
https://doi.org/10.1177/11779322221115548

Bioinformatics and Biology Insights
Volume 16: 1–13
© The Author(s) 2022
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/11779322221115548

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Background
Oral squamous cell carcinoma (OSCC) is the most common 
type of oral cancer, with more than 300 000 newly diagnosed 
cancer cases worldwide in 2018, according to the 
GLOBOCAN database.1 The OSCC predilection sites 
include the tongue, the alveolar, the mouth floor, the lips, and 
the buccal mucosa. The OSCC is characterized by high 
recurrence, metastatic, and mortality rates, especially in 
patients with a late diagnosis.2 In recent years, multidiscipli-
nary collaborative diagnosis and treatment has been pro-
posed for OSCC treatment, which included chemotherapy, 
biological therapy, and radiotherapy. Although multimodal-
ity therapies can improve the prognosis, the 5-year overall 
survival (OS) rate of OSCC patients remains stable, at 
approximately 56%, and the posttreatment local recurrence 
and distant metastasis rates are 25% to 50%.3,4 Therefore, 
there is a need to find effective prognostic biomarkers that 
could guide these management decisions.

Ferroptosis is a new form of programmed cell death, char-
acterized by iron overload and lipid peroxidation that cause 
lipid reactive oxygen species (ROS) accumulation.5,6 
Numerous studies demonstrated that ferroptosis is involved 
in cancer initiation, progression, and suppression.7 For 
instance, the tumor suppressor gene p53 may modulate the 
susceptibility of cancer cells to ferroptosis in a cell type–spe-
cific manner.8,9 Artesunate, a clinically approved drug, can 
selectively kill OSCC cells by inducing ferroptosis.10 
Recently, Kotaro Sato et al11 found that non-thermal plasma 
exposure kills OSCC cells through a specific mechanism that 
depends on ample catalytic Fe (II). There are 2 mixed forms 
of programmed cell death that are caused by this treatment 
method, including apoptosis and ferroptosis, which suggest 
that ferroptosis might be closely related to OSCC occur-
rence. Moreover, ferroptosis is also associated with the effi-
cacy of immunotherapy.12

It is well known that CD8+ T cells generally induce tumor 
cell death through the pore-forming protein-granzyme and 
the Fas/FasL pathways.13,14 However, a new study15 showed 
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that CD8+ T cells, which are activated by immunotherapy, 
augment ferroptosis in tumor cells, which contributes, there-
fore, to the antitumor efficacy of immunotherapy. This discov-
ery provided important evidence for the correlation between 
ferroptosis and antitumor immunity. Besides, Lang et al16 also 
found that interferon-γ, which is produced by CD8+ T cells, 
has a synergistic effect with radiotherapy-activated ataxia-tel-
angiectasia mutated, on promoting lipid oxidation and ferrop-
tosis in tumor cells. These evidences indicate that the induction 
of ferroptosis is expected to enhance the antitumor efficacy of 
immunotherapy; however, it is not currently clear whether the 
immunotherapeutic targeting of ferroptosis is effective for 
OSCC patients.

The purpose of this study is to explore potential diagnostic 
and prognostic markers of OSCC and investigate their biologi-
cal functions through bioinformatics analysis. We successfully 
constructed a novel prognostic model for OSCC, focusing on 4 
FRGs that are mainly involved in the biological processes (BP) 
of immunity and glycolysis. Finally, we also discussed the predic-
tion of a prognostic model on the sensitivity to immunotherapy.

Materials and Methods
Data collection

The mRNA expression profiles and the corresponding clinical 
characteristics of 273 OSCC patients were obtained from The 
Cancer Genome Atlas (TCGA) database (https://gdc-portal.
nci.nih.gov/).17 The HTSeq-FPKM files of 273 oral samples 
(254 tumors and 19 controls) were retained, including the 
tongue, alveolus, buccal mucosa, soft and hard palate, oral cav-
ity, and lips. In total, 108 driver genes and 111 marker genes 
were downloaded from FerrDb database (http://www.zhou-
nan.org/ferrdb/).18 The genes tested only in mice (12 genes) 
and multi-annotated genes in both groups (15 genes) were fil-
tered out. As a result, a total of 192 FRGs were obtained. The 
accession numbers of all samples were included in 
Supplementary Table 1. The names of public domains and the 
direct Web links were listed in Supplementary Table 2.

Cox risk regression establishment

A univariate Cox regression analysis was used to filter the prog-
nostic-associated factors that were closely related to the OS of 
OSCC patients. Then, we performed a multivariate Cox regres-
sion analysis with a stepwise regression analysis to construct a 
risk model. Finally, 4 FRGs-OSCC were enrolled in a risk Cox 
regression, forming a risk formula that was determined by a lin-
ear combination of the 4 genes’ expression levels and weighted 
with the corresponding regression coefficients from the step-
wise Cox regression model. The risk score was defined as

risk score =
×

e
sum each gene’s expression levels corresponding coeffficient

sum each gene’smean expression levels correspondi
e

( )
× nng coefficient( )  

According to the median of the risk score, we divided the 
OSCC patients into 2 groups: a high-risk and a low-risk group. 
The Kaplan-Meier (K-M) and ROC analyses were performed, 
based on the risk score, using the survival R package. Moreover, 
univariate and multivariate Cox regression analyses were used 
to analyze whether the risk score was an independent prognos-
tic factor. A nomogram was also established, based on the risk 
score, the pathological stage, and the M stage, to obtain sur-
vival rates of patients at 1, 3, and 5 years. We also used the K-M 
analysis to test the prognostic value of 4 single genes. 
Furthermore, randomized sampling method was used to obtain 
4 random genes. A random gene signature was finally con-
structed to verify the validity of the 4-gene signature.

Identif ication of differentially expressed mRNAs

The limma R package19 was used to screen the differentially 
expressed genes (DEGs) between high-risk and low-risk sam-
ples, according to the thresholds of|log2 (fold change)| > 2.0 
and P < .05.19

Functional enrichment analysis

We performed a Gene Ontology (GO) enrichment analysis 
and a Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis using the clusterProfiler R package.20 The 
GO results were composed of 3 parts: the BP, the cellular com-
ponent (CC), and the molecular function (MF). Functional 
categories were considered when P value is less than .05.

Estimation of immune and stromal scores

ESTIMATE (Estimation of Stromal and Immune cells in 
Malignant Tumor tissues using Expression data) is a novel 
algorithm, based on ssGSEA (single sample Gene Set 
Enrichment Analysis) for predicting the level of tumor tissues’ 
infiltrating immune and stromal cells, based on gene expression 
profiles.21,22 Herein, this method was applied to estimate the 
immune and stromal scores, for each OSCC patient from the 2 
risk groups using the estimate R package. The tumor purity 
was inferred according to the formula derived from Prof. 
Yoshihara’s research.21

Estimation of immune cell type fractions

CIBERSORT is a deconvolution algorithm that is used to 
characterize the cellular constitution of complex tissues.23,24 
The LM22 gene signature contains 547 gene expression signa-
tures that can distinguish 22 human hematopoietic cell pheno-
types, including natural killer (NK) cells, T cells, myeloid 
subsets, B cells, and plasma cells.25 The CIBERSORT R pack-
age and the txt files of LM22 are available on the CIBERSORT 
Web site (http://cibersort.stanford.edu/). We used the 
CIBERSORT method and LM22 to compare the proportions 

https://gdc-portal.nci.nih.gov/
https://gdc-portal.nci.nih.gov/
http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
http://cibersort.stanford.edu/
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of 22 infiltrating immune cell types between the 2 risk groups. 
For each sample, the sum of all estimates of immune cell type 
fractions was equal to 1.26

Differential analysis of immunotherapy between 
the high-risk and low-risk groups

We checked the expression of HLA genes and immune check-
point molecules between the high-risk and low-risk groups. 
The HLA signatures were downloaded from Nomenclature 
(http://hla.alleles.org/genes/index.html). The immune check-
point molecules included CD27, CD274, CTLA4, HAVCR2, 
ICOS, IDO1, LAG3, PDCD1, PDCD1LG2, and TIGIT. 
Tumor Immune Dysfunction and Exclusion (TIDE) is a com-
putational framework for predicting the response of the 
immune checkpoint blockade response.27 The TIDE scores of 
OSCC patients were downloaded from the TIDE Web site 
(http://tide.dfci.harvard.edu), based on the uploaded tran-
scriptome profiles.

Statistical analysis

The statistical analyses were undertaken using R v3.6.1 and 
Bioconductor (https://www.bioconductor.org/). All statistical 
tests were bilateral and P < .05 was considered significant. 
Besides, the differences were considered significant if *P < .05, 
**P < 0.01, ***P < .001, or ****P < .0001.

Results
A prognosis prediction model based on FRGs in 
OSCC

Using the comprehensive genome annotation files obtained 
from NCBI (Supplementary Table 2), 10 000 genes that were 

expressed in the tumor samples were identified by analyzing 
the transcriptome data of oral cancer of the tongue, alveolus, 
buccal mucosa, soft and hard palate, oral cavity, and lips, while 
the genes not expressed were eliminated. Subsequently, 192 
FRGs were sorted out from the FerrDb database (Supplementary 
Table 3). The results of the 2 programs were integrated and 
only the intersection was selected to increase the specificity. 
As a result, 103 FRGs were expressed in the TCGA-OSCC 
(Figure 1A, Supplementary Table 4).

To evaluate the prognostic value of the OSCC 103 FRGs, a 
univariate Cox regression analysis was performed on these genes 
and 5 variables (FTH1, FLT3, CDKN2A, DDIT3, and BNIP3; 
all P < .01) were identified to be significantly associated with OS 
(Table 1, Supplementary Table 5). Furthermore, we applied to 
the 5 FRGs a multivariate Cox regression with a stepwise regres-
sion. As a result, 4 FRGs (FTH1, FLT3, CDKN2A, and DDIT3) 
were harvested in the Cox regression (P < .05; Table 2, Figure 
1B, Supplementary Table 6) and a risk formula was constructed 
with the expression levels of 4 genes and the corresponding 
regression coefficients: risk score = −0.0171 × CDKN2A + 0.01
11 × DDIT3 − 1.2269 × FLT3 + 0.0014 × FTH1.

The prognostic value of the ferroptosis-related 
signature in OSCC

We calculated the risk score of each patient by the previously 
described formula and classified the patients into a high-risk 
(n = 126, score ⩾ 1.0917) or a low-risk group (n = 126, 
score < 1.0917), based on the median of the risk score. The risk 
score ranking, the survival status of OSCC patients, and the 
heatmaps of 4 FRGs’ expressions are shown in Figure 2A to C. 
The abscissas of each graph represented risk scores of OSCC 
patients. According to the results of the heatmaps, patients in the 

Figure 1. Identification of the prognostic ferroptosis-related genes in the TCGA database. (A) Venn diagram to identify the ferroptosis-related genes 

(FRGs) which are expressed in oral squamous cell carcinoma (OSCC) samples. A total of 103 FRGs were expressed in TCGA-OSCC. (B) Forest plots 

showing the results of the multivariate Cox regression analysis between gene expression and overall survival. FTH1, FLT3, CDKN2A, and DDIT3 were 

identified as hub genes.

TCGA indicates The Cancer Genome Atlas.

http://hla.alleles.org/genes/index.html
http://tide.dfci.harvard.edu
https://www.bioconductor.org/
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Table 2. Multivariate Cox regression analysis results.

GENE ID COEFFICIENT HR HR.95L HR.95H P VALUE

CDKN2A –0.01707 0.983071 0.970235 0.996058 .01078

DDIT3 0.011122 1.011184 1.00103 1.021441 .030778

FLT3 –1.2269 0.2932 0.92297 0.931413 .037485

FTH1 0.001357 1.001358 1.000198 1.002518 .021707

Abbreviations: HR, hazard ratio; OS, overall survival.
P value < .05 was considered statistically significant.

Table 1. Univariate Cox regression of prognostic-related genes for OS.

ID HR HR.95L HR.95H P VALUE

FTH1 1.001832 1.000681 1.002985 .00181

FLT3 0.189899 0.061876 0.582804 .003689

CDKN2A 0.981546 0.96921 0.994039 .003896

DDIT3 1.013436 1.0042 1.022756 .004273

BNIP3 1.021741 1.005669 1.038069 .007842

Abbreviations: HR, hazard ratio; OS, overall survival.
P value < .01 was considered statistically significant.

high-risk group had much higher expression of DDIT3/FTH1 
genes and lower expression of CDKN2A/FLT3 genes. Based on 
the K-M curves of the TCGA data set, there was an obvious 
difference between the 2 risk groups (P = 1.005e-04; Figure 2D). 
Furthermore, the ROC curve confirmed the predictive capacity 
of the 4-FRG risk signature. The area under the curve (AUC) 
for the risk signature was 0.749, indicating a considerable pre-
dicting power (Figure 2E). Regarding the prognostic value of 4 
single genes, the K-M curve results showed that patients with 
high expression of FLT3 and low expression of FTH1 have bet-
ter OS (P < .05; Supplementary Figure 1A and B). However, 
DDIT3 and CDKN2A are relatively poor in predicting the prog-
nosis of patients (P > .05; Supplementary Figure 1C and D). In 
general, the 4-gene predictive model could reflect the prognosis 
of patients more effectively than a single gene. In addition, we 
used the sample function in R software and obtained 4 random 
genes from 103 FRGs, namely, CYBB, EGFR, ATM, and 
EGLN2. Subsequently, we performed a stepwise multivariate 
Cox analysis and 2 FRGs (EGFR and ATM) were finally used to 
construct a random gene signature (Supplementary Figure 2A). 
The risk score of each patient was calculated according to the 
previous formula and all patients were divided into high- and 
low-risk groups based on the median value of risk scores 
(Supplementary Figure 2B, C, and D). The K-M curve showed 
that there was no significant difference in OS between the 2 
groups (Supplementary Figure 2E) and the AUC was 0.596 
(Supplementary Figure 2F), indicating that the random gene 
signature is not reliable in predicting the prognosis of OSCC 
patients. These results showed that the 4-FRG signature could 
have better prediction performance from another perspective.

The 4-FRG risk model was independent of 
conventional clinical characteristics

The correlation between the ferroptosis-related risk signature 
and the clinical traits was analyzed. Although the ferroptosis-
related risk score was significantly related to histological grade 
and T stages, there was no correlation between sex, pathologi-
cal stages, M stages, N stages, and risk score (Figure 3A and B, 
Supplementary Figure 3, P < .05). Meanwhile, a stratified 
analysis of the clinicopathological characteristics was further 
carried out and the results showed that the risk score level was 
closely related to prognosis (Supplementary Figure 4 and 5).

To analyze the relationship between the OS, the clinico-
pathological factors, and the ferroptosis-related risk signature, 
a univariate analysis was performed. Subsequently, a multivari-
ate analysis was used to explore the independent prediction of 
the FRGs’ signature. The results of univariate and multivariate 
analyses with the Cox proportional hazard model showed that 
pathological stage, risk score, and M stage were independent 
prognostic indicators for OS (Figure 3C and D). The ferropto-
sis-related risk model also had a high accuracy in predicting the 
patients’ 5-year survival rate (Figure 4A to C).

Functional enrichment analysis of DEGs between 
the 2 risk groups

To explore the DEGs between the 2 groups,|log2FC| > 2 and 
P < .05 were set as the screening criteria using the limma R 
package. As a result, 631 DEGs were identified, including 244 
upregulated and 387 downregulated genes (Supplementary 
Table 7).
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Figure 2. Establishment of risk scores model. (A) The distribution of patients’ risk score. (B) The distribution of patients’ survival status. (C) Heatmaps of 

4 ferroptosis-related genes’ expression. (D) Kaplan-Meier survival curves of overall survival between high-risk and low-risk groups. The abscissa 

represents the survival time and the ordinate represents the survival rate; red represents the high-risk group and purple represents the low-risk group. (E) 

ROC curves showed the predictive efficiency of the risk score model.

AUC indicates area under the curve; ROC, receiver operating characteristic.
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Figure 3. Relationships between the risk score and clinicopathological parameters in oral squamous cell carcinoma (OSCC). (A) Clinical correlation 

analysis between risk scores and histological grades. (B) Clinical correlation analysis between risk scores and anatomical sizes of the primary tumors 

(P < .05). (C) Univariate analysis with Cox proportional hazard model of the association between clinicopathological variables and overall survival (OS) of 

patients with OSCC. (D) Multivariate analysis with Cox proportional hazard model of the association between clinicopathological variables and OS of 

patients with OSCC.

The biological functions of the 631 DEGs were specu-
lated by GO enrichment and KEGG pathway analyses with 
the help of the clusterProfiler R package (Supplementary 
Table 8 and 9). The top 10 enriched GO terms and 11 path-
ways were listed in Figure 5. It was revealed that the 631 
DEGs were significantly enriched in metabolic processes, 
including glucose catabolic process to pyruvate (GO:0061718), 

canonical glycolysis (GO:0061621), NADH regeneration 
(GO:0006735), and glycolytic process through fructose-
6-phosphate (GO:0061615) in the biological process cate-
gory. As for the CC category, the top 4 markedly enriched 
GO terms were chaperone complex (GO:0101031), chaper-
onin-containing T-complex (GO:0005832), collagen-con-
taining extracellular matrix (GO:0062023), and eukaryotic 
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Figure 4. Construction of the nomogram model. (A) The nomogram model for predicting OS of oral squamous cell carcinoma (OSCC), each variable axis 

represented an individual risk factor, and the line drawn upward was used to determine the points of each variable. Then, the total points would be 

calculated to obtain the probability of 1-, 3-, and 5-year OS rate plotted on the 2 axes below. (B) The calibration plots for predicting patients’ 1-, 3-, or 

5-year OS. The closer the slope is to 1, the more accurate the prediction is. The results show that the model has high accuracy in predicting the 5-year 

survival rate of patients with OSCC. (C) ROC analysis to evaluate the prognostic value of risk score.

AUC indicates area under the curve; OS, overall survival; ROC, receiver operating characteristic.

48S preinitiation complex (GO:0033290). The most signifi-
cantly enriched MF terms included alcohol dehydrogenase 
(NADP+) activity (GO:0008106), and alditol: NADP+ 
1-oxidoreductase activity (GO:0004032) (Figure 5A). Also, 
11 enriched pathway terms, including Glycolysis/
Gluconeo-genesis (hsa00010), Glutathione metabolism 
(hsa00480) and Hypoxia-inducible factor 1 signaling 

pathway (hsa04066), were explored by KEGG pathway 
analysis (Figure 5B).

Notably, in GO-BP, we could observe that many DEGs 
were significantly enriched in the entry “neutrophil activa-
tion involved in immune response” (P = .0025), indicating 
these DEGs may participate in the immune response by 
regulating the activation of neutrophils.28,29 In addition, 
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GO-MF has also enriched “NAD or NADP as acceptor” and 
“alcohol dehydrogenase (NADP+) activity” items. It was 
important to know that the decomposing substance (NAD+) 
in NADH can increase the activity of macrophages to acti-
vate other cells of the immune system and, finally, stimulate 
the entire immune system.30,31 This evidence indicated that 
the DEGs between the 2 groups may be closely related to 
immunity. Therefore, we turned our attention to the differ-
ence in the tumor microenvironment (TME) between the 2 
risk groups.

Differential analysis of the TME between the 2 
risk groups

We calculated the immune and stromal scores, for each OSCC 
patient from the 2 risk groups through the estimate R package, 
finding that patients from the low-risk group tended to have 
higher immune scores. However, the stromal score between the 
2 groups showed no significant difference (Figure 6A to C). It 
was also shown that the patients from the low-risk group had 
a higher immune cells content in the TME.

After that, we estimated the relative infiltration of the 22 
immune cells in the 2 risk groups by the CIBERSORT R 
package and LM22. The relative proportion of 22 immune 
cells in OSCC samples from 2 groups is significantly different. 
The presence of resting memory CD4+ T cells, M0 
Macrophages, and M2 Macrophages was positively correlated 
with the level of risk score. By contrast, the presence of naive B 
cell, activated memory CD4+ T cells, regulatory T cells, T fol-
licular helper cells, CD8+ T cells, M1 Macrophages, gamma 
delta T cells, and resting mast cells was negatively correlated 
with the level of risk score (Figure 6D). The unique differences 
in immune infiltration between high- and low-risk groups sug-
gested that the 4-FRG model can be used to predict the prog-
nosis of immunotherapy.

Differential analysis of the immunotherapy response 
between the 2 risk groups

Immunotherapy targeting immune checkpoints cytotoxic T 
lymphocyte antigen 4 (CTLA4) or programmed death 1/pro-
grammed cell death ligand 1 (PD/PDL1) has been successfully 

Figure 5. Representative results of GO and KEGG analyses. (A) The top 10 most significant Gene ontology terms, including biological processes, the 

cellular component, and molecular function. (B) The result of KEGG pathway analysis.

GO indicates Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 6. Comparison of the ESTIMATE scores between high-risk group and low-risk groups. (A) Immune score of high-/low-risk groups. Immune score 

represents the infiltration of immune cells in tumor tissue. (B) Stromal score of high-/low-risk groups. Stromal score captures the presence of stroma in 

tumor tissue. (C) Estimate score of high-/low-risk groups. Estimate score infers tumor purity. (D) TME cell composition group by high/low risk, including 22 

human hematopoietic cell phenotypes. Adjusted P values were shown as ns, *P < .05, **P < .01, ***P < .001, ****P < .0001.

ESTIMATE indicates Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data; ns, not significant; TME, tumor 

microenvironment.

applied as a first-line treatment of OSCC.32-34 However, it is 
disappointing that the response rates of this therapy are low, 
which suggests that only a subset of OSCC patients respond to 
immunotherapy, and that the efficacy could be enhanced by 
determining the type of immune checkpoint inhibitors.35,36 
Besides, the major histocompatibility class 1 (MHC1) complex 
is essential for presenting endogenous cellular antigens to cir-
culating T cells and in initiating specific anticancer immune 
responses.37 In that case, we further investigated the HLA 
expression and immune checkpoints between the 2 different 
groups. The patients from the low-risk group possessed signifi-
cantly higher expression of most HLA compared with the 
patients from the high-risk group (Figure 7A), proving that a 
higher immune status closely correlates with the OSCC prog-
nosis. The expression of the immune checkpoints IDO1, 

LAG3, PDCD1, and TIGIT significantly increased in the 
low-risk patients’ group (Figure 7B). Based on these results, we 
speculated that OSCC patients with lower risk score might be 
promising candidates for immune checkpoint inhibitors. 
Furthermore, the TIDE score in the high-risk group was much 
higher (Figure 7C), suggesting that compared with the high-
risk patients, the low-risk patients may be more sensitive to 
immunotherapy. This also confirmed the previous conclusion 
that the patients with a lower 4-FRG signature risk score were 
more suitable for immunotherapy.

Discussion
Ferroptosis is a new type of programmed cell death involving 
lipid metabolism, iron metabolism, and amino acid metabo-
lism.7 The metabolic level of cancer cells is much higher than 
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Figure 7. Distribution of immunotherapy response markers in high-/low-risk groups. (A) The distribution of HLA genes of high-/low-risk groups was shown 

in the box plot. (B) The distribution of immune checkpoint molecules of high-/low-risk groups was shown in the box plot. (C) The distribution of TIDE score 

in high-/low-risk groups.

HLA indicates human leucocyte antigen; ns, not significant; TIDE, Tumor Immune Dysfunction and Exclusion.

that of normal cells, so a large amount of ROS accumulates in 
the cells, which makes regulation of ferroptosis an effective 
way to kill tumor cells. Evidences have shown that multiple 
cancer-related genes are involved in ferroptosis. P53 achieves 
bidirectional regulation of ferroptosis by affecting key proteins 
such as SLC7A11 and GLS2.38-40 Myc, essential for metabolic 
reprogramming of tumor cells, inhibits ferroptosis in tumor 
cells by activating lymphoid-specific helicase.40 In addition, 
ferroptosis is also closely related to the TME. In the fatty 
acid–rich TME, CD8+ T cells will take up more polyunsatu-
rated fatty acids through CD36, resulting in the accumulation 
of lipid peroxides and the upregulation of ferroptosis, which is 
detrimental to the antitumor ability.41 Hsieh et al39 found that 
zero-valent-iron nanoparticles could promote ferroptosis in 
lung cancer cells and also affect macrophage M1/M2 polariza-
tion and the antitumor function of CD8+ T cells. Therefore, 

finding ferroptosis-related genes (FRGs) related to OSCC 
prognosis is of great significance for precise targeted therapy 
of the disease.

To identify potential diagnostic and prognostic markers of 
OSCC, we constructed a prognostic model based on FRGs. By 
applying univariate Cox regression and multivariate Cox 
regression analyses to 103 FRGs that were downloaded from 
databases, we found 4 FRGs (FTH1, FLT3, CDKN2A, and 
DDIT3) that were related to the OS of OSCC patients. The 
FTH1 protein expression was significantly upregulated in 
breast cancer cells37 and the epigenetic silencing of FTH1 and 
TFRC that is induced by estrogen, reduced liver cancer cell 
growth, and survival.42 FLT3 is a receptor tyrosine kinase that 
plays a crucial role in the development of hematopoietic pro-
genitor cells.43 Furthermore, FLT3 genetic alterations occurred 
in up to 30% of cases with acute myelogenous leukemia and 
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patients with FLT3 mutations have poor outcomes.44 CDKN2A 
is a tumor suppressor gene that was reported to be frequently 
altered in OSCC progression.45 CDKN2A low gene expression 
is associated with the recurrence of disease in oral cancer 
patients and could be used as a prognostic marker for OSCC.46 
DDIT3 is an endoplasmic reticulum stress-responsive tran-
scription factor that plays an important role in apoptotic execu-
tion pathways that are induced by the endoplasmic reticulum 
stress. The speckle-type POZ protein contributes to prostate 
cancer by targeting DDIT3.47 Besides, DDIT3 acts as a tran-
scription factor that enhances the expression of TNFRSF10A 
and TNFRSF10B, resulting in the initiation of ER stress-
mediated apoptosis in human lung cancer cells.48 In summary, 
all 4 FRGs have been reported to be closely correlated with 
various cancers.

The prognostic model was constructed based on these 4 
FRGs. The patients were separated into high-risk and low-risk 
groups, according to the threshold of the median risk score. As 
mentioned above, the patients with higher expression of 
CDKN2A/FLT3 genes and lower expression of DDIT3/FTH1 
genes were more likely to be in the low-risk group, suggesting 
that FRGs CDKN2A/FLT3 genes may work as tumor suppres-
sor genes. This result is consistent with previous research 
results.44,45,49 The prognostic value of the 4-FRG risk signature 
was evaluated using the K-M and log-rank methods. There 
were significant differences in the survival curves of patients in 
the 2 groups. The prediction capability of the specificity and 
sensitivity of the FRG risk model was assessed by calculating 
the AUC of the risk score. Moreover, we found that the ferrop-
tosis-related risk score was an independent prognostic indica-
tor for OS when considering conventional clinical 
characteristics. The results indicated that this risk score model 
is a firm prognostic tool that can be used to classify patients 
and guide future targeted therapies.

For further understanding of the biological functions of 
DEGs, between different risk groups, we performed func-
tional enrichment analyses. The results showed significant 
enrichment in processes, including NADH regeneration, glu-
cose catabolic process to pyruvate, canonical glycolysis, and 
glycolytic process through fructose-6-phosphate, in the bio-
logical process category. The NADH regeneration is a meta-
bolic process that consumes NAD+ to generate a pool of 
NADH, which is important to the immune system. It is indi-
cated that NAD+ promotes the differentiation of CD4+ T cell 
without antigens. Furthermore, without relying on antigen-
presenting cells, NAD+ can also regulate the fate of CD4+ T 
cell.50 Pro-inflammatory stimuli induce the NAD activation 
of macrophages and dendritic cells, resulting in a metabolic 
switch toward glycolysis,28,29 while inflammatory macrophages 
depend on NAD+ salvage, resulting from ROS-mediated 
DNA damages.30 For KEGG, 11 pathways, including 
Glycolysis/Gluconeogenesis, Glutathione metabolism, and 
the HIF-1 signaling pathway, were identified. Several types of 
cancer, including OSCC, highly depend on glycolysis for ATP 

generation. Zheng et al51 found that zeste homolog2 can regu-
late STAT3 and FoxO1 signaling in human OSCC cells and 
promote invasion and tumor glycolysis. Another study dem-
onstrated that circMDM2 could promote the proliferation 
and glycolysis of human OSCC cells by acting as ceRNAs to 
sponge miR-532-3p.52 The HIF-1 signaling pathway, as a 
cancer therapy glycolytic target, is involved in the regulation of 
glycolysis at preclinical and clinical stages.53,54 Our results 
indicated that the DEGs, between the 2 different groups, may 
affect OSCC progression by altering these immunity-related 
BP or metabolic pathways.

We also focused on investigating the difference in the TME 
between the 2 different risk groups. To this end, we explored 
the correlation between OSCC and TME. The immune score 
and stromal score calculated based on the ESTIMATE algo-
rithm can help quantify the immune and stromal components 
in tumors. The immune scores and ESTIMATE scores of the 
low-risk group were significantly higher than those in the 
high-risk group; however, no significant differences were found 
in the stromal scores. A high fraction of gamma delta T cells, 
macrophages M1, B cell naive, CD4 memory activated T cells, 
CD8 T cells, regulatory T cells, follicular helper T cells, and 
mast cells resting mainly infiltrated the tumors of the low-risk 
OSCC patients. A recent study suggested that the cell density 
of the high parenchymal CD8+, at the invading tumor edge, was 
associated with improved OS, and therefore could be used as an 
independent favorable prognostic marker for OSCC.55 Moreover, 
OSCC patients with high levels of CD4+CD25highCD127low 
regulatory T cells (Tregs) were found to have a better survival 
probability compared to patients with lower Tregs. This result 
indicated that immune cells might have an important effect on 
the OSCC TME. What’s more, we analyzed the expression of 
HLA-related genes, important to the immune system, in the 2 
different risk groups, and found that the expression of most 
HLAs was significantly higher in the low-risk group, demon-
strating that higher immune status was related to the prognosis 
of OSCC. The HLA molecules on the surface of tumor cells 
can help T cells recognize new antigens to create opportunities 
for anticancer immune responses.56 The expression of the 
immune checkpoints IDO1, LAG3, PDCD1, and TIGIT sig-
nificantly increased in the low-risk group. Foy et al57 found that 
OSCC tissues are characterized by a higher level of intratumor 
T cells, overexpression of PD-L1 and IDO1, and a higher 
score of response signature to pembrolizumab, suggesting the 
inhibition of IDO1 and PD-L1 may have good clinical signifi-
cance for OSCC. Another research indicated that several 
immune checkpoint receptors (TIM3, LAG3, IDO, PDL1, 
and CTLA4) could be considered as biomarkers that reflect 
the immune status in OSCC patients’ TME during nimotu-
zumab therapy.58 T cells from peripheral blood mononuclear 
cells, which were collected from OSCC donors, possessed a 
high expression level of TIGIT. Moreover, TIGIT blockade 
can promote the in vitro proliferative ability and effective 
cytokine secretion capacity of CD4+ T cells and CD8+ T cells 
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isolated from OSCC patients.59 These results provided support 
for the hypothesis that OSCC patients with lower risk score 
(patients with higher expression of CDKN2A/FLT3 genes and 
lower expression of DDIT3/FTH1 genes) might respond bet-
ter to the IDO1, LAG3, PDCD1, and TIGHT inhibitors.

For the first time, we assessed the effects of FRGs on the 
prognosis of OSCC and constructed an effective prognostic 
model to reveal the involved BP. We also proved that this 
model can be used as a criterion for determining whether a 
patient is suitable for immunotherapy.

Conclusions
In summary, we constructed an effective prognostic model 
based on 4 FRGs and proved that it has an independent cor-
relation with the survival time of OSCC patients, which can 
provide useful information for the prediction of OSCC prog-
nosis. However, more data from in vivo/in vitro experiments 
and clinical trials are needed to elucidate the mechanisms 
between FRGs and tumor immunity in OSCC.
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