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ABSTRACT: Oral squamous cell carcinoma (OSCC) is a life-threatening disease, associated with poor prognosis and the absence of specific
biomarkers. Studies have shown that the ferroptosis-related genes (FRGs) can be used as tumor prognostic markers. However, FRGs’ prog-
nostic value in OSCC needs further exploration. In our study, gene expression profile and clinical data of OSCC patients were collected from a
public domain. We performed univariate and multivariate Cox regression analyses to construct a multigene signature. The Kaplan-Meier and
receiver operating characteristic (ROC) methods were used to test the effectiveness of the signature, followed by the expression analysis of
human leukocyte antigen (HLA) and immune checkpoints. The Cox regression analysis identified 4 hubs from 103 FRGs expressed in OSCC
that were associated with overall survival (OS). A risk model based on the 4 FRGs was established to classify patients into high-risk and low-risk
groups. Compared with the low-risk group, the survival time of the high-risk group was significantly reduced. According to the multivariate Cox
regression analysis, the risk score acted as an independent predictor for OS. The accuracy of the 4 FRGs risk predictive model was confirmed
by ROC curve analysis. Moreover, the low-risk group had the characteristics of higher expression of HLA and immune checkpoints, a lower tumor
purity, and a higher immune infiltration, indicating a more sensitive response to immunotherapy. The novel FRGs-OSCC risk score system can
be used to predict the prognosis of OSCC patients and their response to immunotherapy.
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Background

Oral squamous cell carcinoma (OSCC) is the most common
type of oral cancer, with more than 300000 newly diagnosed
cancer cases worldwide in 2018, according to the
GLOBOCAN database.! The OSCC predilection sites
include the tongue, the alveolar, the mouth floor, the lips, and
the buccal mucosa. The OSCC is characterized by high
recurrence, metastatic, and mortality rates, especially in
patients with a late diagnosis.? In recent years, multidiscipli-
nary collaborative diagnosis and treatment has been pro-
posed for OSCC treatment, which included chemotherapy,
biological therapy, and radiotherapy. Although multimodal-
ity therapies can improve the prognosis, the 5-year overall
survival (OS) rate of OSCC patients remains stable, at
approximately 56%, and the posttreatment local recurrence
and distant metastasis rates are 25% to 50%.3* Therefore,
there is a need to find effective prognostic biomarkers that
could guide these management decisions.

* Junhao Yin and Jiayao Fu contributed equally to this work.

Ferroptosis is a new form of programmed cell death, char-
acterized by iron overload and lipid peroxidation that cause
lipid reactive oxygen species (ROS) accumulation.>®
Numerous studies demonstrated that ferroptosis is involved
in cancer initiation, progression, and suppression.” For
instance, the tumor suppressor gene p53 may modulate the
susceptibility of cancer cells to ferroptosis in a cell type—spe-
cific manner.®? Artesunate, a clinically approved drug, can
selectively kill OSCC cells by inducing ferroptosis.l
Recently, Kotaro Sato et al'! found that non-thermal plasma
exposure kills OSCC cells through a specific mechanism that
depends on ample catalytic Fe (II). There are 2 mixed forms
of programmed cell death that are caused by this treatment
method, including apoptosis and ferroptosis, which suggest
that ferroptosis might be closely related to OSCC occur-
rence. Moreover, ferroptosis is also associated with the effi-
cacy of immunotherapy.

It is well known that CD8" T cells generally induce tumor
cell death through the pore-forming protein-granzyme and
the Fas/FasL pathways.'3>'4 However, a new study!® showed
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that CD8" T cells, which are activated by immunotherapy,
augment ferroptosis in tumor cells, which contributes, there-
fore, to the antitumor efficacy of immunotherapy. This discov-
ery provided important evidence for the correlation between
ferroptosis and antitumor immunity. Besides, Lang et al'® also
found that interferon-y, which is produced by CD8* T cells,
has a synergistic effect with radiotherapy-activated ataxia-tel-
angiectasia mutated, on promoting lipid oxidation and ferrop-
tosis in tumor cells. These evidences indicate that the induction
of ferroptosis is expected to enhance the antitumor efficacy of
immunotherapy; however, it is not currently clear whether the
immunotherapeutic targeting of ferroptosis is effective for
OSCC patients.

The purpose of this study is to explore potential diagnostic
and prognostic markers of OSCC and investigate their biologi-
cal functions through bioinformatics analysis. We successfully
constructed a novel prognostic model for OSCC, focusing on 4
FRGs that are mainly involved in the biological processes (BP)
of immunity and glycolysis. Finally, we also discussed the predic-

tion of a prognostic model on the sensitivity to immunotherapy.

Materials and Methods
Data collection

The mRNA expression profiles and the corresponding clinical
characteristics of 273 OSCC patients were obtained from The
Cancer Genome Atlas (TCGA) database (https://gdc-portal.
nci.nih.gov/).’” The HTSeq-FPKM files of 273 oral samples
(254 tumors and 19 controls) were retained, including the
tongue, alveolus, buccal mucosa, soft and hard palate, oral cav-
ity, and lips. In total, 108 driver genes and 111 marker genes
were downloaded from FerrDb database (http://www.zhou-
nan.org/ferrdb/).’® The genes tested only in mice (12 genes)
and multi-annotated genes in both groups (15 genes) were fil-
tered out. As a result, a total of 192 FRGs were obtained. The
accession numbers of all samples were included in
Supplementary Table 1. The names of public domains and the
direct Web links were listed in Supplementary Table 2.

Cox risk regression establishment

A univariate Cox regression analysis was used to filter the prog-
nostic-associated factors that were closely related to the OS of
OSCC patients. Then, we performed a multivariate Cox regres-
sion analysis with a stepwise regression analysis to construct a
risk model. Finally, 4 FRGs-OSCC were enrolled in a risk Cox
regression, forming a risk formula that was determined by a lin-
ear combination of the 4 genes’ expression levels and weighted
with the corresponding regression coefficients from the step-
wise Cox regression model. The risk score was defined as

sum(cach gene’s expression levels x corresponding cocfﬁcicnt)

risk score =

sum (each gene’s mean expression levels x corresponding coefﬁcient)
€

According to the median of the risk score, we divided the
OSCC patients into 2 groups: a high-risk and a low-risk group.
The Kaplan-Meier (K-M) and ROC analyses were performed,
based on the risk score, using the survival R package. Moreover,
univariate and multivariate Cox regression analyses were used
to analyze whether the risk score was an independent prognos-
tic factor. A nomogram was also established, based on the risk
score, the pathological stage, and the M stage, to obtain sur-
vival rates of patients at 1,3, and 5 years. We also used the K-M
analysis to test the prognostic value of 4 single genes.
Furthermore, randomized sampling method was used to obtain
4 random genes. A random gene signature was finally con-
structed to verify the validity of the 4-gene signature.

Identification of differentially expressed mRINAs

The limma R package! was used to screen the differentially
expressed genes (DEGs) between high-risk and low-risk sam-
ples, according to the thresholds of]|log2 (fold change)| >2.0
and P<.05.Y

Functional enrichment analysis

We performed a Gene Ontology (GO) enrichment analysis
and a Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis using the clusterProfiler R package.?® The
GO results were composed of 3 parts: the BP, the cellular com-
ponent (CC), and the molecular function (MF). Functional
categories were considered when P value is less than .05.

Estimation of immune and stromal scores

ESTIMATE (Estimation of Stromal and Immune cells in
Malignant Tumor tissues using Expression data) is a novel
algorithm, based on ssGSEA (single sample Gene Set
Enrichment Analysis) for predicting the level of tumor tissues’
infiltrating immune and stromal cells, based on gene expression
profiles.?1-?2 Herein, this method was applied to estimate the
immune and stromal scores, for each OSCC patient from the 2
risk groups using the estimate R package. The tumor purity
was inferred according to the formula derived from Prof.
Yoshihara’s research.2!

Estimation of immune cell type fractions

CIBERSORT is a deconvolution algorithm that is used to
characterize the cellular constitution of complex tissues.?324
The LM22 gene signature contains 547 gene expression signa-
tures that can distinguish 22 human hematopoietic cell pheno-
types, including natural killer (NK) cells, T cells, myeloid
subsets, B cells, and plasma cells.”> The CIBERSORT R pack-
age and the txt files of LM22 are available on the CIBERSORT
Web site (http://cibersort.stanford.edu/). We wused the
CIBERSORT method and LM22 to compare the proportions
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Figure 1. Identification of the prognostic ferroptosis-related genes in the TCGA database. (A) Venn diagram to identify the ferroptosis-related genes
(FRGs) which are expressed in oral squamous cell carcinoma (OSCC) samples. A total of 103 FRGs were expressed in TCGA-OSCC. (B) Forest plots
showing the results of the multivariate Cox regression analysis between gene expression and overall survival. FTH1, FLT3, CDKN2A, and DDIT3 were

identified as hub genes.
TCGA indicates The Cancer Genome Atlas.

of 22 infiltrating immune cell types between the 2 risk groups.
For each sample, the sum of all estimates of immune cell type
fractions was equal to 1.2

Differential analysis of immunotherapy between
the high-risk and low-risk groups

We checked the expression of HLA genes and immune check-
point molecules between the high-risk and low-risk groups.
The HLA signatures were downloaded from Nomenclature
(http://hla.alleles.org/genes/index.html). The immune check-
point molecules included CD27, CD274, CTLA4, HAVCR?2,
ICOS, IDO1, LAG3, PDCD1, PDCD1LG2, and TIGIT.
Tumor Immune Dysfunction and Exclusion (TIDE) is a com-
putational framework for predicting the response of the
immune checkpoint blockade response.?” The TIDE scores of
OSCC patients were downloaded from the TIDE Web site
(http://tide.dfci.harvard.edu), based on the uploaded tran-

scriptome profiles.

Statistical analysis

The statistical analyses were undertaken using R v3.6.1 and
Bioconductor (https://www.bioconductor.org/). All statistical
tests were bilateral and P<<.05 was considered significant.
Besides, the differences were considered significant if *P<.05,
*P<0.01, " P<.001, or ***P<.0001.

Results
A prognosis prediction model based on FRGs in
oscc

Using the comprehensive genome annotation files obtained
from NCBI (Supplementary Table 2), 10000 genes that were

expressed in the tumor samples were identified by analyzing
the transcriptome data of oral cancer of the tongue, alveolus,
buccal mucosa, soft and hard palate, oral cavity, and lips, while
the genes not expressed were eliminated. Subsequently, 192
FRGswere sorted out from the FerrDb database (Supplementary
Table 3). The results of the 2 programs were integrated and
only the intersection was selected to increase the specificity.
As a result, 103 FRGs were expressed in the TCGA-OSCC
(Figure 1A, Supplementary Table 4).

To evaluate the prognostic value of the OSCC 103 FRGs, a
univariate Cox regression analysis was performed on these genes
and 5 variables (F7TH1, FLT3, CDKN2A, DDIT3, and BNIP3,;
all P<.01) were identified to be significantly associated with OS
(Table 1, Supplementary Table 5). Furthermore, we applied to
the 5 FRGs a multivariate Cox regression with a stepwise regres-
sion. As a result, 4 FRGs (FTH1, FLT3, CDKN2A,and DDIT3)
were harvested in the Cox regression (P<.05; Table 2, Figure
1B, Supplementary Table 6) and a risk formula was constructed
with the expression levels of 4 genes and the corresponding
regression coefficients: risk score=-0.0171 X CDKN24 + 0.01
11 X DDIT3-1.2269 X FLT3+0.0014 X FTH].

The prognostic value of the ferroptosis-related
signature in OSCC

We calculated the risk score of each patient by the previously
described formula and classified the patients into a high-risk
(n=126, score=1.0917) or a low-risk group (n=126,
score < 1.0917), based on the median of the risk score. The risk
score ranking, the survival status of OSCC patients, and the
heatmaps of 4 FRGs’ expressions are shown in Figure 2A to C.
The abscissas of each graph represented risk scores of OSCC
patients. According to the results of the heatmaps, patients in the
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Table 1. Univariate Cox regression of prognostic-related genes for OS.

ID HR HR.95L HR.95H P VALUE
FTH1 1.001832 1.000681 1.002985 .00181
FLT3 0.189899 0.061876 0.582804 .003689
CDKN2A 0.981546 0.96921 0.994039 .003896
DDIT3 1.013436 1.0042 1.022756 .004273
BNIP3 1.021741 1.005669 1.038069 .007842

Abbreviations: HR, hazard ratio; OS, overall survival.

P value <.01 was considered statistically significant.

Table 2. Multivariate Cox regression analysis results.
GENE ID COEFFICIENT HR HR.95L HR.95H P VALUE
CDKN2A -0.01707 0.983071 0.970235 0.996058 .01078
DDIT3 0.011122 1.011184 1.00103 1.021441 .030778
FLT3 -1.2269 0.2932 0.92297 0.931413 .037485
FTH1 0.001357 1.001358 1.000198 1.002518 .021707

Abbreviations: HR, hazard ratio; OS, overall survival.
P value < .05 was considered statistically significant.

high-risk group had much higher expression of DDIT3/FTH1
genes and lower expression of CDKN2A/FLT3 genes. Based on
the K-M curves of the TCGA data set, there was an obvious
difference between the 2 risk groups (P=1.005¢-04; Figure 2D).
Furthermore, the ROC curve confirmed the predictive capacity
of the 4-FRG risk signature. The area under the curve (AUC)
for the risk signature was 0.749, indicating a considerable pre-
dicting power (Figure 2E). Regarding the prognostic value of 4
single genes, the K-M curve results showed that patients with
high expression of FL73 and low expression of F7H1 have bet-
ter OS (P<.05; Supplementary Figure 1A and B). However,
DDIT3 and CDKN2A4 are relatively poor in predicting the prog-
nosis of patients (P>.05; Supplementary Figure 1C and D). In
general, the 4-gene predictive model could reflect the prognosis
of patients more effectively than a single gene. In addition, we
used the sample function in R software and obtained 4 random
genes from 103 FRGs, namely, CYBB, EGFR, ATM, and
EGLN2. Subsequently, we performed a stepwise multivariate
Cox analysis and 2 FRGs (EGFR and ATM) were finally used to
construct a random gene signature (Supplementary Figure 2A).
The risk score of each patient was calculated according to the
previous formula and all patients were divided into high- and
low-risk groups based on the median value of risk scores
(Supplementary Figure 2B, C, and D). The K-M curve showed
that there was no significant difference in OS between the 2
groups (Supplementary Figure 2E) and the AUC was 0.596
(Supplementary Figure 2F), indicating that the random gene
signature is not reliable in predicting the prognosis of OSCC
patients. These results showed that the 4-FRG signature could
have better prediction performance from another perspective.

The 4-FRG risk model was independent of

conventional clinical characteristics

The correlation between the ferroptosis-related risk signature
and the clinical traits was analyzed. Although the ferroptosis-
related risk score was significantly related to histological grade
and T stages, there was no correlation between sex, pathologi-
cal stages, M stages, N stages, and risk score (Figure 3A and B,
Supplementary Figure 3, P<<.05). Meanwhile, a stratified
analysis of the clinicopathological characteristics was further
carried out and the results showed that the risk score level was
closely related to prognosis (Supplementary Figure 4 and 5).

To analyze the relationship between the OS, the clinico-
pathological factors, and the ferroptosis-related risk signature,
a univariate analysis was performed. Subsequently, a multivari-
ate analysis was used to explore the independent prediction of
the FRGs’ signature. The results of univariate and multivariate
analyses with the Cox proportional hazard model showed that
pathological stage, risk score, and M stage were independent
prognostic indicators for OS (Figure 3C and D). The ferropto-
sis-related risk model also had a high accuracy in predicting the
patients’ 5-year survival rate (Figure 4A to C).

Functional enrichment analysis of DEGs between
the 2 risk groups

To explore the DEGs between the 2 groups, [log2FC| >2 and
P<.05 were set as the screening criteria using the limma R
package. As a result, 631 DEGs were identified, including 244

upregulated and 387 downregulated genes (Supplementary
Table 7).
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Figure 2. Establishment of risk scores model. (A) The distribution of patients’ risk score. (B) The distribution of patients’ survival status. (C) Heatmaps of
4 ferroptosis-related genes’ expression. (D) Kaplan-Meier survival curves of overall survival between high-risk and low-risk groups. The abscissa
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AUC indicates area under the curve; ROC, receiver operating characteristic.
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patients with OSCC.

The biological functions of the 631 DEGs were specu-

lated by GO enrichment and KEGG pathway analyses with
the help of the clusterProfiler R package (Supplementary
Table 8 and 9). The top 10 enriched GO terms and 11 path-
ways were listed in Figure 5. It was revealed that the 631
DEGs were significantly enriched in metabolic processes,
including glucose catabolic process to pyruvate (GO:0061718),

canonical glycolysis (G0O:0061621), NADH regeneration
(GO:0006735), and glycolytic process through fructose-
6-phosphate (GO:0061615) in the biological process cate-
gory. As for the CC category, the top 4 markedly enriched
GO terms were chaperone complex (GO:0101031), chaper-
onin-containing T-complex (GO:0005832), collagen-con-
taining extracellular matrix (GO:0062023), and eukaryotic
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survival rate of patients with OSCC. (C) ROC analysis to evaluate the prognostic value of risk score.

AUC indicates area under the curve; OS, overall survival; ROC, receiver operating characteristic.

48S preinitiation complex (G0O:0033290). The most signifi-
cantly enriched MF terms included alcohol dehydrogenase
(NADP+) activity (GO:0008106), and alditol: NADP+
1-oxidoreductase activity (GO:0004032) (Figure 5A). Also,
11 enriched pathway terms,
Gluconeo-genesis (hsa00010), Glutathione metabolism
(hsa00480) and Hpypoxia-inducible factor 1 signaling

including  Glycolysis/

pathway (hsa04066), were explored by KEGG pathway
analysis (Figure 5B).

Notably, in GO-BP, we could observe that many DEGs
were significantly enriched in the entry “neutrophil activa-
tion involved in immune response” (P=.0025), indicating
these DEGs may participate in the immune response by
regulating the activation of neutrophils.?8?° In addition,
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Figure 5. Representative results of GO and KEGG analyses. (A) The top 10 most significant Gene ontology terms, including biological processes, the
cellular component, and molecular function. (B) The result of KEGG pathway analysis.

GO indicates Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

GO-MF has also enriched “NAD or NADP as acceptor” and
“alcohol dehydrogenase (NADP™) activity” items. It was
important to know that the decomposing substance (NAD™)
in NADH can increase the activity of macrophages to acti-
vate other cells of the immune system and, finally, stimulate
the entire immune system.3%3! This evidence indicated that
the DEGs between the 2 groups may be closely related to
immunity. Therefore, we turned our attention to the differ-
ence in the tumor microenvironment (TME) between the 2
risk groups.

Differential analysis of the TME between the 2
risk groups

We calculated the immune and stromal scores, for each OSCC
patient from the 2 risk groups through the estimate R package,
finding that patients from the low-risk group tended to have
higher immune scores. However, the stromal score between the
2 groups showed no significant difference (Figure 6A to C). It
was also shown that the patients from the low-risk group had
a higher immune cells content in the TME.

After that, we estimated the relative infiltration of the 22
immune cells in the 2 risk groups by the CIBERSORT R
package and LM22. The relative proportion of 22 immune
cells in OSCC samples from 2 groups is significantly different.
The presence of resting memory CD4+ T cells, MO
Macrophages, and M2 Macrophages was positively correlated
with the level of risk score. By contrast, the presence of naive B
cell, activated memory CD4+ T cells, regulatory T cells, T fol-
licular helper cells, CD8" T cells, M1 Macrophages, gamma
delta T cells, and resting mast cells was negatively correlated
with the level of risk score (Figure 6D). The unique differences
in immune infiltration between high- and low-risk groups sug-
gested that the 4-FRG model can be used to predict the prog-

nosis of immunotherapy.

Differential analysis of the immunotherapy response
between the 2 risk groups

Immunotherapy targeting immune checkpoints cytotoxic T
lymphocyte antigen 4 (CTLA4) or programmed death 1/pro-
grammed cell death ligand 1 (PD/PDL1) has been successfully
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Figure 6. Comparison of the ESTIMATE scores between high-risk group and low-risk groups. (A) Immune score of high-/low-risk groups. Immune score
represents the infiltration of immune cells in tumor tissue. (B) Stromal score of high-/low-risk groups. Stromal score captures the presence of stroma in
tumor tissue. (C) Estimate score of high-/low-risk groups. Estimate score infers tumor purity. (D) TME cell composition group by high/low risk, including 22
human hematopoietic cell phenotypes. Adjusted P values were shown as ns, *P <.05, **P <.01, ***P <.001, ****P <.0001.

ESTIMATE indicates Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data; ns, not significant; TME, tumor

microenvironment.

applied as a first-line treatment of OSCC.323* However, it is
disappointing that the response rates of this therapy are low,
which suggests that only a subset of OSCC patients respond to
immunotherapy, and that the efficacy could be enhanced by
determining the type of immune checkpoint inhibitors.3>3
Besides, the major histocompatibility class 1 (MHC1) complex
is essential for presenting endogenous cellular antigens to cir-
culating T cells and in initiating specific anticancer immune
responses.’” In that case, we further investigated the HLA
expression and immune checkpoints between the 2 different
groups. The patients from the low-risk group possessed signifi-
cantly higher expression of most HLA compared with the
patients from the high-risk group (Figure 7A), proving that a
higher immune status closely correlates with the OSCC prog-
nosis. The expression of the immune checkpoints IDO1,

LAG3, PDCD1, and TIGIT significantly increased in the
low-risk patients’ group (Figure 7B). Based on these results, we
speculated that OSCC patients with lower risk score might be
promising candidates for immune checkpoint inhibitors.
Furthermore, the TIDE score in the high-risk group was much
higher (Figure 7C), suggesting that compared with the high-
risk patients, the low-risk patients may be more sensitive to
immunotherapy. This also confirmed the previous conclusion
that the patients with a lower 4-FRG signature risk score were
more suitable for immunotherapy.

Discussion

Ferroptosis is a new type of programmed cell death involving
lipid metabolism, iron metabolism, and amino acid metabo-
lism.” The metabolic level of cancer cells is much higher than
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HLA indicates human leucocyte antigen; ns, not significant; TIDE, Tumor Immune Dysfunction and Exclusion.

that of normal cells, so a large amount of ROS accumulates in
the cells, which makes regulation of ferroptosis an effective
way to kill tumor cells. Evidences have shown that multiple
cancer-related genes are involved in ferroptosis. P53 achieves
bidirectional regulation of ferroptosis by affecting key proteins
such as SLC7A11 and GLS2.3840 My, essential for metabolic
reprogramming of tumor cells, inhibits ferroptosis in tumor
cells by activating lymphoid-specific helicase.*’ In addition,
ferroptosis is also closely related to the TME. In the fatty
acid-rich TME, CD8" T cells will take up more polyunsatu-
rated fatty acids through CD36, resulting in the accumulation
of lipid peroxides and the upregulation of ferroptosis, which is
detrimental to the antitumor ability.#! Hsieh et al® found that
zero-valent-iron nanoparticles could promote ferroptosis in
lung cancer cells and also affect macrophage M1/M2 polariza-
tion and the antitumor function of CD8* T cells. Therefore,

finding ferroptosis-related genes (FRGs) related to OSCC
prognosis is of great significance for precise targeted therapy
of the disease.

To identify potential diagnostic and prognostic markers of
OSCC, we constructed a prognostic model based on FRGs. By
applying univariate Cox regression and multivariate Cox
regression analyses to 103 FRGs that were downloaded from
databases, we found 4 FRGs (FTHI1, FLT3, CDKN2A, and
DDIT3) that were related to the OS of OSCC patients. The
FTH1 protein expression was significantly upregulated in
breast cancer cells’” and the epigenetic silencing of FTHI and
TFRC that is induced by estrogen, reduced liver cancer cell
growth, and survival.*? FLT3 is a receptor tyrosine kinase that
plays a crucial role in the development of hematopoietic pro-
genitor cells.® Furthermore, FLT3 genetic alterations occurred
in up to 30% of cases with acute myelogenous leukemia and
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patients with FLT3 mutations have poor outcomes.** CDKN24
is a tumor suppressor gene that was reported to be frequently
altered in OSCC progression.*> CDKN2A low gene expression
is associated with the recurrence of disease in oral cancer
patients and could be used as a prognostic marker for OSCC.46
DDIT3 is an endoplasmic reticulum stress-responsive tran-
scription factor that plays an important role in apoptotic execu-
tion pathways that are induced by the endoplasmic reticulum
stress. The speckle-type POZ protein contributes to prostate
cancer by targeting DDIT3.47 Besides, DDIT3 acts as a tran-
scription factor that enhances the expression of TNFRSF104
and 7INFRSFIOB, resulting in the initiation of ER stress-
mediated apoptosis in human lung cancer cells.*® In summary,
all 4 FRGs have been reported to be closely correlated with
various cancers.

The prognostic model was constructed based on these 4
FRGs. The patients were separated into high-risk and low-risk
groups, according to the threshold of the median risk score. As
mentioned above, the patients with higher expression of
CDKN2A/FLT3 genes and lower expression of DDIT3/FTH1
genes were more likely to be in the low-risk group, suggesting
that FRGs CDKN2A/FLT3 genes may work as tumor suppres-
sor genes. This result is consistent with previous research
results.*+*49 The prognostic value of the 4-FRG risk signature
was evaluated using the K-M and log-rank methods. There
were significant differences in the survival curves of patients in
the 2 groups. The prediction capability of the specificity and
sensitivity of the FRG risk model was assessed by calculating
the AUC of the risk score. Moreover, we found that the ferrop-
tosis-related risk score was an independent prognostic indica-
OS when

characteristics. The results indicated that this risk score model

tor for considering conventional clinical
is a firm prognostic tool that can be used to classify patients
and guide future targeted therapies.

For further understanding of the biological functions of
DEGs, between different risk groups, we performed func-
tional enrichment analyses. The results showed significant
enrichment in processes, including NADH regeneration, glu-
cose catabolic process to pyruvate, canonical glycolysis, and
glycolytic process through fructose-6-phosphate, in the bio-
logical process category. The NADH regeneration is a meta-
bolic process that consumes NAD™ to generate a pool of
NADH, which is important to the immune system. It is indi-
cated that NAD™ promotes the differentiation of CD4* T cell
without antigens. Furthermore, without relying on antigen-
presenting cells, NADT can also regulate the fate of CD4* T
cell.”® Pro-inflammatory stimuli induce the NAD activation
of macrophages and dendritic cells, resulting in a metabolic
switch toward glycolysis,?®?’ while inflammatory macrophages
depend on NAD™ salvage, resulting from ROS-mediated
DNA damages.®® For KEGG, 11 pathways, including
Glycolysis/Gluconeogenesis, Glutathione metabolism, and
the HIF-1 signaling pathway, were identified. Several types of
cancer, including OSCC, highly depend on glycolysis for ATP

generation. Zheng et al*! found that zeste homolog2 can regu-
late STAT3 and FoxO1 signaling in human OSCC cells and
promote invasion and tumor glycolysis. Another study dem-
onstrated that circMDM2 could promote the proliferation
and glycolysis of human OSCC cells by acting as ceRNAs to
sponge miR-532-3p."2 The HIF-1 signaling pathway, as a
cancer therapy glycolytic target, is involved in the regulation of
glycolysis at preclinical and clinical stages.®»** Our results
indicated that the DEGs, between the 2 different groups, may
affect OSCC progression by altering these immunity-related
BP or metabolic pathways.

We also focused on investigating the difference in the TME
between the 2 different risk groups. To this end, we explored
the correlation between OSCC and TME. The immune score
and stromal score calculated based on the ESTIMATE algo-
rithm can help quantify the immune and stromal components
in tumors. The immune scores and ESTIMATE scores of the
low-risk group were significantly higher than those in the
high-risk group; however, no significant differences were found
in the stromal scores. A high fraction of gamma delta T cells,
macrophages M1, B cell naive, CD4 memory activated T cells,
CD8 T cells, regulatory T cells, follicular helper T' cells, and
mast cells resting mainly infiltrated the tumors of the low-risk
OSCC patients. A recent study suggested that the cell density
of the high parenchymal CD8", at the invading tumor edge, was
associated with improved OS, and therefore could be used as an
independent favorable prognostic marker for OSCC.> Moreover,
OSCC patients with high levels of CD4TCD25MehCD127'w
regulatory T cells (Tregs) were found to have a better survival
probability compared to patients with lower Tregs. This result
indicated that immune cells might have an important effect on
the OSCC TME. What’s more, we analyzed the expression of
HLA-related genes, important to the immune system, in the 2
different risk groups, and found that the expression of most
HLAs was significantly higher in the low-risk group, demon-
strating that higher immune status was related to the prognosis
of OSCC. The HLA molecules on the surface of tumor cells
can help T cells recognize new antigens to create opportunities
for anticancer immune responses.”® The expression of the
immune checkpoints IDO1, LAG3,PDCD1, and TIGIT sig-
nificantly increased in the low-risk group. Foy et al°” found that
OSCC tissues are characterized by a higher level of intratumor
T cells, overexpression of PD-L1 and IDO1, and a higher
score of response signature to pembrolizumab, suggesting the
inhibition of IDO1 and PD-L1 may have good clinical signifi-
cance for OSCC. Another research indicated that several
immune checkpoint receptors (TIM3, LAG3, IDO, PDL1,
and CTLA4) could be considered as biomarkers that reflect
the immune status in OSCC patients’ TME during nimotu-
zumab therapy.®® T cells from peripheral blood mononuclear
cells, which were collected from OSCC donors, possessed a
high expression level of TIGIT. Moreover, TIGIT blockade
can promote the in vitro proliferative ability and effective
cytokine secretion capacity of CD4+ T cells and CD8* T cells
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isolated from OSCC patients.”® These results provided support
for the hypothesis that OSCC patients with lower risk score
(patients with higher expression of CDKN2A/FLT3 genes and
lower expression of DDIT3/FTH]1 genes) might respond bet-
ter to the IDO1, LAG3, PDCD1, and TIGHT inhibitors.

For the first time, we assessed the effects of FRGs on the
prognosis of OSCC and constructed an effective prognostic
model to reveal the involved BP. We also proved that this
model can be used as a criterion for determining whether a
patient is suitable for immunotherapy.

Conclusions

In summary, we constructed an effective prognostic model
based on 4 FRGs and proved that it has an independent cor-
relation with the survival time of OSCC patients, which can
provide useful information for the prediction of OSCC prog-
nosis. However, more data from in vivo/in vitro experiments
and clinical trials are needed to elucidate the mechanisms

between FRGs and tumor immunity in OSCC.
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