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Simple Summary: Recent studies revealed that type-2 conventional dendritic cells (cDC2s) play an
important role in antitumor immunity by promoting cytotoxic T-cell responses and helper T-cell
differentiation. This review outlines the role of cDC2s in tumor immunity and summarizes the latest
progress regarding their potential in cancer vaccination and cDC2-targeted cancer immunotherapy.

Abstract: Conventional dendritic cells (cDCs) orchestrate immune responses to cancer and comprise
two major subsets: type-1 cDCs (cDC1s) and type-2 cDCs (cDC2s). Compared with cDC1s, which are
dedicated to the activation of CD8+ T cells, cDC2s are ontogenically and functionally heterogeneous,
with their main function being the presentation of exogenous antigens to CD4+ T cells for the initiation
of T helper cell differentiation. cDC1s play an important role in tumor-specific immune responses
through cross-presentation of tumor-derived antigens for the priming of CD8+ T cells, whereas little
is known of the role of cDC2s in tumor immunity. Recent studies have indicated that human cDC2s
can be divided into at least two subsets and have implicated these cells in both anti- and pro-tumoral
immune responses. Furthermore, the efficacy of cDC2-based vaccines as well as cDC2-targeted
therapeutics has been demonstrated in both mouse models and human patients. Here we summarize
current knowledge about the role of cDC2s in tumor immunity and address whether these cells are
beneficial in the context of antitumor immune responses.

Keywords: type-2 conventional dendritic cell; tumor immunity; antigen presentation; DC vaccine

1. Introduction

Dendritic cells (DCs) are professional antigen-presenting cells that present endoge-
nous and exogenous antigens to T cells and thereby orchestrate immunity or immune
tolerance [1,2]. DCs are derived from blood-borne progenitors and localized in both lym-
phoid and nonlymphoid tissues. They consist of three major subsets termed plasmacytoid
(pDCs), type-1 (cDC1s), and type-2 (cDC2s) conventional (or classical) DCs [3]. Monocytes
also differentiate into monocyte-derived DCs (Mo-DCs) under inflammatory conditions [4].
DCs also reside in tumors, where they take up tumor-associated antigens (TAAs) and in
turn migrate to tumor-draining lymph nodes in order to present these antigens to CD8+

or CD4+ T cells [5–7]. Antigen cross-presentation by cDC1s contributes to the priming
of TAA-specific cytotoxic T cells [8]. cDC1s also support T helper 1 (Th1) cell polariza-
tion from naïve CD4+ T cells [9,10]. On the other hand, cDC2s are thought to comprise
a heterogeneous population and preferentially prime naïve CD4+ T cells for Th2 or Th17
polarization [9,11–13]. Compared with other immune responses such as autoimmunity and
infectious immunity, little is known about the role of the cDC2 subset in tumor immunity.
In this review, we discuss the context-dependent functions of cDC2s in cancer immunology
and consider the therapeutic potential of targeting these cells in cancer patients.
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2. The Classification and Function of DCs in Mice and Humans
2.1. Mouse DC Lineages

cDCs were initially identified in mouse spleen, and they express integrin-αX (CD11c)
and major histocompatibility complex (MHC) class II molecules at high levels [14,15]. In
mice, cDC1s are characterized by cell-surface expression of XCR1 (a receptor for CXC
chemokine XCL1), CD205 (DEC-205), and CLEC9A (DNGR1, a C-type lectin–like receptor)
(Figure 1A) [16–18]. In secondary lymphoid tissues such as the spleen and lymph nodes,
mouse cDC1s highly express CD8α on their surface, whereas nonlymphoid tissue–resident
mouse cDC1s, including tumor-resident cells, express integrin-αE (CD103) [19]. cDC2s
are characterized by cell-surface expression of signal regulatory protein α (SIRPα, also
known as CD172a) and integrin-αM (CD11b) [20]. Mouse cDC1s and cDC2s develop from
immediate cDC precursors termed pre-cDC1s and pre-cDC2s, respectively [21,22], both
of which in turn are derived from DC lineage-restricted progenitors known as common
DC progenitors (CDPs) [23–25]. The development of mouse cDC1s is dependent on the
transcriptional factors IRF8 and BATF3 [26,27]. By contrast, the gene regulatory program
that governs the differentiation of cDC2s is poorly defined, although IRF4, Notch2, RelB,
and KLF4 are implicated in the development of lymphoid organ–resident cDC2s [15,28,29].
Mouse pDCs express CD11c at a low level and uniquely express B220, PDCA1, and SiglecH.
The transcriptional factor E2-2 is required for the development of pDCs from DC progenitor
cells, and IRF8 is also implicated in the differentiation of pDCs [30]. A recent study
revealed that pDCs are also derived from common lymphoid progenitor cells (CLPs), and
CLP-derived pDCs play a distinct role in type I interferon (IFN) production and antigen
presentation compared with CDP-derived pDCs [31].

Various studies have shown that mouse cDC2s are heterogeneous and can be further di-
vided into phenotypically and functionally distinct subsets. CD4+CD8α− and CD4−CD8α−

(double-negative) subsets, which differ in their functional properties, are present in sec-
ondary lymphoid tissues [32,33]. Klf4+ or CD301b+ cDC2s have a unique potential to
activate Th2 cells in lymphoid- and non-lymphoid organs [29,34]. cDC2s have also been
subdivided on the basis of expression of the adhesion molecule ESAM [28]. ESAMhi cDC2s
express higher levels of MHC class II compared with ESAMlo cDC2s, whereas ESAMlo

cDC2s show higher expression of colony-stimulating factor 1 receptor (CSF1R, also known
as CD115), the chemokine receptor CCR2, lysozyme, CD14, and CD36, all of which are
monocyte lineage markers [28]. Furthermore, mouse splenic cDC2s have recently been di-
vided into subsets based on the transcriptional factors T-bet and RORγt [35]. T-bet+ cDC2s,
termed cDC2As, were found to overlap phenotypically with ESAMhi cDC2s, whereas
RORγt+ cDC2Bs showed a similar phenotype to ESAMlo cDC2s in that they expressed
CSF1R and lysozyme. The cDC2A subset specifically expresses the transcriptional factor
Nr4a3 and upregulates the expression of maturation markers such as CD83 and CCR7,
whereas the cDC2B subset expresses CX3CR1 and CCR2 as well as the transcriptional
factor C/EBPα [35]. Mo-DCs (or inflammatory DCs) share phenotypic features of both
DCs and macrophages [36]. In mice, Mo-DCs share expression of CD11c and SIRPα with
cDC2s but uniquely express FcγR1 (CD64) as well as the protein tyrosine kinase MerTK
and CD88 [37–39].

2.2. Human DC Lineages

Both human cDC1s and cDC2s are thought to be evolutionarily conserved with the
corresponding mouse cells, and they express CD11c and MHC class II. However, the
molecules that specifically identify human cDC subsets differ in part from those in mice. In
humans, cDC1s are identified by expression of CD141 (BDCA3) in addition to CLEC9A and
XCR1 (Figure 1B) [40,41]. Human cDC2s are identified by preferential expression of CD1c
(BDCA1) and CLEC10A (CD301a) in addition to SIRPα [41]. Human cDC subsets develop
from bone marrow-derived progenitor cells. Human CDPs have the unique potential to
give rise to DC lineage cells, with most of these progenitors having unipotent fates for pDCs,
cDC1s, or cDC2s [42,43]. In peripheral blood, CD45RA+CD123+ cells include a precursor
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fraction for cDC1s and cDC2s [44]. Furthermore, HLA-DR+CD141−AXL+SIGLEC6+ cells
include pre-cDCs that mainly differentiate into cDC2s [45]. BATF3 is also highly expressed
in human cDC1s and critical for the generation of cDC1s in vitro [17]. Studies of individuals
with heterozygous mutations of IRF8 revealed that IRF8 is required for the development of
DC lineage cells, particularly for that of cDC1s [46]. Human pDCs uniquely express CD123
(IL-3R), CD303 (BDCA2), and CD304 (BDCA4). A recent study revealed that human pDCs
can be subdivided into several populations in the context of antigen presentation and type
I IFN production, particularly in response to pathogen stimulation [47].

Figure 1. The development of mouse and human dendritic cell (DC) subsets. (A) Most mouse DCs
are derived from macrophage–DC progenitors (MDPs), which give rise to DC lineage–restricted
progenitors (CDPs). CDPs in turn give rise to precursors of cDC1s or cDC2s (pre-cDC1s and pre-
cDC2s, respectively), which migrate from peripheral blood into lymphoid (LN, lymph node) and
nonlymphoid tissues, where they undergo terminal differentiation into cDC1s or cDC2s. pDCs are
derived from either DC (IL-7R+ CDP) or lymphoid (CLP) progenitors, and Mo-DCs differentiate
from monocytes. Markers for each DC subset are shown on the right, and transcriptional factors that
regulate the differentiation of each subset are indicated above the corresponding pathway. (B) Human
DCs are derived from granulocyte-macrophage progenitors (GMPs), which give rise to CDPs with
a developmental potential for differentiation into cDC1s, cDC2s, and pDCs. Mo-DCs differentiate
from monocytes, which are derived from their progenitors (CMoPs). Markers for each DC subset
are shown on the right, and transcriptional factors that regulate the differentiation of each subset
are indicated.

Human cDC2s are also more phenotypically and functionally heterogeneous com-
pared with other DC subsets (Table 1). Indeed, single-cell transcriptome analysis of hu-
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man cDC subsets revealed that cDC2s can be divided into at least two distinct subsets
designated DC2 and DC3 [45]. DC2s express CD5, whereas DC3s express CD14, CD36,
and CD163 [45,48–50]. The DC2 population manifests the classical expression profile of
CD1c+ cDCs, whereas the DC3 population appears closer to but distinct from monocytes
or macrophages. Recent studies have also revealed that DC3s have an ontogeny profile
distinct from that of DC2s [46,49].

Table 1. Classification and function of human cDC2 subsets.

DC2 DC3

Definition TFs/Other
Markers

Functional
Properties Definition TFs/Other

Markers Functional Properties Ref.

CD5+ IRF4

Increased
chemotaxis

toward CCL21
Induce IL-10+,
IL-22+, IL-4+ T

cell polarization

CD5− MAFB/
S100A9

Induce IFN-γ+ T cell
polarization [50]

CD32B+ Higher MHC II
expression

CD36+

CD163+ S100A9 Higher inflammatory genes
expression [45]

CD5+ CD14+

CD163+
Higher proinflammatory

response [48]

CD5+

Flt3-dependent
Higher

secretion of
CCL5

CD14+

CD163+ S100A9

GM-CSF dependent
Higher secretion of IL-1β,

TNF-α, and CCL2
Induction of CD103+ TRM

[49]

CD5+/−

CD163−
IRF8hi/
BTLA

CD123+ GMP-
dependent

CD14+/
CD163+

CD36+
IRF8lo

CD33+ GMP-dependent
Higher secretion of IL-1β,

TNF-α, and IL-10
[46]

Abbreviations: TF, transcriptional factor; Th, T helper; TRM, resident-memory T cell.

Human Mo-DCs are present in the inflammatory milieu and are defined as CD14+CD1c+

CD206+ cells. They secrete interleukin (IL)–17 and thereby induce the differentiation of
naïve CD4+ T cells into Th17 cells [51].

3. Function of cDC2s
3.1. T Cell Activation

Mouse cDC1s cross-present exogenous or tumor-associated antigens to CD8α+ T cells
through MHC class I molecules as well as secrete IL-12 [52]. cDC1s are thus thought to
regulate cytotoxic T lymphocyte (CTL) and Th1 responses to intracellular pathogens and
tumor cells [9,19]. Human cDC1s also have the capacity for antigen cross-presentation
to CD8+ T cells as well as the capacity to promote the differentiation of Th1 cells [53]. In
contrast, mouse cDC2s have very little cross-presentation capacity to CD8+ T cells, unless
under specific circumstances upon stimulation with TLR7 agonist [54]. Human cDC2s are
also capable of cross-presentation of antigens for priming of CD8+ T cells [55,56].

The function of cDC2s is largely restricted to antigen presentation by MHC class II
to Th cells in secondary lymphoid organs in a subset-dependent manner [9]. For instance,
Notch2-dependent ESAM+ mouse cDC2s were found to initiate Th17 cell differentiation by
producing IL-23 and to play a protective role against Citrobacter rodentium infection [57],
whereas mouse cDC2s dependent on the transcriptional factors IRF4 and KLF4 specifi-
cally contribute to Th2 cell differentiation [29,58]. As mentioned above, recently identified
cDC2 subsets also have different capacity for T cell activation. The DC2B subset promotes
differentiation of Th1 cells and Th17 cells, compared with the DC2A subset [35]. In addi-
tion to these lymphoid tissue–resident cDC2s, mouse migratory cDC2 subsets expressing
CD301b are dedicated to Th2 priming during parasite infection [34]. Moreover, they induce
the production of antigen-specific antibodies through activation of follicular Th cells [59].
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Human cDC2s produce IL-12 and IL-23, which prime naïve T cells for development into
Th1 and Th17 cells, respectively [60]. They also produce activin A and TGFβ, which are
important for follicular Th cell differentiation [61]. In addition, human DC2s are prone to
induce differentiation of naïve T cells into Th cells, particularly Th2 and Th17 cells, whereas
human DC3s induce Th1 differentiation [50].

3.2. Toll-Like Receptor Expression and Cytokine Production by cDC2s

Proteomics analysis of cDC subsets has revealed that mouse cDC2s express Toll-like
receptor (TLR) 7, which senses single-stranded RNA, as well as the viral recognition
molecules RIG-I and MDA-5 [62]. These receptors are essential for type 1 IFN production
in response to RNA virus infection [63]. TLR expression differs in a specific subset of
mouse cDC2s. For example, the expression of TLR4, TLR8, and TLR9 is more prominent
in the DC2B subset than in the DC2A [35]. Moreover, TLR7 and TLR8 expressions are
upregulated in the human DC3 subset, whereas TLR3 expression is downregulated in the
subset [50]. In addition, mouse splenic CD4+ cDC2s selectively produce tumor necrosis
factor (TNF) receptor ligands such as TNF-α and lymphotoxin α3, which promote the
proliferation and maintain the survival of fibroblastic reticular cells [64]. cDC2As mediate
an anti-inflammatory response characterized by the upregulation of amphiregulin (Areg)
and matrix metalloproteinase 9 (MMP9), which are thought to contribute to immune
tolerance and tissue repair, respectively. By contrast, cDC2Bs produce larger amounts of
proinflammatory cytokines such as TNF-α, IL-6, and IL-12 in response to their stimulation.
Human CD1c+ cDC2s also produce various cytokines, such as IL-1β, IL-6, IL-12, and
IL-23 [60,65]. In particular, DC3s are prone to secrete cytokines such as IL-1, TNF-α, IL-8,
and IL-10 upon stimulation with TLR ligands [49,50].

4. The Role of cDC2s in the Regulation of Tumor Immunity
4.1. cDC2-Related Subsets within the Tumor Microenvironment

The tumor microenvironment (TME) contains both cDC1s and cDC2s [8,66–69], al-
though they represent only a minor cell population compared with macrophages [8,67].
cDC1s play an important role in patrolling tumor tissue as well as in capturing and pro-
cessing TAAs in the TME. They subsequently migrate to tdLNs, where they cross-present
TAAs to CD8+ T cells for priming [70]. The role of cDC1s in tumor immunity has been
reviewed in detail elsewhere [19,71,72]. By contrast, cDC2s present TAAs directly to CD4+

T cells or transfer them to lymphoid tissue–resident DCs, including other cDC2s [7,73].
Several studies have shown that CD4+ T cells are important for tumor immunosurveil-
lance [74,75]. Human cDC2s also possess cross-priming activity for TAAs and CD8+ T cells
in the TME [56]. cDC2s therefore have the potential to induce antitumor immunity me-
diated by CTLs and CD4+ effector T cells (Figure 2). Whereas the role of cDC2s in tumor
immunity has been less well defined than that of cDC1s, in large part because of the paucity
of specific markers to discriminate cDC2s from Mo-DCs, recent advances in methodologies
such as single-cell RNA sequencing and multicolor flow cytometry have begun to reveal
that cDC2s play an important role in such immunity.

Furthermore, mature types of DCs termed LAMP3+ DCs or “mature DCs enriched
in immunoregulatory molecules” (mreg DCs) have recently been identified in mouse and
human tumors [76,77]. Among these cells, mreg DCs were shown to be differentiated from
cDC1s and cDC2s as a result of the uptake of TAAs and the upregulation of the expression
of programmed cell death ligand 1 (PD-L1) and CD200 together with the activation markers
CD40, CCR7, and IL-12β [77]. LAMP3+ DCs may also originate from cDC1s and cDC2s.
They were shown to upregulate the expression of IDO1 and CCR7 and to have the potential
for migration in tumors [76].
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Figure 2. Overview of cDC2 functions in tumor immunity. Uptake of tumor-associated antigens
(TAAs) triggers the activation of cDC2s characterized by the upregulation of costimulatory molecules
on the cell surface and migration of the cells to tumor-draining lymph nodes (tdLNs). Regulatory
T cells (Tregs) inhibit the migration of cDC2s. Migratory cDC2s present TAAs to naïve CD4+ T cells
either directly or indirectly via transfer of TAAs to resident DC subsets including other cDC2s. These
resident DCs also secrete IL-12 and IL-23, which trigger the differentiation of naïve CD4+ T cells into
effector Th1 and Th17 cells, respectively. In addition, human cDC2s have a high intrinsic capacity for
cross-presentation of TAAs to cytotoxic T lymphocytes (CTLs). CTLs attack tumor cells, and effector
Th cells secrete IL-2, IFN-γ, and IL-17 and induce antitumor immune responses.

4.2. Pro-Tumoral Role of cDC2s

A tumor-protective role of cDC2s has been demonstrated in experimental mouse
models. CD11b+ DCs that had infiltrated B16 melanoma can prime T cells but were shown
to be characterized by reduced capacities for antigen uptake, antigen presentation, and
migration to tdLNs, compared with normal skin DCs [78]. In addition, IRF4-dependent
cDC2s were found to promote the growth of MC38 tumor cells and to inhibit the infiltration
of Th1 and TNF-α–producing cells into the tumor [79]. These observations suggest that
cDC2s, at least in part, attenuate antitumor immunity, possibly by limiting antitumor CD4+

effector T cell responses.
In humans, a myeloid cell population enriched in individuals with advanced cancer

was shown to comprise cDC2s that coexpress CD1c and CD14 [49,51,80]. Moreover, cDC2s,
Tregs, and exhausted T cells were enriched in lung cancer tissue, compared with normal
lung tissue [81], suggesting that human cDC2s may induce immunosuppression and
be associated with poor prognosis in human cancer. Of note, two-dimensional culture
of human melanoma cells with DCs revealed that prostaglandin E2 and IL-6 released
from the melanoma cells converted cDC2s into CD14+ cDCs, which are characterized by
an immunosuppressive phenotype [82]. Such CD14+ cDCs were also characterized in
patients with breast cancer, suggestive of a suppressive role in antitumor immunity [69,83].
Immunosuppressive factors in the TME may therefore alter the phenotype of cDC2s to one
more closely resembling that of Mo-DCs, which may support tumor cell growth and result
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in a poor outcome in individuals with advanced cancer. Thus, the mechanisms possibly
underlying the pro-tumoral action of CD14+ cDCs are likely to acquire the function of
tumor-associate macrophages (TAM), which are thought to promote tumor cell growth.
Indeed, tumor-infiltrated CD14+ cDCs express higher levels of TAM-related markers such
as CD206, MerTK, and CD163 compared with blood-circulating CD14+ cDCs in melanoma
patients [82].

4.3. Antitumor Response Mediated by cDC2s

A recent study showed that cDC2s are also associated with a good prognosis in
patients with lung cancer [84]. In addition, enrichment of cDC2s in patients with lobular
breast cancer, in particular estrogen receptor–positive breast cancer, was associated with
favorable disease-free or overall survival [69,85]. Such improved survival associated with
cDC2s was predominant within IFN-γ–dominant TME, suggesting that enrichment of
cDC2s contributes to the infiltration of CTLs and M1 macrophages into the tumor [85].

The antitumor activity of cDC2s has also been experimentally demonstrated in a mouse
melanoma model. An immunosuppressive relation between regulatory T cells (Tregs) and
cDC2s in the TME or at the site of injection of irradiated granulocyte–macrophage colony-
stimulating factor (GM-CSF)–producing B16 melanoma cells was identified [86]. Depletion
of Tregs resulted in the upregulation of CCR7 expression in cDC2s and their migration to
tdLNs, where they initiated differentiation of antitumor CD4+ Th cells. Moreover, it was
recently reported that a tumor-infiltrated cDC2 subset represents genes upregulated by
type I interferon stimulation. The activated cDC2 subset, named ISG+ DCs, activates CTLs
and promotes anti-tumor immunity in the absence of cDC1s using a mouse regressing
fibrosarcoma model [87].

Among human DC subsets, blood CD1c+ cDC2s are more efficient in engulfing and
processing exogenous particulate antigens through phagocytosis than other DC subsets [88].
Moreover, human cDC2s have a potential to mediate anti-tumor immune responses induced
by immunogenetic cancer cell death, a form of apoptosis characterized by the release of
endogenous danger signals [89]. Human blood cDC2s also promote NK cell cytotoxicity in
cooperating with pDCs [90]. Together, these various observations suggest that heterogeneity
of cDC2s may underlie their apparent pro-tumorigenic and antitumorigenic roles in cancer.
Further classification of cDC2s will therefore be required to provide a greater understanding
of their role in cancer.

The DC3 subset of human cDC2s was recently found to preferentially accumulate
in human papillomavirus (HPV)–associated oropharyngeal squamous cell carcinoma tis-
sue [91]. DC3s produce proinflammatory cytokines including IL-12p70, IL-1β, GM-CSF,
IL-6, and TNF-α, and they stimulate Th1 cells to mediate antitumor immune responses.
Furthermore, DC3 infiltration in human breast cancers correlates with the abundance of
CD8+ CD103+ CD69+ tissue–resident memory T cells, suggesting that DC3s initiate anti-
tumor surveillance and immunity by activating resident memory T cells [49]. Thus, these
findings have shown that cDC2 subsets infiltrate tumors, where they mature and regulate
antitumor immune responses.

5. Targeting cDC2s for Cancer Immunotherapy
5.1. DC Vaccines

On the basis of their marked capacity for uptake and presentation of TAAs to T cells,
DCs loaded with TAAs have been applied for cellular vaccination against tumors in
preclinical and clinical studies. DCs generated from peripheral blood mononuclear cells
have been administered as patient-derived DC vaccine formulations [92]. Such ex vivo–
generated DCs have the potential to induce TAA-specific immunity, but they have induced
only limited objective tumor regression in clinical studies [93], suggesting that subset
specificity needs to be taken into account in the application of DC vaccines [94].

As an alternative to ex vivo–generated DCs, vaccination with naturally occurring
DCs isolated from peripheral blood has been examined for the DCs’ ability to induce
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antitumor immune responses. cDC1s are present at approximately one-tenth the frequency
of cDC2s in peripheral blood, but they have great potential for cross-presentation of TAAs
to CTLs. Human cDC2s also have an intrinsic capacity for cross-presentation of TAAs
to CTLs in addition to Th cell priming, and they are therefore also a potential source of
naturally occurring DCs. Indeed, cDC2 vaccination was found to be more beneficial for
the induction of antitumor immune responses, particularly those mediated by Th17 cells,
than was cDC1 vaccination in mice [66] (Table 2). This antitumor effect of cDC2s was
dependent on CD4+ T cells, whereas the contribution of CD8+ T and natural killer cells
was found to be minimal. DC vaccines based on naturally occurring cDC2s have also
been administered in patients with solid tumors. In addition, intra-tumoral injection of
autologous CD1c+ cDCs along with immune checkpoint inhibitors such as ipilimumab
and avelumab and intravenous injection of nivolumab induced early signs of antitumoral
activity in some patients [95]. Vaccination with naturally circulating primary CD1c+ cDC2s
was found to induce de novo immune responses and objective clinical responses even in
patients with advanced metastatic melanoma [96]. In addition, isolated cDC2s pulsed with
prostate TAAs increased the number of functional CTLs in tumor tissue and promoted
antigen-specific humoral immune responses after long-term infusion [97,98]. Moreover, a
cDC2 vaccine was found to promote the infiltration of CD4+ T cells into human melanoma
tumors through expression of chemokines associated with Th2 and Th17 responses [99].

In addition, CD34+ cell-derived CD1c+ cDC2s exhibit a similar gene expression pattern
to naturally isolated cDC2s and have a strong potential for generating antigen-specific CD8
T cell immunity [100,101]. Thus, CD34+ cell–derived cDC2-based vaccines will also be
potent inducers of anti-tumor responses mediated by T cells.

Table 2. cDC2 vaccines for cancer immunotherapy.

Species Protocol Tumor Type Effects of DC Vaccine Outcome Ref.

Mouse

Sorted tumor-associated
cDC2s injected 6 and 3

weeks before tumor
cell injection

LLC-OVA

Th17 cell–dependent
antitumor response

CD4+ T cell–dependent
antitumor response

Inhibition of
tumor growth [66]

Syngeneic C57BL/6 mice
injected with

LV-miSIRPα–BMDCs
pulsed with OVA peptide
before tumor cell injection

EG7 or B16-OVA
Induction of

IFN-γ–producing CD4+

and CD8+ T cells

Inhibition of
tumor growth [102]

Human

Isolated CD1c+ DCs from
HLA-A*0201 patients

were loaded with gp100
peptides in the presence of
GM-CSF and then injected

subcutaneously

Melanoma

High CD107a expression
on CD8+ T cells

IFN-γ, TNF-α, and
CCL4 production by

CD8+ T cells

Prolonged PFS
in patients

harboring tumor
antigen-specific

T cells

[96]

Isolated CD1c+ DCs were
loaded with gp100

peptides in the presence of
GM-CSF and then injected

subcutaneously

Melanoma Infiltration of CD8− and
CD8+ T cells in tumor

Objective
clinical responses [99]

CD1c+ DCs isolated from
HLA-A*0201 patients

were loaded with
HLA-A*0201–restricted

peptides and then
injected intranodally

Prostate

Increased
antigen-specific CD8+ T

cells in the blood
Increased

antigen-specific humoral
immune response

Prolonged PFS in
patients harboring

tumor
antigen-specific

T cells

[97]
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Table 2. Cont.

Species Protocol Tumor Type Effects of DC Vaccine Outcome Ref.

CD1c+ DCs isolated from
HLA-A*0201 patients

were loaded with
HLA-A*0201–restricted

peptides and then injected
intradermally or

intravenously

Prostate
Increased

antigen-specific humoral
immune response

Median survival of
18 months [98]

Intratumoral
administration of

unmanipulated CD1c+

DCs plus ipilimumab and
avelumab in combination

with intravenous
low-dose nivolumab

Ovarian
Breast

Thyroid
Melanoma

Infiltration of CD8+ T
cells in tumor

Durable
partial responses [95]

Abbreviations: LLC-OVA, Lewis lung carcinoma expressing ovalbumin; Th17, T helper 17; LV-miSIRPα–BMDCs,
bone marrow-derived DCs infected with a lentiviral vector for SIRPα microRNA; pDC, plasmacytoid DCs; PFS,
progression-free survival.

5.2. cDC2-Targeted Therapy
5.2.1. SIRPα

SIRPα is a transmembrane protein specifically expressed on myeloid lineage cells
including DCs, monocytes–macrophages, and neutrophils. Among DCs, cDC2s and cDC1s
express SIRPα at high and low levels, respectively [103,104]. SIRPα possesses an immunore-
ceptor tyrosine-based inhibition motif (ITIM) in its intracellular region and is thought to
mediate inhibitory signaling in response to stimulation with its ligand CD47, which, like
SIRPα, is a member of the immunoglobulin (Ig) superfamily of proteins. The NH2-terminal
IgV-like domain of SIRPα interacts with the IgV-like domain of CD47. Studies with SIRPα-
or CD47-deficient mice have shown that SIRPα is essential for homeostatic regulation of
cDC2s in secondary lymphoid organs [104–106], and recent work suggested that chronic
activation of the cDC2 subset was involved in such homeostatic regulation of the subset,
at least in the spleen [107]. Studies of human tumor samples found that many tumor cell
types highly express CD47, and that such expression is related to poor prognosis in cancer
patients [108,109]. Treatment with antibodies to CD47 on tumor cells promoted antibody-
dependent cellular phagocytosis of tumor cells mediated by macrophages [110]. In addition
to the inhibition of macrophage-mediated phagocytosis, CD47 expressed on tumor cells
was shown to inhibit the detection of tumor cell–derived mitochondrial DNA by SIRPα
on DCs, resulting in attenuation of type I IFN production by DCs [111]. The blockade
of CD47-mediated inhibitory signaling by antibodies to CD47 also promoted tumor cell
uptake by DCs and enhanced antitumor immune responses through cross-priming of CTLs
in mice [112]. Antitumor effects of DCs were also observed in a melanoma model in which
mice were vaccinated with ovalbumin-loaded SIRPα-deficient DCs [102]. Moreover, treat-
ment with antibodies to SIRPα or to CD47 promoted antigen cross-priming of CD8+ T cells
by cDC2s [113] as well as enhanced the antitumor effect mediated by CTLs in a mouse syn-
geneic tumor model in vivo [114]. Collectively, these observations suggest that inhibition
of SIRPα signaling by treatment with antibodies that target the CD47-SIRPα system results
in the activation of cDC2s, which in turn promotes cross-priming of TAA-specific CTLs.

5.2.2. CLEC4A4

CLEC4A4, also known as DC immunoreceptor 2 (DCIR2), is a C-type lectin receptor
predominantly expressed on cDC2s [115]. It also contains an ITIM in its intracellular re-
gion and thus has the potential to mediate negative signaling. Delivery of tumor-specific
antigens through a glycomimetic CLEC4A4 ligand into cDC2s upon stimulation with anti-
bodies to CD40 and TLR3 ligands resulted in the priming of antigen-specific Th1 cells [115].
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In humans, targeting of antigens to DCIR in vitro allows cross-presentation to CD8+ T cells
by human DC subsets, including cDC2s [116]. Injection of chimeric anti-CLEC4A4 (DCIR2)
antibody fused with OVA, which is allowed to deriver tumor antigen to cDC2s, was found
to inhibit tumor cell growth in a syngeneic mouse B16F10-OVA melanoma model [117]. Tar-
geting of cDC2s through CLEC4A4 and the consequent induction of CD8+ T cell-mediated
antitumor immune responses is thus also a potential approach to cancer immunotherapy.

5.2.3. Integrin αMβ2 (CD11b/CD18)

Integrin αMβ2 is known as CD11b/CD18 that is broadly expressed on myeloid-lineage
cells, including cDC2s, Mo-DCs, monocytes/macrophages, and neutrophils. The adenylate
cyclase toxin (CyaA) of Bordetella pertussis binds to integrin αMβ2 [118]. In fact, CyaA
binds both human and mouse CD11b+ DCs and induces maturation of the subset TLR4-
dependent manner [119]. Furthermore, CyaA-induced antigen delivery to CD11b+ DCs
promotes antigen-specific CTL responses, suggesting that integrin αMβ2 on cDC2s can
be a therapeutic target for TAA delivery through CyaA. GTL001 is a fusion of HPV-16
and HPV-18 E7 proteins with detoxified CyaA domain [120]. Topical treatment of GTL001
with TLR7/8 agonist eradicated HPV-16 E7–expressing cervical carcinoma in a mouse
model [121]. However, no clinical difference was observed between therapy and placebo
group in a phase II study of GTL001 with TLR7/8 agonist in women with HPV16 and/or
18 infection [122].

6. Conclusions

Experimental and clinical studies have revealed that not only cDC1s but also cDC2s
contribute to the induction of antitumor immunity. cDC2s are more abundant in lymphoid
tissues as well as in peripheral blood than are cDC1s, and they are a promising target for
cancer immunotherapy, including the development of cancer vaccines. Given that cDC2s
are a heterogeneous population and induce both proinflammatory and antiinflammatory
responses, established methods to isolate specific cDC2 subsets will be required for the
effective application of these cells to cancer immunotherapy.
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