2005]. However, only immunoblotting
with monoclonal anti-tubulin was used to confirm the
Rosas-Acosta finding of sumoylated alpha tubulin. The
anti-tubulin reacted with a larger 70 kDa band in the TAP
purified samples, but with only the standard 50 kDa size
tubulin in the corresponding parental-control strain [Rosas-
Acosta et al., 2005]. The shifted form was only observed in
the SUMO3 TAP purification, but not the SUMO1 purifi-
cation, indicating that SUMO3 may be responsible for
modifying alpha tubulin [Rosas-Acosta et al., 2005]. As
alternative explanations for these findings are possible, addi-
tional confirmatory studies are needed before other ques-
tions can be answered about how sumoylation might alter
the many properties of microtubules and their dynamics.

MAPs

Many classes of microtubule-associated proteins (MAPs)
modify and regulate a multitude of microtubule behaviors.
Some of these functions include directing microtubules
towards distinct subcellular locations, cross-linking micro-
tubules, mediating protein-protein interaction, and either
stabilizing or destabilizing microtubules. Some classes of
MAPs bind directly to tubulin dimers to help regulate their
addition to the microtubule polymer [Etienne-Manneville,
2010; Gupta et al., 2013; Cheerambathur and Desai, 2014;
Ferreira et al., 2014]. Other MAPs, like tau, bind along the
sides of microtubules [Al-Bassam et al., 2002], whereas

other classes of MAPs bind at the plus-end (1TIPs) [Akh-
manova and Steinmetz, 2008].

Recently several classes of MAPs have been shown to be
modified by SUMO (Table I) and several other classes
interact with SUMO either physically or by two-hybrid
analysis. The MAPs that can be covalently modified include
the dynein adapter Pac1p (Lis1), Bik1p (CLIP-170), the
spindle positioning protein Kar9p, the Alzheimer’s MAP
Tau, and the kinetochore attachment protein Ndc80p
[Dorval and Fraser, 2006, 2007; Montpetit et al., 2006;
Leisner et al., 2008; Meednu et al., 2008; Alonso et al.,
2012]. The kinetochore kinesin CENP-E is both modified
by SUMO and interacts non-covalently with it [Zhang
et al., 2008]. Interaction with the SUMO machinery has
also been seen with Bim1p, the EB1 homologue in yeast,
but it is not known whether this interaction occurs through
conjugation or non-covalent interactions [Meednu et al.,
2008]. This growing list leads us to speculate that sumoyla-
tion may control multiple facets of microtubule biology via
regulation of its MAPs.

Kar9p

Kar9p is required for correct orientation of the mitotic
spindle and is important for nuclear migration in both mat-
ing and mitotic cells [Kurihara et al., 1994; Miller and
Rose, 1998]. KAR9 was discovered in a screen for bilateral
karyogamy mutants, [Kurihara et al., 1994] and is thought
to be analogous to the mammalian adenomatous polyposis
coli protein (APC) [Bienz, 2001], which is mutated in a
large percentage of human colorectal cancers [Groden et al.,
1991; Markowitz and Bertagnolli, 2009]. APC and Kar9p
share a number of functional similarities, albeit they have
limited homology at the amino acid level [Bienz, 2001;
Gundersen, 2002]. At the protein level, Kar9p consists of
an N-terminal acidic domain, a central coil-coil domain,
and a C-terminal basic domain [Miller and Rose, 1998].

Kar9p plays a key role in positioning the mitotic spindle
by orienting the cytoplasmic microtubule into the bud
[Miller and Rose, 1998]. Kar9p links the actin and micro-
tubule networks through a bridging complex that contains
Bim1p-Kar9p-Myo2p [Beach et al., 2000; Hwang et al.,
2003]. Bim1p is a microtubule-binding protein and the
yeast homologue of EB1. Myo2p is a type V myosin. The
EB1-like C-terminus of Bim1p binds the C-terminal
domain of Kar9p [Miller et al., 2000; Moore and Miller,
2007]. Kar9p binds to the tail of Myo2p in a region that
overlaps with other cargo-binding sites [Eves et al., 2012].
When this connection is formed, the myosin walks up the
actin cable. The resulting pulling-force guides the end of
the cytoplasmic microtubule into the yeast bud, thus ori-
enting the mitotic spindle. The myosin motor then pulls
the spindle up to the bud neck [Beach et al., 2000; Korinek
et al., 2000; Miller et al., 2000; Yin et al., 2000].
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Table I. Sumoylation Targets of the Cytoskeleton

Polymer
system

Type of
modification Site of modifcation Evidence Reference

Septins

Cdc3p Covalent K4, K11, K30,
and K63

Pulldown Johnson and Blobel [1999]

Cdc11p Covalent K412 Pulldown Johnson and Blobel [1999]

Shslp Covalent K426, K437 Pulldown Johnson and Blobel [1999]

Microtubules

Alpha-beta
tubulin

Covalent N/A Proteomic screens,
pulldown

Panse et al. [2004];
Wohlschlegel et al. [2004];
Rosas-Acosta et al. [2005]

CENP-E Covalent and
non-covalent

N/A Pulldown Zhang et al. [2008]

Ndc80 Covalent K231 Proteomic screens,
pulldown

Panse et al. [2004];
Zhou et al. [2004];
Wykoff and O’Shea [2005];
Montpetit et al. [2006]

Tau Covalent K340 Pulldown Dorval and Fraser, [2012, 2006];
Takahashi et al. [2008]

Pac1p Covalent N/A Pulldown, Y2H Alonso et al. [2012]

Kar9p Covalent K301, K333,
K381, and K529

Pulldown, Y2H Leisner et al. [2008];
Meednu et al. [2008]

Bik1p Covalent N/A In vitro, Y2H Alonso et al. [2012]

Bim1p N/A N/A Y2H Meednu et al. [2008]

La Covalent K41 Pulldown van Niekerk et al. [2007]

Microfilaments

Actin Covalent K68, and K284 Proteomic screens,
pulldown

Panse et al. [2004];
Vertegaal et al. [2004];
Wohlschlegel et al. [2004];
Rosas-Acosta et al. [2005];
Hofmann et al. [2009]

Rac1 Covalent K188, K183,
K184, and K186

Pulldown Castillo-Lluva et al. [2010]

RhoGDI Covalent K138 Pulldown Liu et al. [2011]; Yu et al. [2012]

Arc35p Covalent N/A Proteomic screen,
pulldown

Wohlschlegel et al. [2004];
Sung et al. [2013]

Arc40p Covalent N/A Proteomic screen Wohlschlegel et al. [2004]

Arc19p Covalent N/A Proteomic screen Nie et al. [2012]

Arc15p Covalent N/A Proteomic screen Nie et al. [2012]

Intermediate filaments

Vimentin Covalent N/A In vitro, pulldown Wang et al. [2010],
Snider et al. [2011]

Keratin 8 Covalent K285, K364 In vitro, pulldown Snider et al. [2011]

Keratin 18 Covalent K207, K373 In vitro, pulldown Snider et al. [2011]

Keratin 19 Covalent K208 In vitro, pulldown Snider et al. [2011]

Lamin A Covalent K201, K420,
and K486

Pulldown, Y2H Zhang et al. [2008],
Galisson et al. [2011],
Simon et al. [2013]
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In orienting the mitotic spindle, it is important that
Kar9p is localized on just one of the poles of the spindle. In
other words, its localization on the two poles needs to be
asymmetric. Otherwise, both poles of the spindle would be
pulled into the bud. Kar9p binds to the “old” or original
spindle pole body that will be transferred to the daughter
cell, whereas the “new” SPB lacking Kar9p is retained in
the mother yeast cell [Liakopoulos et al., 2003; Moore
et al., 2006; Moore and Miller, 2007].

Kar9p and Sumoylation

Several lines of evidence suggest that Kar9p is sumoylated.
Kar9p interacts with SUMO by two-hybrid analysis. It also
interacts with the E2 enzyme Ubc9p and the E3 Nfi1p
[Meednu et al., 2008]. Kar9p has been shown to be sumoy-
lated both in vitro and in vivo [Leisner et al., 2008;
Meednu et al., 2008]. Four lysines are required for the
sumoylation shift of Kar9p, lysines 301, 333, 381, and 529
[Leisner et al., 2008].

Sumoylation is important for multiple aspects of Kar9p
function. It is important for the asymmetric localization of
Kar9p on SPBs. Mutation of lysines 301, 333, 381, and 529
to arginine (4K!R) results in the mis-localization of Kar9p
on both SPBs, rather than it being restricted to just the old
SPB [Leisner et al., 2008]. Similar results were observed with
Kar9p mutations at lysine 304, which resides within the
sumoylation consensus site of K301 [Meednu et al., 2008].
Functionally, sumoylation is also important for spindle posi-
tioning [Leisner et al., 2008; Meednu et al., 2008]. Inhibition
of SUMO with a temperature-sensitive SUMO allele, smt3-
331, results in mispositioning of the mitotic spindle [Leisner
et al., 2008; Meednu et al., 2008]. Both the Liakopoulos and
Miller labs showed that kar9 mutants lacking the ability to be
sumoylated display defects in the position of the mitotic spin-
dle [Leisner et al., 2008; Meednu et al., 2008]. The Kar9-
L340P mutant results in a short-bipolar spindle that is posi-
tioned farther away from the mother-bud neck compared to
wild type [Meednu et al., 2008]. Similarly, the Kar9-4K!R
mutant also shows spindle-positioning defects, displaying
increases in both the angle of spindle alignment and the dis-
tance to the bud neck. It is interesting to note, however, that
the defect seen in the Kar9-4K!R mutant is not as severe as
that seen in the smt3-331 mutant of SUMO itself [Leisner
et al., 2008]. This suggests that other components required
for spindle positioning are also regulated by SUMO. Alonso
et al. [2012] posit that at least one of these other components
resides within the dynein pathway [Alonso et al., 2012].
Alternatively, the difference could be attributed to activation
of the spindle assembly checkpoint (SAC) by the smt3-331
mutant [Leisner et al., 2008].

The interaction between Kar9p and Bim1p is regulated
by both sumoylation and phosphorylation [Huls et al.,
2012]. Sumoylation of Kar9p promotes the interaction,
with lysine 381 having the most prominent effect. In con-

trast, phosphorylation of Bim1p by the Ipl1p kinase
impedes the interaction [Huls et al., 2012].

Phosphorylation of substrates is one mechanism by which
sumoylation can be regulated. This can be either a positive
influence or a negative one [Yang et al., 2003; Hietakangas
et al., 2006]. Kar9p is one example that illustrates this type
of regulation. Cdc28p phosphorylates Kar9p at serine 197
and 496 [Liakopoulos et al., 2003]. Disruption of these
phosphorylation sites causes Kar9p to mislocalize to both
old and new spindle pole bodies [Liakopoulos et al., 2003;
Moore et al., 2006; Moore and Miller, 2007]. Phospho-
mimetic mutations at one of these sites, Kar9p-A196E
S197E, does not interact with SUMO by two-hybrid analy-
sis, suggesting that phosphorylation at serine 197 blocks the
interaction of Kar9p with Smt3p [Meednu et al., 2008].
Consistent with this idea, the Liakpoulos lab showed that
the phospho-inhibited Kar9p-S197A S496A mutant was
still able to be sumoylated [Leisner et al., 2008].

In addition to phosphorylation and sumoylation, Kar9p
is also regulated by ubiquitination [Maekawa et al., 2003;
Moore et al., 2006; Moore and Miller, 2007; Leisner et al.,
2008; Meednu et al. 2008; Kammerer et al., 2010]. Ubiq-
uitination of Kar9p regulates the interaction of astral
microtubules with the bud neck, appearing to be involved
in the proteasomal degradation of the subset of Kar9p mol-
ecules interacting with the bud neck [Kammerer et al.,
2010]. The relationship between sumoylation and ubiquiti-
nation in this context remains unexplored. However, Kar9p
interacts with the STUbL, Uls1p-Nis1p, and Wss1p by
two-hybrid analysis [Meednu et al., 2008].

Dynein

Dynein is the major motor protein that walks toward the
minus-end of microtubules. Dynein participates in a wide
range of cellular functions. Dynein plays several roles in the
mitotic spindle and at the kinetochore [Kardon and Vale,
2009]. Dynein is important in chromosome capture and
alignment, as well as silencing the spindle assembly check-
point [Howell et al., 2001; Bader and Vaughan, 2010; Mao
et al., 2010]. Together with NuMa, dynein plays a critical
role in focusing the poles of the mitotic spindle, helping to
generate its cone-shaped geometry [Gaglio et al., 1997].
Errors in any of these processes can lead to increases in abnor-
mally segregated chromosomes, a condition known as aneu-
ploidy. When dynein is anchored at the cell surface, it can
participate in spindle orientation or nuclear migration by
pulling on microtubules that are attached to the MTOC [Lee
et al., 2005; Collins et al., 2012; Kotak and Gonczy, 2013;
Kotak et al., 2014]. Dynein also carries a variety of different
cargoes to specific destinations within the cell. Cargoes
include endocytic vesicles, viral particles, organelles in retro-
grade axonal transport, melanosomes, and ER to Golgi trans-
port vesicles [Holzbaur and Vallee, 1994; LaMonte et al.,
2002; Watson et al., 2005; Johansson et al., 2007; Rocha
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et al., 2009; Scherer and Vallee, 2011; Tan et al., 2011;
Moughamian and Holzbaur, 2012]. However, regulation of
the attachment of cargo to dynein is still poorly understood.

There are two forms of cytoplasmic dynein DHC1a
(dynein 1) and DHC1b (dynein 2), both of which are dis-
tinct from flageller dynein [Paschal et al., 1987; Gibbons,
1995]. Dynein 1 is the major form of cytoplasmic dynein
and is found in all eukaryotes, from fungi to human [King
et al., 2002]. Dynein 2, is a less well characterized form of
cytoplasmic dynein that is found in most ciliated eukaryotic
cells, where it functions in intraflagellar transport and golgi
organization [Pazour et al., 1999; Signor et al., 1999; Gris-
som et al., 2002; Helfand et al., 2002; Mikami et al.,
2002]. Mutations in the dynein 2 complex result in a num-
ber of ciliopathies [Schmidts et al., 2013a, 2013b]. Dynein
2 associates with different intermediate and light chains
than those associated with dynein 1. It also does not inter-
act with other known regulators of dynein, including
dynactin, LIS1, and BICD2 [Asante et al., 2014].

Crystallography work from the Vale lab provides detailed
insight into how the structure of the dynein 1 motor cou-
ples ATP hydrolysis within the main AAA ATPase domain
to allosteric changes that result in movement [Carter et al.,
2008, 2011; Bhabha et al., 2014].

The dynein heavy chain is complexed with several acces-
sory proteins. These are the intermediate chains, the light
chains, and the light intermediate chains [Vaughan and
Vallee, 1995; Waterman-Storer et al., 1995; Ma et al.,
1999; Lo et al., 2001; Mok et al., 2001]. Two adaptors for
dynein are Lis1/Pac1p and the dynein-activating complex,
better known as the dynactin complex [Vaughan et al.,
1999; Faulkner et al., 2000; Tai et al., 2002; Schroer, 2004;
Levy and Holzbaur, 2006]. The dynactin complex consists
of two sub-domains, a short actin-like filament connected
to a shoulder-sidearm projection [Eckley et al., 1999; Quin-
tyne et al., 1999]. The short actin-like filament consists of
Arp1, CapZ, p62, Arp11, p27, and p25. The shoulder-
sidearm projection consists of 150Glued, dynamitin, and
p24 [Eckley et al., 1999; Garces et al., 1999]. Both dynac-
tin and Lis1/Pac1p are involved in attaching cargo to the
dynein motor, but the mechanisms that regulate cargo
attachment to dynein are unclear [Kardon and Vale, 2009;
McKenney et al., 2011]. To date, no evidence suggests that
the accessory chains, the dynactin complex, or dynein itself
are SUMO substrates. However, two reports currently con-
nect SUMO to dynein. One report investigates the dynein
cargo, La; and the other examines the adaptor, Pac1p [van
Niekerk et al., 2007; Alonso et al., 2012]. Alonso et al. pos-
tulate that sumoylation of adaptors could be a new mode of
regulation for dynein [Alonso et al., 2012].

La

La is an RNA-binding protein that is transported by dynein
[van Niekerk et al., 2007]. La is also an antigen found in

the autoimmune diseases, systemic lupus erythematosus
and Sjorgren’s syndrome [Kumar et al., 2013], and it can
enhance mRNA translation as well as viral replication
[Trotta et al., 2003; Kumar et al., 2013].

The Twiss lab demonstrated that La is sumoylated at a
unique site, K41 [van Niekerk et al., 2007]. A non-
sumoylatable form of La fails to immunoprecipitate with
dynein. The non-sumoylatable La also moves down the
axon in the anterograde direction, but not toward the cell
body in the retrograde direction. Together these observa-
tions suggests that sumoylation of La promotes its interac-
tion with dynein and is required for its retrograde transport
in neurons by dynein. However, several questions remain.
Does La transport involve the interaction with other dynein
adaptors? Where in the neuron is La sumoylated and does
desumoylation regulate the un-loading of La cargo?

Lis1/Pac1p

Pac1p is the yeast homologue of the Lis1 protein, occasion-
ally referred to as PAFAH1B1 [Hattori et al., 1994]. Muta-
tions in the LIS1 gene are responsible for the severe brain
disease, Type 1 lissencephaly, or “smooth brain.” Lissence-
phaly is a rare brain formation disorder caused by dysfunc-
tion in neuronal migration, leading to severe mental
disorders and early death [Sapir et al., 1999; Kato and
Dobyns, 2003; Reiner et al., 2006; Liu, 2011]. The hall-
mark of the disease is a drastic decrease in convolutions of
the cerebral cortex [Reiner and Sapir, 2013]. While Lis1 is
perhaps best known for its role in neurons, it is also impor-
tant in desmosome stability and cortical microtubule orga-
nization in the epidermis. Loss of Lis1 results in fragile
desmosomes, where it also localizes [Sumigray and Lechler,
2011; Sumigray et al., 2011]. Lis1 is also critical in the
development of hematopoietic stem cells, where it controls
the positioning of the mitotic spindle during cell division
and the inheritance of cell fate determinants [Zimdahl
et al., 2014].

The structure of Pac1p/Lis1 provides clues as to how it
serves as a critical regulator of the dynein motor protein.
Pac1p is composed of three regions: a LisH domain, a
coiled-coil domain, and a series of highly conserved WD40
repeats. Alone, none of the domains are sufficient for
microtubule binding or tracking the plus-end of the micro-
tubule in vivo [Markus et al., 2011]. In contrast, the
WD40 repeats of Pac1p/Lis1 are thought to bind across the
intersection of the AAA3 and AAA4 ATPase motifs of
dynein [Faulkner et al., 2000; Vallee et al., 2001; McKen-
ney et al., 2011; Huang et al., 2012; Wang et al., 2013;
Toropova et al., 2014]. Lis1 also promotes dynein’s interac-
tion with certain cargo [Sitaram et al., 2012; Splinter et al.,
2012]. The direct binding of Lis1/Pac1p to dynein can reg-
ulate several properties of the motor itself. These include its
velocity, the load carried, and “processivity.” By inducing a
conformational change in the motor, Lis1/Pac1p also
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increases the “heaviness” of the load that the motor can
carry [McKenney et al., 2010]. Dynein bound to Lis1 walks
at a slower speed than unbound dynein [McKenney et al.,
2010; Markus et al., 2011; Torisawa et al., 2011; Huang
et al., 2012; Toropova et al., 2014]. The binding of Lis1
also increases its “processivity” which is the distance that a
motor travels before stepping off the track. All of these
parameters can be influenced by the time of attachment of
dynein to the microtubule [Huang et al., 2012; Toropova
et al., 2014]. Thus, the binding of Lis1 to dynein can be
thought of as transforming it into a more powerful diesel
engine, one in low gear.

In yeast, Pac1p functions in the dynein pathway by work-
ing with Bik1p to recruit dynein to the plus-end of the
microtubule before dynein is off-loaded to the bud cortex
[Sheeman et al., 2003; Lee et al., 2005; Li et al., 2005; Mar-
kus et al., 2011]. Bik1p is the yeast homologue of mamma-
lian CLIP-170. In the absence of Pac1p or Bik1p, dynein
fails to be recruited to the plus-end of microtubules, result-
ing in spindle positioning defects [Sheeman et al., 2003].

Several approaches were employed to show that SUMO
is linked to Lis1/Pac1p [Alonso et al., 2012]. First, two-
hybrid analysis was used to show that Pac1p interacts with
SUMO and several other members of the sumoylation
pathway, including the E2 enzyme, Ubc9p, and the E3,
Nfi1p. Second, inhibition of the SUMO protease Ulp1p
resulted in multiple higher molecular weight forms of
Pac1p, suggesting that Ulp1p removes SUMO from Pac1p
[Alonso et al., 2012]. Third, the co-immunoprecipitation
of Pac1p with SUMO strongly suggested that Pac1p is a
SUMO substrate. Fourth and also consistent with Pac1p
being sumoylated, Pac1p interacted with both components
of the STUbL enzyme, Uls1p-Nis1p, by two-hybrid analy-
sis [Alonso et al., 2012]. Pac1p shift was increased in strains
deleted for the STUbL Uls1p, and in strains where the pro-
teasome was inhibited with the drug MG132 [Alonso et al.,
2012]. These data support a model in which the Uls1p-
Nis1p STUbL recognizes a sumoylated Pac1p and thus tar-
gets it to the proteasome. Depending on the localization of
the STUbL, this could represent a mechanism to degrade a
subcellular pool of Pac1p, perhaps on the set of microtu-
bules directed into the bud.

As Pac1p is one of the few examples known for substrates
of the STUbL, Uls1p-Nisp1p, many questions remain
about its sumoylation. Additional work is needed to see if
this modification is conserved in the mammalian homo-
logue, Lis1. It is also not known how sumoylation of Pac1p
might regulate either the cargo selection of dynein or the
motor properties of dynein. Work is currently in progress
in the Miller lab to identify the sites of modification and
determine the function of this modification.

Bik1p/CLIP-170

Bik1p is the yeast homologue of CLIP-170, a family of
CAP-Gly proteins that track microtubule plus-ends

[reviewed in Miller et al., 2006; Gupta et al., 2014]. These
are often referred to as a member of the a “1TIP” family of
proteins [Akhmanova and Steinmetz, 2008]. CLIP-170
binds the growing ends of microtubules, whereas Bik1p
binds microtubules that are both growing and shrinking
[Carvalho et al., 2004]. Bik1p also stabilizes microtubules
against catastrophe. When Bik1p is absent from the cell,
microtubules are very short [Berlin et al., 1990].

Structurally, Bik1p/CLIP-170 is comprised of an amino-
terminal head domain, a central coiled-coil domain, and a
carboxy-terminal domain that contains metal-binding “zinc
knuckle” motif. This domain is sometimes referred to as
the “cargo-binding domain” [Miller et al., 2006; Gupta
et al., 2010]. In contrast to the yeast Bik1p, the head
domain of the mammalian CLIP-170 contains two CAP-
Gly domain and several serine rich domains [Miller et al.,
2006]. Early work suggested that microtubule binding
occurred through the CAP-Gly domains, but recent work
demonstrates that the serine rich regions also make substan-
tial contributions to microtubule binding [Gupta et al.,
2010]. In addition to binding the microtubule polymer,
CLIP-170 also possesses a significant affinity for tubulin
dimers [Folker et al., 2005]. This interaction may play a
role in a “co-polymerization” mechanism by which CLIP-
170 tracks the plus-end of the growing microtubule [Folker
et al., 2005]. The interaction of Pac1p with Bik1p occurs
though the carboxy-terminal domain of Bik1p [Sheeman
et al., 2003].

The functions of both CLIP-170 and Bik1p are closely
connected to those of dynein [Vaughan et al., 1999; Tai
et al., 2002; Goodson et al., 2003; Sheeman et al., 2003;
Caudron et al., 2008]. Bik1p, together with Lis1/Pac1p
and Ndl1p, the yeast homologue of nuclear distribution
factor E, recruits dynein to the plus-end of the microtubule,
prior to dynein’s off-loading to the cortex [Sheeman et al.,
2003; Lee et al., 2005; Markus et al., 2011]. Bik1p also
interacts with Kar9p, providing a link between the Kar9p
and dynein spindle positioning pathways [Moore et al.,
2006].

Bik1p displays several interactions with the sumoylation
machinery. Bik1p interacts with SUMO; the SUMO E2
conjugating enzyme Ubc9p, and the E3 Nfi1p by two-
hybrid analysis [Alonso et al., 2012]. Interestingly, the
carboxy-terminal domain of Bik1p, the domain that inter-
acts with Pac1p, is also required for Pac1p’s interaction with
SUMO. In the reciprocal direction, Pac1p is required for
Bik1p’s interaction with SUMO in the two-hybrid assay.
These findings suggest the possibility that a mutual-
association of both proteins is required for their modifica-
tion by SUMO [Alonso et al., 2012]. Bik1p can also be
sumoylated using an in vitro assay, resulting in two and
possibly three shifted bands. It is not known whether Pac1p
might enhance this in vitro sumoylation, which would be
consistent with the two-hybrid data. Sumoylated forms of
Bik1p have also been observed in vivo when overexpressed
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Bik1p and overexpressed SUMO were employed [Alonso
et al., 2012]. Ulp1p is one of the major SUMO proteases
in the cell that cleaves SUMO from target proteins. In a
somewhat surprising finding, inactivation of Ulp1p with a
temperature-sensitive allele did not reveal SUMO-shifted
forms of Bik1p [Alonso et al., 2012]. Thus, identification
of a sumoylated form of Bik1p at endogenous levels has
remained elusive.

What hypotheses could reconcile this apparent discrep-
ancy? Perhaps Bik1p is not actually conjugated by SUMO
and the putative SUMO connection occurs via a non-
covalent interaction. Perhaps SUMO only attaches to
Bik1p when the cell is stressed. Another possibility is based
on the finding that Bik1p interacts by two-hybrid analysis
with the STUbL enzyme, Uls1p-Nis1p, and the SUMO
isopeptidase, Wss1p. While Bik1p’s interaction with this
enzyme implies that it is sumoylated at some point, the dif-
ficulty of “catching” SUMO on Bik1p is nevertheless per-
plexing. Perhaps Bik1p’s interaction with the STUBL
results in its rapid demise by the proteasome. As Bik1p and
CLIP-170 have critical functions for microtubules, further
research into the SUMO-Bik1p connection is anticipated.

Various 1TIPs interact with each other to form a web of
interactions at the plus-end of the microtubule [Akhma-
nova and Steinmetz, 2008]. However, the function of these
interactions has remained a mystery [Gupta et al., 2014].
Considering that a growing list of 1TIPs are seen to inter-
act with SUMO, we postulate that sumoylation may help
in the assembly of higher order molecular structures of
1TIP assemblies. This may involve the SIMs of one MAP
binding the sumoylated form of an adjacent MAP.

Tau

Tau, tubulin-associated unit, is a microtubule-associated
protein that helps stabilize microtubules and is highly con-
served in higher eukaryotes [Goedert et al., 1989a, 1989b,
1996; Maccioni et al., 1995]. Tau is found mainly in neu-
rons, where it stabilizes microtubules and promotes their
polymerization [Cleveland et al., 1977; Binder et al., 1985;
Drubin and Kirschner, 1986; Drechsel et al., 1992]. Tau
also has the ability to bundle microtubules [Kanai et al.,
1992]. Tau is a hydrophilic protein that consists of four
regions; an acidic region, a proline-rich region, a
microtubule-binding region consisting of four repeats of
conserved residues, and a basic C-terminal region. The
extreme variation in charge between the N-terminus and
the C-terminus region of tau can be modulated by various
post-translational modifications. Tau shares homology with
other MAPs including MAP2 and MAP3/4 [Chapin and
Bulinski, 1991]. Mutations in tau are associated with sev-
eral neurodegenerative disorders including Alzheimer’s,
Pick’s disease and several tauopathies [reviewed in Goedert,
2001]. Alzheimer’s is a neurodegenerative disease character-
ized by neurofibrillary tangles and senile plaques. The neu-

rofibrillary tangles are intracellular aggregates containing
abnormally phosphorylated tau, whereas senile plaques are
extracellular deposits of amyloid b-peptides [Grundke-
Iqbal et al., 1986; Ihara et al., 1986; Delacourte et al.,
1999]. In models for tau’s role in Alzheimer’s, tau first dis-
sociates from microtubules in a phosphorylation-dependent
manner, leading to destabilization of the microtubules. Sub-
sequently, unbound tau oligomerizes to form the paired
helical filaments found in neurofibrillary tangles [reviewed
in Meraz-Rios et al., 2010]. As various forms of tau are
found in cerebrospinal fluid, it is now being developed as
biomarker for Alzheimer’s disease to speed early diagnosis
[reviewed in Blennow et al., 2012; Kopeikina et al., 2012].

Tau can be tagged by numerous post-translational modi-
fications, including phosphorylation, glycosylation, glyca-
tion, prolyl-isomerization, nitration, polyamination,
ubiquitination, oxidation, and sumoylation [Grundke-Iqbal
et al., 1986; Schweers et al., 1995; Wang et al., 1996;
Nacharaju et al., 1997; Murthy et al., 1998; Takahashi
et al., 1999; Zhou et al., 2000; David et al., 2002; Horigu-
chi et al., 2003; Landino et al., 2004; Necula and Kuret,
2004; Zhang et al., 2005; Dorval and Fraser, 2006, 2007;
Kuhla et al., 2007; Takahashi et al., 2008; Wang et al.,
2008; Arnaud et al., 2009; Bulbarelli et al., 2009; Liu et al.,
2009]. Tau has as many as thirty phosphorylation sites that
can alter its structure, function, and localization [Grundke-
Iqbal et al., 1986; Litersky et al., 1996; Fischer et al.,
2009]. In general, an increase in tau phosphorylation
reduces its affinity for microtubules and thus its ability to
stabilize microtubules [Drewes et al., 1995].

The relationship between SUMO and ubiquitin on tau is
a noteworthy example of one type of crosstalk between two
ubiquitin family members. Tau can be ubiquitinated both
in vitro and in vivo [David et al., 2002; Petrucelli et al.,
2004; Zhang et al., 2005; Arnaud et al., 2009; Liu et al.,
2009]. Tau is sumoylated mainly by SUMO1, but in some
cases by SUMO2 and SUMO3 [Dorval and Fraser, 2006,
2007; Takahashi et al., 2008]. Mutational analysis showed
that the primary attachment site for SUMO is lysine 340,
which is located within a microtubule-binding repeat. Tau
has been seen shown to be heavily ubiquitinated in mature
tangles of Alzheimer’s patients whereas the sumoylation lev-
els in the mature tangles are low [Bancher et al., 1991;
Dorval and Fraser, 2006]. It is speculated that ubiquitin
and SUMO compete for the same lysine residue. In this
case, if one modification is upregulated, the other would be
down regulated [Dorval and Fraser, 2006]. Consistent with
this model, inhibition of the proteasome causes a decrease
on tau sumoylation, while increasing tau ubiquitination
[Dorval and Fraser, 2006]. Therefore, the sumoylation of
tau could be one mechanism to modulate its turnover rate
by blocking the ubiquitination that sends it to the protea-
some [Dorval and Fraser, 2006]. The diminished sumoyla-
tion of tau observed in Alzheimer’s patients is consistent
with the diminished proteasome function that is commonly
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found in many neurodegenerative diseases [Pountney et al.,
2003; Dorval and Fraser, 2006].

Tau sumoylation is also partly dependent on phosphoryl-
ation. Treatment of cells with the phosphatase inhibitor,
okadaic acid, promotes tau sumoylation [Dorval and Fraser,
2006, 2007]. Sumoylation of tau is also increased by treat-
ment of cells with the microtubule-depolymerizing drug,
colchicine, which also releases tau from the microtubule.
This finding is consistent with the sumoylation site being
located inside the microtubule-binding region [Dorval and
Fraser, 2006]. These findings raise questions about the
extent to which sumoylation may control tau solubility.
Since tau is implicated in various human diseases, the levels
of tau sumoylation should also be examined in other tauo-
pathies. This information could provide insight into our
understanding of the role of sumoylation in human disease
pathogenesis.

Kinetochore MAPs

Numerous proteins of the kinetochore are sumoylated
[Mukhopadhyay and Dasso, 2010; Cubenas-Potts et al.,
2013]. Indeed, SUMO/Smt3p in yeast was identified as the
third Suppressor of Mif Two, which is a protein located at
the centromere-kinetochore interface [Lampert and Wester-
mann, 2011]. While the sumoylation of centromere and
kinetochore proteins is itself an emerging field of interest,
this section focuses on the kinetochore proteins that are
also bona fide microtubule-binding proteins.

Ndc80p

Ndc80p is a conserved part of the kinetochore-associated
Ndc80 complex, also refered to as Hec1p. Ndc80p is also a
microtubule-associated protein. Ndc80p consists of a N-
terminal microtubule-binding domain, which is negatively
regulated by the kinase Aurora B, and a C-terminal coiled-
coiled domain, which interacts with other components of
the kinetochore-associated Ndc80 complex [Cheeseman
et al., 2006; Guimaraes et al., 2008; Miller et al., 2008].
The kinetochore consists of a collection of proteins that
assembles on centromere DNA, to which the microtubules
then attach. Ndc80p helps organize and stabilize
kinetochore-microtubule interaction in order to facilitate
proper chromosome segregation [Wei et al., 2011].
Ndc80p forms a “dumbbell-like” heterotetramer with
Nuf2p, Spc24p, and Spc25p to form the Ndc80 complex
[Cheeseman et al., 2006; Tien et al., 2013]. The Ndc80
complex also helps localize spindle assembly checkpoint
proteins to the kinetochore [Gillett et al., 2004; Maiato
et al., 2004].

In budding yeast, Ndc80p was identified as a sumoylated
protein in several SUMO proteomes [Panse et al., 2004;
Zhou et al., 2004; Wykoff and O’Shea, 2005]. Later, it was
confirmed that Ndc80p is sumoylated in vivo at a lysine
residing at position 231 [Montpetit et al., 2006]. Mutation

of lysine 231 to arginine completely abolished the higher
molecular forms of Ndc80p. It is unlikely that lysine 231
contributes to SUMO chain formation since the laddering
effect remains the same in a strain in which SUMO chain
formation is blocked [Montpetit et al., 2006]. Instead, the
abrogation of the multiple higher molecular weight forms
of Ndc80p in the K231R mutant suggests that this amino
acid is required for the sumoylation of other lysines.
Ndc80p sumoylation levels remain relatively constant over
the cell cycle. Its sumoylation is also not affected by the
depolymerization of microtubules by nocodazole treatment
or by activation of the spindle assembly checkpoint. This is
unlike other sumoylated kinetochore proteins, Ndc10p,
Bir1p, and Cep3p. This suggests that Ndc80p is regulated
differently than these proteins [Montpetit et al., 2006].
Although the evidence shows that Ndc80p is sumoylated in
vivo, there are no phenotypes described as yet for the
K231R mutant.

CENP-E

CENP-E is both a centromere-associated protein located in
the outer plate of the kinetochore and a plus end-directed
microtubule motor from the kinesin family [Yen et al.,
1991]. CENP-E is required for cell-cycle progression from
metaphase to anaphase by helping align chromosomes at
the metaphase plate [Yen et al., 1991; Liu et al., 2007].
CENP-E localization at the kinetochore is crucial for spin-
dle checkpoint activation, which prevents defects in chro-
mosome segregation [Liu et al., 2007]. CENP-E has been
shown to promote plus-end microtubule elongation in vitro
by stabilizing the microtubule as it walks towards the plus-
end [Sardar et al., 2010].

CENP-E is both a SUMO substrate and a SUMO-
binding protein [Zhang et al., 2008]. The important role
that SUMO plays in CENP-E function was demonstrated
by inhibition of sumoylation using overexpression of
SENP2, a SUMO-specific protease. This resulted in cell-
cycle arrest at prometaphase and the mislocalization of
CENP-E from the kinetochore [Zhang et al., 2008]. Over-
expression of SENP2 also caused a decrease in sumoylation
of other kinetochore-associated proteins that are needed for
proper CENP-E localization to the kinetochore, since they
bind CENP-E non-covalently [Zhang et al., 2008]. CENP-
E has also been shown to be a SUMO2/3 binding protein.
Disruption of the SIMs in CENP-E also causes its mislocal-
ization from the kinetochore [Zhang et al., 2008].

In summary, two classes of microtubule motors are
linked to SUMO, but by different mechanisms. The kinet-
ochore kinesin, CENP-E, both binds to and is conjugated
by SUMO [Zhang et al., 2008]. The dynein motor is
speculated to be regulated by SUMO, but indirectly,
through conjugation of its adaptor, Pac1p [Alonso et al.,
2012].
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Actin

A third major cytoskeletal system is comprised of actin, also
known as microfilaments [Chesarone et al., 2010; Ydenberg
et al., 2011]. Actin is highly abundant, and can constitute
as much as 5% of total cellular protein in some cell types.
Actin is found in both the cytoplasm and in the nucleus,
and actively shuttles between the two compartments [Dopie
et al., 2012; Belin and Mullins, 2013]. Many of the cyto-
plasmic functions of actin are well characterized. In addi-
tion to serving as the cellular tracks on which myosin
transports its cargo, the many roles of actin include main-
taining cellular shape, formation of the cytokinesis furrow,
cellular locomotion, scaffolding sites for signaling proteins,
and roles in endocytosis and exocytosis [Pollard and
Cooper, 2009; Gardel et al., 2010; Pollard, 2010; Mishra
et al., 2014]. The nuclear functions of actin however are
less well understood [Hendzel, 2014], but include roles in
transcription and chromatin remodeling [Louvet and Perci-
palle, 2009; Kapoor et al., 2013; Percipalle, 2013]. Nuclear
actin also interacts with each of the RNA polymerases, as
well as nuclear export and import factors [Hofmann et al.,
2004; Hu et al., 2004; Philimonenko et al., 2004; Dopie
et al., 2012].

Recent reviews of actin and actin binding proteins have
discussed their various post-translational modifications
including acetylation, methylation, phosphorylation, and
ubiquitination [reviewed in dos Remedios et al., 2003; Ter-
man and Kashina, 2013]. This review focuses on the effect
that the SUMO modification exerts on actin.

Four proteomic studies identified actin as a likely target
for SUMO conjugation [Panse et al., 2004; Vertegaal et al.,
2004; Wohlschlegel et al., 2004; Rosas-Acosta et al., 2005].
Hofmann et al. [2009] confirmed these studies, showing
that SUMO 2 and 3 are the preferential isoforms of
SUMO that modify actin. Lysine to arginine mutagenesis
established that two lysines, one at position 68 and another
at position 284, are required for actin’s sumoylation. How-
ever computer modeling predicts that only K284 is conju-
gated by SUMO and that salt bridges between lysine 68
and SUMO help to stabilize the actin-SUMO interaction,
allowing K284 to be sumoylated.

Cellular fractionation experiments showed that it was
predominately the actin in the nuclear fraction that is
modified by SUMO. The current model suggests that
sumoylation on K284 blocks access to a nuclear export
sequence, NES-1, resulting in sumoylated actin being
retained in the nucleus. This idea is supported by the find-
ing that non-sumoylatable actin mutants are rapidly
exported out of the nucleus back to the cytoplasm through
an CRM1/exportin-1 dependent pathway. This export was
blocked by leptomycin B, a compound that modifies
CRM1, inhibiting its function and nuclear export [Kudo
et al., 1998, 1999; Hofmann et al., 2009]. Recent reports
also implicate Exp6 in the nuclear export of actin [Dopie
et al., 2012].

The import of actin into the nucleus was previously
linked to the actin binding protein, cofilin, which contains
a nuclear localization signal motif. Early models suggested
that actin could “piggy-back” on cofilin to gain entry into
the nucleus [Nishida et al., 1987]. However, Dopie et al.
[2012] recently showed that the import factor Ipo-9 is also
critical for actin transport into the nucleus. Informing both
models, Hoffman et al.’s finding that non-sumoylatable
actin can easily enter the nucleus suggests that this modifi-
cation may not be required for either of these import-
dependent interactions [Hofmann et al., 2009].

Structurally, the position of SUMO on actin at lysine
K284 suggests that sumoylation would physically block the
formation of classical actin filaments. This provides a plau-
sible explanation for the absence of classical actin filaments
in the nucleus [Hofmann et al., 2009]. It is also possible
that sumoylation provides a mechanism by which actin
could adopt alternative structures within the nucleus
[Schoenenberger et al., 2005; Jockusch et al., 2006]. This
hypothesis is especially intriguing considering that SUMO
expression is strongly influenced by stress, and cellular
stresses like heat shock and DMSO treatment induce the
formation of a type of actin bundle known as actin rods
within the nucleus of Xenopus oocytes [Welch and Suhan,
1985; Iida and Yahara, 1986; Iida et al., 1986]. Additional
work is warranted to determine the exact role that sumoyla-
tion plays in governing the functions of nuclear actin and
the types of structures formed, as little is known on this
topic [Belin and Mullins, 2013].

Actin Regulatory Proteins and SUMO

The function, dynamics, and interactions of actin in both
the cytoplasm and the nucleus are regulated by numerous
actin-binding proteins [Higgs and Pollard, 2001]. In addi-
tion to nuclear forms of myosin [Vreugde et al., 2006], sev-
eral actin-binding proteins have been shown to be present
in the nucleus, such as filamin A, members of the Arp2/3
complex, and thymosin b4 [Vartiainen, 2008]. Their role
in the regulation of nuclear actin is less clear [Dopie et al.,
2012]. While it is known that actin-binding proteins
undergo several types of post-translational modification
including phosphorylation [Arber et al., 1998; Yang et al.,
1998] and ubiquitination [Hao et al., 2013], actin-binding
proteins and actin regulatory proteins are now emerging as
new categories of SUMO substrates.

RhoA, and Rac1 are two members of the Rho family of
GTPases that play significant regulatory roles for the actin
cytoskeleton, and have also been linked to SUMO. They
regulate the formation of stress fibers, membrane ruffles,
and filopodia [Nobes and Hall, 1995]. In the cell, Rho fam-
ily GTPases function as molecular switches that toggle
between GDP-bound (inactive) and GTP-bound (active)
forms. This switching is regulated by two other groups of
proteins, GAPs (GTPase-activating proteins) and GEFs
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(guanine-nucleotide exchange factors). GAPs facilitate the
hydrolysis of GTP to GDP, returning the GTPase to its
“inactive” form, whereas GEFs help facilitate the exchange
of GDP for GTP, returning the GTPase to an “active” state
[reviewed in Cherfils and Zeghouf, 2013].

Ran is another small GTPase, which is central to the reg-
ulation of nuclear transport. It also interacts with the
nuclear pore protein Ran binding protein (RanBP2), which
is a SUMO E3 ligase [Azuma and Dasso, 2002]. The GAP
for Ran, RanGAP1, is conjugated by SUMO1 [Joseph
et al., 2002]. Ran influences the interaction between micro-
tubules and the kinetochore [Joseph et al., 2004] and this
aspect of its function has been expertly reviewed elsewhere
[Dasso, 2008; Flotho and Werner, 2012].

In 2010, Rac1 was shown to co-purify with the SUMO
E3 ligase PIAS3, prompting further investigation. Castillo-
Lluva et al. [2010] showed that the Rac1 is sumoylated and
that this SUMOylation event promotes cellular migration.
These researchers identified four lysine residues in Rac1 to
which SUMO-1 could conjugate. These lysines were identi-
fied by using in vitro sumoylated Rac1 and mass spectrome-
try to reveal the branched “gly-gly stubs” that are left
behind after trypsinsation. This approach is based on the
assumption that the fidelity of in vitro sumoylation is quite
high. Indeed, they found that mutation of these four lysines
to arginine resulted in the loss of the shifted SUMO bands
in vitro and in vivo. The four sumoylated lysines reside in
the C-terminal polybasic region of Rac1, a domain that is
important for the binding of several effectors of Rac1. Sur-
prisingly however, the non-sumoylatable Rac1 did not dis-
play altered binding to several known effectors. Instead,
sumoylation appeared to be important for optimal GTP
binding to Rac1. Defects were also observed in
lamellipodia-membrane ruffling. Further, the E3-SUMO
ligase PIAS3 preferentially sumoylated the GTP-bound
activated form of Rac1 over the GDP-bound form of Rac1.
Castillo-Lluva et al. [2010] postulate that while not all
active Rac1 is SUMOylated, the percentage that is could be
enough to boost Rac1 activity over a certain threshold that
is required for lamelliopodia formation and cellular
migration.

RhoGDI

Rho family GTPases are regulated in part by RhoGDIs
(Rho GDP-dissociation inhibitors). RhoGDI can both
remove and prevent the binding of Rho-GTPases to cell
membranes [Isomura et al., 1991; Dovas and Couchman,
2005], thereby controlling their cytosol-membrane cycling.
Thus, RhoGDI regulates the activation state of Rho-
GTPases from an active state that is membrane bound to
an inactive state in the cytoplasm [Olofsson, 1999]. Rho-
GTPases are known to regulate actin and a variety of cellu-
lar events including cellular morphology, cellular adhesion
and aggregation, cellular motility, and ruffling of the

plasma membrane, as well as formation of stress fibers and
focal adhesions [Paterson et al., 1990; Ridley and Hall,
1992; Tominaga et al., 1993; Nishiyama et al., 1994;
Takaishi et al., 1994]. Thus, the regulation of RhoGDI has
the potential to control many downstream effects.

The RhoGDI can be regulated by multiple mechanisms.
The RhoGDI-RhoGTPase complex can be post-
translationally regulated by the phosphorylation of RhoA
and Cdc42 [Forget et al., 2002; Tu et al., 2003]. RhoGDI
can itself be post-translationally modified by phosphoryla-
tion, causing the RhoGDI-RhoGTPase complex to dissoci-
ate [Price et al., 2003; DerMardirossian et al., 2006].
RhoGDI can also be modified by sumoylation at lysine 138
[Liu et al., 2011; Yu et al., 2012]. This acts as a switch to
activate RhoGDI activity [Yu et al., 2012]. The active
sumoylated form of RhoGDI inhibits Rho-GTPase activity,
resulting in the down regulation of actin polymerization
and cell motility by decreasing the recruitment of Arp2/3
complex to the cytoskeleton [Yu et al., 2012].

The sumoylation of RhoGDI can be regulated by the
RING domain of X-linked inhibitor of apoptosis protein
(XIAP) [Liu et al., 2011; Yu et al., 2012]. The RING
domain of XIAP binds RhoGDI and blocks RhoGDI
sumoylation [Yu et al., 2012]. By blocking the sumoylation
site, XIAP reduces the sumoylation levels of RhoGDI,
therefore increasing the recruitment of Arp2/3 to the cyto-
plasm causing an increase in actin polymerization and cell
motility [Yu et al., 2012]. XIAP overexpression has been
associated with malignant cancer progression in various
types of cancer [Yamazaki et al., 1999; Nemoto et al.,
2004; Akyurek et al., 2006; Kleinberg et al., 2007; Kluger
et al., 2007; Nagi et al., 2007; Burstein et al., 2008]. How-
ever the molecular mechanism for how this occurs remains
unknown. Thus, this finding suggests a possible molecular
mechanism for how overexpression of XIAP can down reg-
ulate RhoGDI, leading to increased actin polymerization
and cell motility of cancer cells.

Arp2/3 Complex

Another group of actin binding proteins is the Arp2/3 com-
plex. The principal function of the Arp2/3 complex is to
create branches in the elongating actin network near the
protruding edge of the plasma membrane [dos Remedios
et al., 2003; Firat-Karalar and Welch, 2011; Rotty et al.,
2013]. This complex is conserved from yeast to mammals
and consists of seven proteins: Arp2, Arp3, and five smaller
proteins (Arcs) [Goley and Welch, 2006].

At least three proteomic studies have identified compo-
nents of the Arp2/3 complex as potential SUMO targets.
Arc35p and Arc40p were identified in a proteomics screen
that combined nickel purification of his6-Smt3p with mass
spectrometry [Wohlschlegel et al., 2004]. A second proteo-
mic study using Schizosaccharomyces pombe also identified
several Arcs as potential SUMO targets. These included
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Arc34p, which is the S. pombe ortholog to S. cerevisae
Arc35p; Arc5p, which is an ortholog to S. cerevisiae
Arc15p; and Arc4p which is an ortholog to S. cerevisiae
Arc19p [Nie et al., 2012]. Recently, Sung et al. [2013] also
identified Arc35p as a sumoylation candidate by using a bi-
molecular fluorescence complementation assay. This assay is
based on the principle that a fluorescent complex will form
when two proteins fused to fragments of a fluorescent pro-
tein interact with each other. This allows for direct visual-
ization within the cell of the location of a protein-protein
interaction. Arc35p was one of several proteins chosen to
validate this approach. In a pull-down assay, Arc35p co-
fractionated with Smt3p, and anti-Smt3p reactive bands
matched the shifted forms of Arc35p [Sung et al., 2013].
While proteomic studies have consistently identified
Arc35p of the Arp2/3 complex as a likely sumoylated pro-
tein, follow-up studies providing more detail are currently
lacking. For instance, it is not known whether Arc sumoyla-
tion activates or inactivates Arp2/3 for its ability to form
actin branches.

Intermediate Filaments (IF)

Intermediate filaments (IF) are the fourth polymeric net-
work of the cytoskeleton, and include six classes of proteins
[Eriksson et al., 2009]. The pattern of expression for the
various classes of IF is cell-type specific. For example, the
type I and type II IF are the acidic and basic keratins. These
are coexpressed in tissues of epithelial origin [Fuchs, 1995].
Type III IF are found in cells of mesenchymal origin, which
include cells such as fibroblasts [Franke et al., 1978].
Vimentin is perhaps the best characterized type III IF. The
type IV class of IF include synemin, nestin, and the neurofi-
lament proteins of which there are the high, medium, and
low molecular weight (H, M, L) forms [Jing et al., 2007;
Lepinoux-Chambaud and Eyer, 2013]. Lamins are type V
intermediate filament proteins that line the periphery of the
inner membrane of the nuclear envelope [Eriksson et al.,
2009]. Members of the type VI IF family include filensin
and phakinin, which are present in the fiber cells of the lens
[Oka et al., 2008]. Mutations in these proteins result in cat-
aracts [Szeverenyi et al., 2008]. Certain cell types can
express more than one class of IF and expression patterns
can also be controlled developmentally. Several excellent
reviews have been written recently on intermediate fila-
ments [Eriksson et al., 2009; Goldman et al., 2012; Snider
and Omary, 2014].

General Structure of IF

Intermediate filaments are 10 nm in diameter, thus giving
them the name “intermediate” because they are intermedi-
ate in size between the 25 nm microtubules and 7 nm
microfilaments [Ishikawa et al., 1968]. IF have three major
domains. At the N-terminus, there is a non-alpha-helical
head domain. The central part of the protein is composed

of an alpha-helical rod domain containing heptad repeats.
These allow the formation of the dimeric coiled-coil archi-
tecture characteristic of IF. The coiled nature of the rod
domain is disrupted by three conserved short non-helical
linker regions. The C-terminus in lamins, also known as
the tail domain, forms a b-fold similar to that seen in
immunoglobulins [Herrmann and Aebi, 2004]. Several
types of IF organize into homodimers, whereas other types
can form heterodimers [Parry et al., 1985; Herrmann and
Aebi, 2004; Goldman et al., 2008].

As discussed in more detail below, four of the six classes
of IF are modified by SUMO in some capacity. These are
the type I and II keratins, type III vimentin, and type V
lamins [Zhang et al., 2008; Wang et al., 2010; Snider et al.,
2011]. The C. elegans IF protein, IFB-1, which displays sev-
eral structural and functional similarities to keratin but has
a lamin-like tail, is also sumoylated [Carberry et al., 2009;
Kaminsky et al., 2009]. This raises the question of whether
sumoylation of IF is a conserved modification. Will mem-
bers of the other classes of IF someday be found to be
sumoylated?

Keratin

Approximately 30 different keratins have been catalogued
and these are classified as either type I or type II IF based
on their isoelectric points and sequence homologies. Type I
keratins have an acidic isoelectric point, whereas type II ker-
atins are neutral-basic. As obligate heteropolymers, keratin
filaments can only form when a type I keratin forms a het-
erodimer with a type II keratin.

Keratin IF are specifically expressed in epithelial cells,
where they play several vital roles. First, keratins confer
structural support and mechanical durability to epithelial
cells [Fuchs and Cleveland, 1998]. A second role of keratins
is to modulate cell signaling processes through a variety of
mechanisms including the recruitment of multiple kinases,
phosphatases, and 14-3-3 proteins [Eriksson et al., 2009].
Keratins also play a role in the function of organelles and
cell migration [Kim and Coulombe, 2007]. Mutations that
disrupt the filament forming ability of keratins result in sev-
eral diseases, including the blistering skin diseases, epider-
mal bullosa simplex (EBS) and epidermolytic
hyperkeratosis (EHS) [Bonifas et al., 1991; Coulombe
et al., 1991; Vassar et al., 1991; Coulombe and Fuchs,
1993; Letai et al., 1993; Chipev et al., 1994; Yang et al.,
1994, 1996; Fuchs and Cleveland, 1998; Arin et al., 1999,
2000). Mutations in keratin 8 and 18 can predispose
patients and mice to liver disease [Ku et al., 2005; Ku and
Omary, 2006; Strnad et al., 2012]. Keratin expression can
also modulate the invasive nature of some cancers [Chung
et al., 2013; Seltmann et al., 2013].

Keratins K8, K18, and K19, which are found in simple
epithelia, were recently shown by the Omary laboratory to
be sumoylated [Snider et al., 2011]. SUMO 2/3 is used
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preferentially over SUMO1 [Snider et al., 2011]. Four sites
were identified for K8, three for K18, and one for K19.
The sites of sumoylation appear to lie within the coiled-coil
alpha-helical rod domain, similar to the study from the
Sarge lab for lamins A (see below) [Zhang et al., 2008].
Due to the geometry of packing of dimers and tetramers, it
seems improbable that these sites would be available for
sumoylation in the fully formed filament [Snider et al.,
2011]. In contrast, an IF from C. elegans, IFB-1, was found
to be sumoylated in the C-terminal tail domain [Kaminsky
et al., 2009].

Keratin sumoylation is regulated by oxidative and other
stresses. In cells treated with hydrogen peroxide, as well as
compounds used in liver injury models, the sumoylation
levels on K8, K18, and K19 increased dramatically [Snider
et al., 2011]. Concomitantly, the levels of SUMO co-
localizing with the keratin network also increased signifi-
cantly [Snider et al., 2011]. It will be useful to know from
future studies how keratin sumoylation transduces signals
to downstream stress response pathways. It will be equally
important to determine whether sumoylation is necessary
for the “stress protection” conferred by keratins against vari-
ous liver diseases.

Studies from two systems, human cells and C. elegans,
show that sumoylation regulates the solubility of keratins.
Using human keratins 8 and 18, mono-sumoylation was
found to increase the solubility of keratins. In contrast,
hyper-sumoylation decreases the solubility [Snider et al.,
2011]. These findings have significant implications for the
regulation of IF dynamics [Kaminsky et al., 2009; Snider
et al., 2011]. In comparison to other cytoskeletal networks,
keratins and other IF have small cytosolic pools of subunits,
which are represented by a small number of biochemically
soluble subunits [Soellner et al., 1985]. This contributed to
an early but inaccurate viewpoint that keratin networks
were static, rigid structures [reviewed in Goldman et al.,
2012]. Work then began to emerge showing that keratin
subunits did in fact exchange with the keratin polymer,
albeit the rates for dynamic exchange of keratin were slower
than for vimentin, microtubules, or microfilaments [Soell-
ner et al., 1985; Miller et al., 1991, 1993; Yoon et al.,
1998, 2001].

These findings are consistent with those made with the
C. elegans IF protein, IFB-1A, which forms epidermal
attachment structures. A sumoylation-deficient mutant of
IFB-1 displayed decreased cytoplasmic staining and dis-
rupted IF formation in vivo in comparison to wild type.
Similarly, inhibition of the C. elegans SUMO gene itself
with RNAi-feeding also showed decreased cytoplasmic
staining of the IFB-1 and thicker and shorter filament bun-
dles. These findings support the notion that sumoylation
mediates the amount of keratin subunits available for incor-
poration into newly assembled bundles [Kaminsky et al.,
2009]. To investigate the extent to which SUMO-mediated
solubility correlates with IF dynamics, fluorescence recovery

after photobleaching (FRAP) experiments were carried out.
Both non-sumolatable IFB-1 and SUMO mutants exhib-
ited much slower rates of recovery of photobleached IF fila-
ments, suggesting that subunit exchange within the
filaments is impaired by the lack of sumoylation in vivo
[Kaminsky et al., 2009]. Overexpression of SUMO
increased the amount of IF at apparent IF nucleation sites.
Together, these findings are consistent with the hypothesis
that sumoylation mediates the cytosolic pool of keratin sub-
units [Kaminsky et al., 2009]. In the future, it will be inter-
esting to find out whether extra sumoylation can induce the
disassembly of pre-formed filaments and/or modulate their
interaction with desmosomes and hemi-desmosomes. If so,
what is the extracellular stimuli to which sumoylation of IF
responds? This information may provide insight into the
function of sumoylation on mechanisms of cell motility.

In polymer science, it is commonly accepted that only
very low concentrations of non-functional subunits need be
present to terminate the polymerization of polymer, result-
ing in much shorter chain lengths [Odian, 1991]. This
principle of polymer science leads one to speculate whether
a SUMO-modified IF subunit may serve as a chain-
terminating element for this family of biopolymers. Con-
sidering that the vast majority of cytoskeletal protein resides
in the polymeric state, sumoylation in this capacity would
also be consistent with the low level of sumo-modified sub-
units found within the entire population of molecules for a
particular cytoskeletal network.

Phosphorylation of the target protein is a common para-
digm by which sumoylation can be regulated [Hietakangas
et al., 2003]. Phosphorylation of a serine or threonine can
create a negatively charged residue that is functionally
equivalent to the aspartic (D) or glutamic acid (E) within a
canonical consensus site for sumoylation [Hietakangas
et al., 2003; Yang et al., 2006; Blomster et al., 2009]. Such
a phosphorylation dependent sumoylation motif (PDSM)
paradigm is also seen with keratin. Several lines of evidence
suggest that keratin 8 sumoylation is regulated in part by
phosphorylation [Snider et al., 2011]. Inhibition of phos-
phatases with okadaic acid results in an increase in keratin 8
sumoylation seen by western blotting and an increase in the
amount of SUMO-2/3 colocalizing with the keratin net-
work seen by immunofluorescence [Snider et al., 2011].
Liver-injury agents such as porphyrinogenic compound
DCC are known to increase keratin phosphorylation. These
also result in increased sumoylation of keratin [Snider et al.,
2011]. In cells transfected with the phospho-inhibitory ker-
atin 8-S74A mutation, there is a moderate decrease in
sumoylation of keratin 8 [Snider et al., 2011]. While the
decrease was not dramatic, it leaves open the possibility that
other uncharacterized phosphorylation sites could be regu-
lating keratin sumoylation. Together these data support the
hypothesis that phosphorylation regulates the sumoylation
of keratin. Additional knowledge on this topic has the
potential to be hugely important in understanding the
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molecular mechanisms of diseases involving keratins, such
as liver disease.

Vimentin

Vimentin is the intermediate filament protein that typifies
mesenchymal tissue and its expression characterizes the epi-
thelial to mesenchymal transition in development [Mendez
et al., 2010]. In several epithelial cancers, vimentin expres-
sion correlates with an increase in cell migration and poorer
cancer prognosis [Hendrix et al., 1997; Lepekhin et al.,
2001; Mendez et al., 2010; Liang et al., 2014; Niwa et al.,
2014]. However in astrocytomas, the correlation of vimen-
tin expression and survival is less clear [Skalli et al., 2013].
The regulation of vimentin disassembly is an important
step in the formation of lamelliapodia, a key cellular struc-
ture at the leading edge of the cell that is needed for cell
migration [Helfand et al., 2011]. Adding to its complexity,
vimentin can co-polymerize with several other types of type
III subunits to form IF co-polymers [Eliasson et al., 1999].
One use for this co-polymerization is to help assemble the
glial fibrillary acidic protein (GFAP) network within astro-
cytes [Galou et al., 1996]. In addition, vimentin plays a
role in anchoring mitochondria and thus modulating their
intracellular migration [Nekrasova et al., 2011].

Recently SUMO has been linked to a mutant form of
vimentin in an aggressive form of brain cancer, glioblas-
toma multiforme. In a model system for this, U373 cells
displayed inhibited cell migration with overexpression of
PIAS, a SUMO ligase [Wang et al., 2010]. In an effort to
identify potential targets of SUMO that might play a role
in the inhibition of cell migration, a pull down experiment
of SUMO1 was carried out. A truncated version of vimen-
tin was co-isolated from a nuclear fraction and identified by
mass spectrometry and western blotting as a candidate
[Wang et al., 2010]. Yet, many questions remain. Can full-
length vimentin be sumoylated? Is cytoplasmic vimentin
modified by SUMO? Do the other isoforms of SUMO
modify vimentin? What is the fate of sumoylated vimentin?

Lamins

Lamins are the major element of a meshwork that provides
structural support and shape for the nucleus [Aebi et al.,
1986; Belmont et al., 1993; Houben et al., 2007; Dechat
et al., 2008]. A fraction of the lamins A/C population is
also present in the interior of the nucleus as “speckles”
[Jagatheesan et al., 1999; Kumaran et al., 2002; Adhikari
et al., 2004]. Lamins participate is a variety of processes,
including DNA replication, DNA repair, and transcrip-
tional regulation owing to their ability to segregate hetero-
chromatic domains to the inner edge of the nuclear
envelope [Kumaran and Spector, 2008; Shimi et al., 2010].
Lamins also have functions in cell signaling, cell prolifera-
tion, development, and differentiation [reviewed in Dechat
et al., 2008; Eriksson et al., 2009]. Mutations in the genes

encoding lamins result in a class of devastating diseases
called laminopathies, which include the premature aging
disorder Hutchison-Gilford Progeria, Emery-Dreifuss mus-
cular dystrophy, and cardiomyopathies [Sullivan et al.,
1999; Sylvius and Tesson, 2006; Eriksson et al., 2009;
Schreiber and Kennedy, 2013; Burke and Stewart, 2014].

There are two types of nuclear lamins, A-type and B-
type. The A-type lamins are encoded by a single gene in
mammals, LMNA. Alternative splicing of this gene leads to
expression of different proteins including lamin A and
lamin C [Broers et al., 2006]. Mammals express three dif-
ferent B-type lamins, which are encoded by two different
genes, LNMB1 and LNMB2 [Burke and Stewart, 2014].

The first hint that lamins were sumoylated came from
two-hybrid experiments showing that lamin A interacted
with the SUMO E2 conjugating enzyme, Ubc9p [Zhang
et al., 2008]. Subsequent studies have since confirmed this
finding, but with several noteworthy differences between
them [Zhang et al., 2008; Boudreau et al., 2012; Simon
et al., 2013].

The first study by Zhang and Sarge suggests that the
lamin A conjugation occurs predominately with SUMO2,
but not SUMO1. These authors identified lysine 201,
which is located in the rod domain of lamin A as a sumoy-
lation site [Zhang and Sarge, 2008a, 2008b]. Residing near
this SUMO site are two mutations that are associated with
familial dilated cardiomyopathy, E203G and E203K. Con-
sidering that the acidic residue in the canonical sumoylation
consensus sequence (wKX D/E) is important for the effi-
ciency of sumoylation, E203G and E203K were tested for
their effect on sumoylation. Both mutants exhibited signifi-
cantly decreased levels of sumoylation. GFP fusions with
both mutants also displayed abnormal sub-cellular localiza-
tion patterns, which were consistent with the K201R
mutant. These findings are consistent with those of Bou-
dreau et al. [2012], who also found that several lamin
mutants associated with dilated cardiac myopathy were
modified by SUMO1, whereas wild type lamin A or C
were not. The lamin A of these myopathies was mislocal-
ized into aggregates that also sequestered SUMO1 [Bou-
dreau et al., 2012]. Combined, these results suggest that
sumoylation plays an important role in lamin A function
and implicate sumoylation in the pathology of cardiomyop-
athies associated with lamin malfunction.

In the second study from the Hoffman and Wilson labs,
Simon et al. [2013] also demonstrated that lamin A is
modified by SUMO, but the modification they observed
employed SUMO1 preferentially over SUMO2. In a sec-
ond point of contrast to the Sarge study, these authors
showed that sumoylation of lamin A occurred on K420 and
K486 in the IgG globular tail domain. Independent mass
spectrometry confirmed modification at lysine 420 [Galis-
son et al., 2011]. These findings are in contrast to the
Zhang study in which sumoylation was found in the coiled-
coil domain. The position of such a mutation in the tail
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domain is noteworthy because as many as 21 different
lamin A binding partners interact with lamin A through its
tail domain [Simon et al., 2013]. These findings led Simon
et al. to propose a model where modification in the tail by
SUMO1 regulates the binding of lamin A to its known
partners to control the assembly of lamin A filaments.

Why the differences in these two studies? The differences
in the types of SUMO used and in the sites of conjugation
could be attributed to the origin of cells studied. The Sarge
lab used HeLa cells and myocytes, whereas the Wilson and
Hoffmann labs used Cos-7 cells, a SV40 transformed kid-
ney cell line derived from African green monkey. It has also
been noted previously that the pattern and number of
SUMO modifications can change with cell activation
[Galisson et al., 2011], so the growth state of the cells used
in these lamin studies could easily play a role in these
differences.

In the Simon et al. study, the second site of sumoylation,
K486, in the tail was somewhat unexpected because it did
not lie within a canonical consensus site. After further
examination of the three-dimensional structure of the IgG
fold of the lamin A tail, it was apparent that two acidic resi-
dues, E460 and D461, are positioned directly below K486
[Krimm et al., 2002]. Two other acidic residues E536 and
E537 were close to K420, but on a different side. Mutation
of E460 and D461, or the double mutant E460 D461,
diminished sumoylation by 65–80% compared to wild
type. Mutations of E536 and E537 reduced sumoylation by
30–50% showing they contribute to sumoylation of K486,
but are less important than E460 and D461. These findings
suggest the hypothesis that canonical consensus sites can be
“conformational” in nature. These results highlight the
need for the development of algorithms that identify
sumoylation sites not only by linear amino acid sequences,
but also by the three-dimensional structure of the folded
protein.

Laminopathies and Sumoylation

It is significant to note that several studies report abnormal-
ities in the sumoylation patterns of patients afflicted with a
range of different laminopathies. Lamin A mutations of
G465 and K486 are known to cause familial partial lipo-
dystrophy (FPLD), an adipose tissue disease characterized
by decreased levels of adipose tissue. As mentioned above,
the sumoylation of these mutants is decreased [Simon et al.,
2013], leading these investigators to postulate that FPLD in
patients with G465 or K486 mutations could arise from
deficiencies in sumoylation levels. Lamin A mutations are
also frequently seen in patients with dilated cardiomyopa-
thy [Sylvius and Tesson, 2006]. In dilated cardiomyopathy
disease, patients carrying a lamin C-D192G mutation dis-
played a number of aberrant nuclear phenotypes and greatly
reduced SUMO1 patterns [Sylvius and Tesson, 2006]. As
noted above, two lamin A mutations E203G and E203K

are linked with familial dilated cardiomyopathy. These
mutant lamins display altered subcellular localization that
match those seen in the sumoylation-deficient lamin A
mutants [Zhang et al., 2008]. Consistent with this pattern,
patients with the premature aging disease, Progeria, have a
defective nuclear rim staining and also display a disrupted
pattern of Ubc9 localization [Kelly et al., 2011]. However,
not all laminopathy mutations result in decreased levels of
sumoylation. In mouse myoblasts cell lines and mouse mus-
cle tissue, laminopathy mutations associated with dilated
cardiac myopathy and Emery-Dreisfuss muscular dystrophy
resulted in intracellular lamin aggregates that had higher
levels of sumoylation, as well as increased Ubc9 co-
localization [Boudreau et al., 2012].

Together, these finding are consistent with sumoylation
playing a vital role in the physiology of various cell types
important for human heath. The differences in these studies
highlight the need for additional research into this transfor-
mative area of cell biology, while providing critical insight
into the cause of human diseases associated with mutations
in lamin A. Many laminopathies are known [Eriksson
et al., 2009; Boudreau et al., 2012; Burke and Stewart,
2014], but the sumoylation status in most of these diseases
remains unknown. This represents an important avenue for
future investigations that will likely lead to a better under-
standing of these diseases. For instance in these various lam-
inopathies, does sumoylation modulate the solubility of
lamins as it does for keratin? Does sumoylation promote
the removal of damaged lamins by a sumo-mediated pro-
teasome pathway? Could such a system be harnessed for the
treatment of these diseases? [Liu and Zhou, 2008].

Conclusions and Perspectives

Many Questions Remain

A plethora of questions remain about the relationship
between sumoylation and the cytoskeleton. How extensive
is SUMO’s control of cytoskeletal function? Are other
cytoskeletal elements controlled by sumoylation? Could
sumoylation regulate desmosomes, adherens junctions, tight
junctions, or focal adhesions? Microtubule motors CENP-
E and dynein have been linked to SUMO. Are the myosin
motors walking along microfilaments also controlled by
sumoylation? How wide spread is the altered sumoylation
status of cytoskeletal proteins in disease?

An emerging theme is the role that sumoylation plays in
controlling the structure of cytoskeletal systems. Sumoyla-
tion of actin is found on just the nuclear fraction of actin.
It has been speculated that this could lead to a different
configuration for actin assembly since the site of sumoyla-
tion would obstruct the formation of a classical actin fila-
ment. Sumoylation also influences intermediate filament
solubility. Yet, a significant gap exists in knowing how this
translates into control of other aspects of filament
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dynamics. Can sumoylation influence the disassembly of
pre-assembled intermediate filament networks? To what
extent is the assembly/disassembly or solubility of other
cytoskeletal polymers regulated by sumoylation?

Network Connectors

Much of this review discusses the four polymer networks of
the cytoskeleton as separate entities, but in fact, several con-
nections are known between these networks. These connec-
tions allow for inter-network communication that could, in
theory, be modulated by sumoylation. The sumoylation of
Kar9p, a linker between the actin and microtubule net-
works, supports this contention. The possibility of other
linkers being regulated by sumoylation is just now begin-
ning to emerge. For instance, plectin is a very large protein
of the plakin family that plays a major role in cytoskeletal
organization by providing linkages between the three major
cytoskeletal networks; actin, microtubules and intermediate
filaments [Svitkina et al., 1996; Wiche, 1998; Sonnenberg
and Liem, 2007; Winter and Wiche, 2013; Bouameur
et al., 2014]. In skin cells, plectin is an essential part of the
hemidesmosome, a junction that plays a major role in
anchoring the outer epithelial layer of the skin to the under-
lying dermal layer [Andra et al., 2003]. It does this in part
by attaching keratin intermediate filaments to the basal
membrane of cells in the basal cell layer [Wiche, 1998].
Plectin is also a component of desmosomes, which form
junctions between neighboring cells [Huber, 2003]. It is
intriguing that a recent sumoylation proteomics screen
recently identified plectin as a potential substrate for
SUMO2 [Wen et al., 2014]. Although further research is
needed to confirm this interaction, this opens up a new
research avenue that could impact multiple cytoskeletal sys-
tems simultaneously. This would provide needed insight
into how signaling between the cytoskeletal networks might
be coordinated.

Crosstalk With Other Signal Transduction
Systems

While many unknowns exist about the relationship of
sumoylation with the cytoskeleton, perhaps the biggest
unknown is how cytoskeletal sumoylation is integrated with
other signal transduction pathways. Can sumoylation be a
mechanism of transmitting information between different
cell cycle checkpoints, DNA repair, stress response path-
ways, and transcription to the cytoskeleton?

Sumoylation of many targets can be either increased or
decreased with a variety of cellular stresses [Golebiowski
et al., 2009; Ren et al., 2014]. Does cellular stresses alter
the sumoylation of the entire cytoskeleton? And if so, which
stresses? Some work on cellular stress affecting cytoskeletal
sumoylation has been done for the intermediate filaments,
but little has been done in this regard for the other net-
works. Does cytoskeletal sumoylation generate crosstalk

with other signaling cascades? What other signals are
responsible for changes in the sumoylation of the cytoskele-
ton? A clear understanding these questions is still in its
infancy, and sumoylation of the cytoskeleton will certainly
be an exciting chapter of new research for years to come.
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