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Abstract: This piece of research explores porous nanocomposite polyurethane (PU) foam synthesis,
containing nanolignin (NL), coated with natural antimicrobial propolis for wound dressing. PU foam
was synthesized using polyethylene glycol, glycerol, NL, and 1, 6-diisocyanato-hexane (NCO/OH
ratio: 1.2) and water as blowing agent. The resultant foam was immersed in ethanolic extract of
propolis (EEP). PU, NL-PU, and PU-NL/EEP foams were characterized from mechanical, morpho-
logical, and chemical perspectives. NL Incorporation into PU increased mechanical strength, while
EEP coating showed lower strength than PU-NL/EEP. Morphological investigations confirmed an
open-celled structure with a pore diameter of 150–200 µm, a density of nearly 0.2 g/cm3,, and porosity
greater than 85%, which led to significantly high water absorption (267% for PU-NL/EEP). The
hydrophilic nature of foams, measured by the contact angle, proved to be increased by NL addition
and EEP coating. PU and PU-NL did not show important antibacterial features, while EEP coating
resulted in a significant antibacterial efficiency. All foams revealed high biocompatibility toward
L929 fibroblasts, with the highest cell viability and cell attachment for PU-NL/EEP. In vivo wound
healing using Wistar rats’ full-thickness skin wound model confirmed that PU-NL/EEP exhibited an
essentially higher wound healing efficacy compared with other foams. Hence, PU-NL/EEP foam
could be a promising wound dressing candidate.

Keywords: polyurethane foam; nanolignin; propolis; wound dressing

1. Introduction

Various wound dressings have been applied for decades, as a practical way to protect
the wound site on the skin from the exterior impact and provide conditions for absorbing
excessive exudates [1,2]. Among different types of natural and synthetic polymers that
have been used for wound dressing fabrication, polyurethane (PU) has been widely applied
as a cheap raw material for dressings [3,4]. PU is a versatile polymer with fascinating
applications [5], which are generally produced by the reaction of polyol, isocyanate, and
chain extender in different forms (e.g., foam, film, hydrogel, and hydrocolloid) according
to the production method [6,7]. In particular, PU foam is fabricated by using a one-step
polymerization reaction and foaming technique with the addition of a blowing agent,
commonly water [8].
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PU foam is extensively used as wound dressings in the market due to its good
biocompatibility, suitable flexibility, softness, low cytotoxicity, and acceptable mechanical
property even after fully water immersing and also more economical in comparison with
other natural polymer dressing materials [9,10].

Furthermore, the open-pore structure [11] in porous polyurethane foam dressings
gives excellent cellular ingrowth in interconnected pores, water absorption capability, and
a high moisture vapor transmission rate, which makes them suitable for a moderate to
high volume of exudate absorption and to create a moist environment around the wound,
which would accelerate wound healing in dermal wounds and prevent the wound infection
depending on the PU foam properties such as thickness, texture, and pore size [12]

Polyurethanes can blend with different fillers to produce PU composite foam with
unique characteristics [13]. Among the various fillers, naturally occurring counterparts
have gained more attention, considering strict environmental concerns. Meanwhile, lignin
is the second most abundant natural biopolymer composed of aromatic units that contain
a lot of methoxy and hydroxyl groups in their amorphous structure [14]. Lignin has a
wide range of physical, chemical, and biological properties, which has been always viewed
by researchers as a promising material and can be considered as a potential biomaterial
for biomedical applications such as tissue engineering, pharmaceuticals, drug delivery,
and wound dressings due to its anti-oxidant and anti-microbial activities. Furthermore,
various functional groups in lignin such as phenolic, carbonyl, carboxyl, and aliphatic
hydroxyls can be used as chemical cross-linking agent reaction sites and physical hydrogen
bonds [15,16].

Taking into account particular features of materials in nano-scale, in the last decade,
many research studies have highlighted the reforming of lignin to functional nanomaterials
such as lignin nanoparticles, namely nanolignin (NL), which is sized from 1 to 1000 nm [17].
Such reforming will significantly improve properties of NL, such as antioxidant activity,
due to their high surface-area-to-volume, when compared with parent lignin. Overall, the
synthesis of NL is a simple and controllable procedure that resulted in uniform nanopar-
ticles formation. Among various methods, ultrasonication has the advantages of being a
green synthesis, fast, low cost, and high yield method [17].

Development of nanocomposites using NL, due to being abundantly and easily avail-
able, inexpensive, and biocompatible, for applications such as tissue engineering, can also
be extended to wound dressing [18]. According to the literature, the application of NL
for wound dressing is only restricted to lignin nanofibers, as Reesi et al. fabricated a gel
that contains lignin nanofibers modified by arginine for wound-healing applications [19].
It was reported that the antioxidant and antibacterial activity of lignin increased nitric
oxide content at the wound site. Additionally, nanosized lignin contains more hydroxyl
and phenolic hydroxyl groups, which led to the electrostatic or hydrogen bond formation
with different wound-healing agents and drugs [20]. Many researches have been explored
the use of lignin in developing polyurethane foams [21,22], but there is no report on PU
nanocomposite foams including NL. More particularly, although previous reports show the
application of NL as additive in PU to develop advanced polymer nanocomposites [23,24],
to the best of our knowledge, there is no evidence using such nanoparticles in PU nanocom-
posite foams. In addition, from the application perspective, only two pieces of research
reported lignin being incorporated into commercial PU for tissue engineering and wound
dressing purposes [25,26]. However, in the current contribution, for the first time, PU foam
containing NL was synthesized for wound dressing applications.

Different types of approaches have been proposed to efficiently decrease bacterial
load in wound dressings [27], among them propolis-coated wound dressing has been well
known as an effective strategy due to its valuable medical and therapeutic features [28].
Compared with other natural antibacterial counterparts, e.g., green tea, cloves, and black
tea extracts, propolis has shown to be a more active antimicrobial [29]. In addition, in
competition with metal antimicrobials such as silver and copper, propolis exceeds their
biocompatibility [30]. It has been also reported that this renewable antibacterial is an-
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tifungal, anti-inflammatory, antiviral, antitumor, antioxidant, and helps in pro-wound
healing [31]. Kim et. al. fabricated biocompatible electrospun propolis/PU composite
nanofibers using PU pellets (Skythane X595A-11) and it was suggested that the propolis
could increase cell compatibility and antibacterial activity of composite nanofibers [32]. The
fibrous composites were proposed as potential candidates in skin tissue engineering and
wound dressing. In another work, Khodabakhshi et al. fabricated propolis/PU composite
via commercial medical grade PU (Tecoflex EG-80A) using salt leaching/solvent casting
method to prepare high porous PU foam coating with propolis and introduced a promising
choice for wound dressing applications [33]. Regarding antibacterial efficacy of propolis, it
significantly depends on both extraction method and solvent. Among various solvents,
ethanol is more influential and common [34]. It is the reason that in the current study,
ethanol was selected as an extraction solvent.

In the present study, soft porous polyurethane containing NL wound dressing was
synthesized by solvent-free one-shot process, subsequently; the wound dressing was
coated with the ethanol extract of propolis as a well-known antibacterial agent. The
wound dressing was characterized from different points of view, including morphological,
structural, mechanical, antibacterial, and biological (in vitro and in vivo) properties.

2. Materials and Methods
2.1. Materials

Kraft Lignin (Mn: 3000; Aldrich) was purchased from Sigma Aldrich (Shanghai, China).
Polyethylene glycol (PEG, molecular weight of 400 g mol−1), PEG 600, glycerol, and 1,
6-diisocyanato-hexane (HDI) were supplied by Sigma-Aldrich (Shanghai, China) without
further purification and used as received. The propolis was obtained from the Shahr-e
Kord beehives, Iran. The cell culture materials including RPMI, Penicillin-streptomycin
solution, fetal bovine serum (FBS), 0.05% trypsin/EDTA, and phosphate buffer saline (PBS)
were bought from Bioidea (Shanghai, China). The MTT assay kit was purchased from
Sigma-Aldrich (Shanghai, China). Staphylococcus aureus (ATCC 25,923) and Escherichia coli
(ATCC 25922), L929 fibroblast cell line, Wistar rats were provided by Pasteur Institute of
Tehran, Iran.

2.2. Methods
2.2.1. Synthesis of Polyurethane Foam Containing NL

PU-NL foam was synthesized according to the following procedures. The prepara-
tion of NL was carried out via an ultrasonication treatment according to the referenced
literature [35]. Briefly, an aqueous suspension of lignin was sonicated for 60 min and a
homogeneous stable nanodispersion was obtained. Then, sonicated lignin was dried in
mild conditions to be used in PU foam synthesis. PU-NL foam was synthesized with one
shot and solvent-free process. Firstly, PEG 400, PEG 600, glycerol, and NL were premixed
vigorously by a high-speed stirrer for 5 min in a plastic beaker to achieve homogeneous
mixing. In the second stage, a calculated amount of HDI was added with a NCO/OH ratio
at 1.2 and the mixture was heated gradually to 80 ◦C under stirring for 10 min. After that,
water was added as a blowing agent and the mixture was stirred vigorously with a high-
speed mixer at about 2000 rpm and was allowed to rise in free expansion at 80 ◦C. When
the foam was no longer rising, it was placed in a vacuum oven at 70 ◦C for 24 h. It should
be noticed that samples with various amounts of NL, ranging from 0 to 2.5 wt.%, were
prepared; however, those without NL (as a comparison) and with 1 wt.% NL were selected
for further characterization, considering the visual appearance of the sample as a wound
dressing. Finally, the foam was cured at room temperature for 24 h before characterizations.
After 3 days, samples were cut into specific shapes as per the test requirement, and the
foam properties were then measured.



Polymers 2021, 13, 3191 4 of 15

2.2.2. Preparation of Propolis-Coated PU Foam Containing NL

The PU foams were coated by propolis as previously prepared in our group [36].
Briefly, the propolis was frozen at −20 for 24 h and then crushed in a blender. Propolis
was dissolved in ethanol solution in 1:10 ratio (25 g of propolis in 250 mL of ethanol). The
solution was maintained in a dark incubator at 37 ◦C for 14 days. After several filtering of
the suspension using Whatman No. 4 filter papers, the solvent was removed by employing
a rotary evaporator at 40 ◦C. The product was stored at 4 ◦C until further use. Finally,
EEP-coated PU foams were prepared by soaking the PU foams into EEP, subsequently; they
were dried at room temperature.

2.2.3. Mechanical Properties

Tensile properties including Elongation at break and tensile strength of foamed sam-
ples were measured by a tensile test machine (Instron, model 5566, Ithaca, NY, USA)
according to the ASTM D 882-02. At a speed of 10 mm/min and preload of 0.5 N the
dumbbell shape samples (30 mm length and 5 mm width) were stretched to break. At least
six samples were tested in each case.

2.2.4. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of the PU-NL/EEP foams were collected by Fourier Transform
Infrared Spectrometer (JASCO FT/IR-6100, accessory ATR PRO450-S), set on 4 cm−1

resolutions and 64 scans. Measurements were conducted at room temperature between 400
and 4000 cm−1 in transmission mode.

2.2.5. Morphology and Density

The surface morphology and cell structure of propolis-coated polyurethane containing
NL foams, PU-NL, and PU-NL/EEP was observed using scanning electron microscopy
(SEM, TESCAN-Vega 3, Brno, Czech Republic) at 10 kV accelerating voltage. The samples
were coated with gold nanoparticles using a vacuum gold sputter coater (Q150R-ES,
Quorum Technologies, East Sussex, UK) before SEM analysis. The MATLAB and Image J
software were used to calculate the average apparent porosity and diameter of the foams.
For density determination, the length, width, and thickness of the samples were measured
in millimeters and were weighed in grams. Then, density was measured at least 10 times
with different samples as follows: density (g/cm3) = weight/ thickness × length × width.

2.2.6. Water Absorption Test of PU-NL and PU-NL/EEP Foams

Water absorption was measured based on the foams’ weights after absorption
in phosphate-buffered saline (PBS), at 37 ◦C for 24 h. Dry samples with dimensions
of 1 cm × 1 cm were weighted as the Wd. Then, they were immersed in 5 mL of PBS
and removed after being fully saturated. The weights of the swollen foams were
recorded as the Ww after removing the excess moisture from their surfaces with
filter papers. The water absorption ratio was calculated using the following formula:
swelling ratio = [Ww −Wd]/Wd × 100%.

2.2.7. Contact Angle Measurement

Water contact angle measurement was done by a contact angle measuring system
(model GBX, Digidrop, Romans-sur-Isère, France) at room temperature. A drop of deion-
ized water was deposited on the surface of the foams and images were converted by a
computer to determine the wettability data.

2.2.8. Particle Size Determination

Dynamic light scattering (DLS) is a technique used for sample particle sizing, typically
in the sub-micron range. The mean particle size, particle size distribution, and mean
zeta potential analysis of lignin nanoparticles were analyzed by DLS using a Zetasizer
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nano SZ-100 HORIBA-Japan Scientific nanoparticle analyzer at 25 °C. Before DLS analyses,
handshaking was applied vigorously.

2.2.9. Anti-Bacterial Test

For evaluation of anti-bacterial properties of the prepared samples (PU, PU-NL, PU-
NL/WEP, and PU-NL/EEP), the zone of inhibition (ZOI) test was employed according
to our previous studies [37]. In the case of anti-bacterial tests and to compare with EEP,
water-extracted propolis (WEP) was also used for coating PU-NL, which was named PU-
NL/WEP. Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) were used
as target pathogens. A total of 100 µL of bacteria containing medium after overnight
incubation was spread over the nutrient agar medium by a glass L-rod. The samples were
placed over the medium and incubated at standard conditions. After 24 h, the clearance
zones around the discs were measured by a digital caliper. The test was done in triplicate.

2.2.10. Cell Viability Assay

Colorimetric MTT assay was employed for assessment of the PU, PU-NL, and PU-
NL/EEP samples with L929 Fibroblast. Circular samples with 1 cm diameter were cut from
each film and sterilized, by exposure to UV light for 2 h and washing with 70% ethanol
for 30 min. The sterilized samples were placed into the cell culture plates wells, which
contained RPMI, and incubated for 1, 3, and 7 days at standard cell culture conditions
(37 ◦C, 95% relative humidity, and 5% CO2). On each of the specified days, 100 µL of
the incubated cell culture medium was transferred into a 96-well cell culture plate. Then,
5 × 103 L929 cells were suspended in standard cell culture media and added to each well.
After 24 h incubation, the culture media was removed and wells were washed with PBS.
Then, the cell viability was assessed according to the MTT kit manufacturer [38,39].

2.2.11. Cell Adhesion

The PU-NL/EEP films were cut into circles with 1 cm diameter. Then, they were
washed multiple times with PBS. To sterilize the films, they were exposed to UV light for
2 h, followed by a washing step using 70% ethanol for 30 min. The sterilized samples were
put at the bottom of a 6-well culture plate and adequate cell culture media, which contained
1 × 105 L929 cells added to each well. The culture plate was incubated for 1 or 7 days at the
standard cell culture condition. After three days, the samples were fixed with 4 mL of 2.5%
glutaraldehyde. After 2 h incubation with the glutaraldehyde solution, it was discarded
and the samples were washed using 50, 60, 70, 80, 90, and 100% ethanol. At last, the
samples were lyophilized for 24 h, and cell morphology was assessed by employing SEM.

2.2.12. Animal Skin Wound Model and Histological Analyzes

Male Wistar rats (200–250 g) were purchased from the Royan Institute of Isfahan,
Iran. All animal experiments and protocols were approved by the ethical committee of the
Isfahan University of Medical Science (IR.MUI.RESEARCH.REC.1397.103). At first, the
rats were completely anesthetized by intraperitoneal injection of ketamine (100 mg/kg)
and xylazine (10 mg/kg) solution. Then, the dorsal region skin of rats was completely
shaved by an electric shaver and then disinfected by 70% alcohol. Subsequently, round
excisions (11 mm in diameter) were made on the back of the rats using a punch biopsy.
Subsequently, the animals were randomly divided into three groups (n = 8) including
PU, PU-NL, and PU-NL/EEP. For all groups, the related wound dressings were applied
precisely on the wound site and sterile cotton gauze was applied on the wound site. Each
rat was kept in separate cages. The operation day was counted as the 1st day and the
wound healing process was evaluated by measurement of wound diameters on the 5th and
10th day by a digital caliper. The percentage of the wound area closure was calculated by
Equation (1) [2–4]. It should be mentioned that standardized humane endpoints based on
the current guidelines for endpoints in animal studies were used [40–42].

Wound area closure (%) =
Wound area at the first day−Wound area at day (n)

Wound area on the first day
× 100 (1)
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The animals were sacrificed by ketamine-xylazine mixture overdose on the 12th day
after wound creation. Then, full-thickness skin excisions were made from the wound area
(n = 8). The skin specimens were fixed in 10% formalin neutral buffer solution for 24 h.
The fixed specimens were processed by an automatic tissue processor (Sakura, Japan).
Then, 4 µm thickness serial sections from the paraffin-embedded blocks were prepared
by a microtome (Leica Biosystems, Weztla, Germany). The sections were stained with
Hematoxylin & Eosin (H&E) staining protocols [43] for subsequent histological evaluations
under a digital light microscope (Olympus, Tokyo, Japan).

2.2.13. Statistical Analysis

The quantitative data were displayed as mean ± standard deviation (SD). Statisti-
cal analyses for elucidating differences between groups were conducted using one-way
analysis of variance (ANOVA) and Tukey’s HSD post-hoc test by SPSS software V.23. The
difference was considered statistically significant if p < 0.05. (*: p < 0.05).

3. Results and Discussion
3.1. Dynamic Light Scattering (DLS)

It is evident that obtaining nanosized lignin particles is possible by applying ultrasonic
irradiation [35]. There are some approximations in the recorded data during the DLS
analysis such as: the particles are homogeneous and spherical as well as optical properties
of the sample and the environment are known. The mean particle size and Particle size
distribution of NL were analyzed by DLS (Figure 1). Ignoring the second peak around
800 nm most probably related to nanoparticle agglomerations, it is evident that the light
scattering profile showed an average particle size of 110 nm with a polydispersity index
value of 0.9, where the mean particle size distribution is in the nano range. NL has a
negative zeta potential for its negative charge at pH > 1 due to the ionization of its phenolic
hydroxyl and hydroxyl groups [19]. According to the data, −0.3 mV resulted in zeta
potential. The SEM images are in agreement with the DLS data as well. However, the
ultrasonicated lignin particles were well into the nanometer domain.
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Figure 1. Particle Size Distribution of NL.

3.2. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis

FTIR spectra of NL, PU-NL, EEP, and PU-NL/EEP were characterized for vibrations of
the functional groups, which infer molecular structure and chemical bonding, as reported
in Figure 2. NL infrared absorption spectra show complex bands. This is due to the
variety of vibration modes of chemical bonds present in this biopolymer structure. As
shown, NL was confirmed by the main characteristic bands at 3400 cm−1 (O–H band
vibration), 1601 cm−1 (aromatic ring vibration), 1515 cm−1 (aromatic skeletal vibration),
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C–H stretching of methyl or methylene groups at 2938 cm−1, C=O stretching at 1700 cm−1

and 1220 cm−1 (C-O stretching in phenol and ethers) [35].
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The FTIR spectrum of PU-NL confirmed qualitatively the presence of urethane link-
ages. They are well represented by the characteristic -NH stretching vibration at 3333 cm−1

and the characteristic –CO vibration at1700 cm−1. No absorption band was observed at
2270 cm−1 assigned to isocyanate groups (–N=C=O) of HDI in the spectra of the PU-NL
foam, which indicated that the isocyanate group was completely consumed with the for-
mation of completed PU network containing NL. The absorption peak at 1100 cm−1 was
the typical stretching vibration of C-O-C groups in the polyether-based PU foams. The
absorption bands from 1605 to 1510 cm−1 correspond to the aromatic skeletal vibrations
originating from lignin, and were also observed in the PU-NL spectrum, indicating that
the main structure of lignin did not alter appreciably during the reaction [44]. Additionally,
the chemical interactions between isocyanate and hydroxyl groups of NL were evidenced
by decreasing a wider band at 3407cm−1 in NL and was merged with the OH bond at
3333 cm−1 in the PU-NL spectrum [22]. Furthermore, hydrogen bonds are formed between
hydroxyl groups of NL and N-H (proton donors) and C=O (proton acceptors) in the ure-
thane group (–NHCOO–) in PU-NL. From this result, it can be suggested that NL was well
miscible in a matrix of PU foam at a molecular level [23,25].

In the EEP spectrum, the range of 3000–2800 cm−1 is the location of bands related to
asymmetric and symmetric stretching vibrations of CH2 and CH3 groups. In the 3380 cm−1

peak, a very intense band is present, which is related to the O-H band at EEP. Also, this
band was already expected, since EEP is prepared with ethanol as solvent. Also, the range
of 3000–3500 cm−1 at the PU-NL/EEP spectrum was observed, which was wider than its
counterpart peak at the PU-NL spectrum, which demonstrates appropriate coating of the
polyurethane foam with propolis [36,45].

3.3. Mechanical Properties

Table 1 shows the mechanical properties of the prepared samples in tensile mode. As
can be observed, compared to the pure PU foam, NL addition increased tensile strength,
and elongation at break of the nanocomposite foam. Such improvement can be attributed
to the nanoparticle addition, playing a role as reinforcement and its crosslinking effect of
NL, likely both physical and chemical interaction [22]. On the other hand, PU-NL/EEP
displayed a reduction in mechanical properties, yet more than PU, which can be due to
the plasticizing effect of the EEP, as described earlier [36]. PU-NL/EEP meets the desirable
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tensile strength of wound dressing, as it was reported to be in the range of 0.8–18 MPa [46].
A similar trend was also observed for the tensile modulus of the samples, as an indicator of
mechanical stiffness. In a previous report, Young’s modulus of the skin ranges from 10 kPa
to 50 MPa, therefore, the fabricated dressings fit this limit [47].

Table 1. Mechanical properties of prepared samples.

Sample Elongation at Break (%) Tensile Strength (MPa) Tensile Modulus (MPa)

PU 91 ± 3.5 0.75 ± 0.08 0.95 ± 0.15
PU-NL 96 ± 5.6 0.91 ± 0.1 1.25 ± 0.45

PU-NL/EEP 73 ± 3.9 0.82 ± 0.09 0.84 ± 0.19

3.4. Morphological Characterization

The SEM was used to evaluate the morphology and microstructure of the surface
and cross-section of PU-NL foam and PU-NL/EEP wound dressing (Figure 3). This
characteristic is important as the mechanical performance of the foam is highly influenced
by the average cell size and the thickness of cell walls [48].
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Generated CO2 gas as a by-product of one-step polymerization and foaming reaction
is attributed to the specific porous structure of PU-NL foam’s outstanding pore intercon-
nectivity and high porosity. As shown in Figure 3A,G, a comparison of 35× magnification
micrographs for all foams shows very similar cellular structures and open-cell structures as
expected. Also, the cross-section of foams was also observed in the form of homogeneous
morphology as shown in Figure 3B,H. Distribution of NL is observed in 1500× and 8000×
magnification micrographs of PU-NL (Figure 3D,E), which ranged from 45 to 80 nm as
spherical nanoparticles and also some parts were slightly agglomerated. A range below
100 nm is evident for lignin as nanoparticles. Generally, lignin-based polyurethane foams
produce smaller cell sizes and thicker cell walls than the pure PU, which might be due
to the nucleating agent role of NL, explaining the higher density values and mechanical
properties [48].

Furthermore, the influence of porous structure on the wound tissue infiltration in vitro
as well as cell growth in vivo is reported [49] and the porous structure of polyurethane
foams with a range from 50–350 µm can significantly benefit cellular neovascularization and
infiltration [50]. The pore diameter of PU-NL was in the range of 150–200 µm (Figure 3F).



Polymers 2021, 13, 3191 9 of 15

Also, the EEP as the antibacterial agent was coated on the PU-NL foam surface and was
penetrated to its pore walls according to morphological observations on the surface of the
PU-NL/EEP wound dressing (Figure 3I).

3.5. Porosity and Density

The porosity for wound dressing can significantly impact the exudates’ absorption
capacity, which can minimize the possibility of wound infection [51]. The apparent porosity
of PU-NL and PU-NL/EEP foams was measured by image analysis, resulting in 92.3 and
87.9%, respectively. The addition of EEP to PU-NL foam caused a little difference in the
porosity percentage of about 5% [52]. All foams have relatively uniform pore size and
homogeneous morphology and are also highly porous, having a porosity of >85%. The
average pore diameter of PU-NL and PU-NL/EEP was 110 µm. The densities of PU-NL
and PU-NL/EEP foams were calculated as 0.21 g/cm3 and 0.28 g/cm3, respectively. In
addition, EEP coating on PU-NL foam slightly increased the density for PU-NL/EEP
wound dressing. It was also found that the higher the porosity, the lower the density.

3.6. Water Absorption Ability of PU-NL and PU-NL/EEP Foams

One of the determinative parameters for wound dressing fabrication is its capability
to maintain moisture around the wound region as a result of outstanding water absorption
related to the absorption of wound exudates [53,54]. PU foams are suitable for wound
dressing due to their water absorption capacity [51]. The percentage of water absorption
of PU-NL and PU-NL/EEP foams was calculated to be 267 and 242%, respectively. The
water absorption of PU-NL/EEP foam was a little less than PU-NL, which can be related
to the hydrophobicity nature of propolis due to the presence of fatty acids and terpenes at
EEP and also decrease of porosity [55,56]. Although there was no significant difference in
water absorption capacity, PU-NL/EEP foam can be used as a new wound dressing by the
combination of antibacterial and endotoxin adsorption performance.

3.7. Contact Angle

The wettability of foams was evaluated by measuring the contact angle on the surface.
Appropriate hydrophilicity is essential for the wound dressing’s surface due to contact
with the wound area directly. An increase in hydrophilicity of PU foams makes it more
biocompatible for skin tissue engineering and wound dressing [32]. Therefore, the hy-
drophilicity of the PU, PU-NL, and PU-NL/EEP foams was investigated and the water
contact angle was determined as 98.3 ± 5.8◦, 51.1 ± 4.9◦, and 50.1 ± 2.1◦, respectively
(Figure 4). The incorporation of only 1 wt.% of NL into the PU foam reduced the contact
angle by around 100%, most probably as a result of the free polar groups in NL [57]. It
also revealed that the water contact angle of PU-NL/EEP wound dressing was decreased
with the propolis coating due to different compounds of propolis that increase the surface
hydrophilicity of dressing and also facilitate the cells’ attachment on the surface, which is
crucial in wound healing [32].
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3.8. Anti-Bacterial Activity

Infection at the wound site can deeply affect the healing process. In addition, wound
infection can cause systemic complications like sepsis. Therefore, an ideal wound dressing
should exhibit significant anti-bacterial properties [36]. One of the most well-known tests
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for the evaluation of wound dressing antimicrobial properties is the zone of inhibition test.
In this study, the antibacterial activity of the prepared films (PU, PU-NL, PU-NL/WEP,
and PU-NL/EEP) was assessed against Staphylococcus aureus and Escherichia coli, which are
two of the most common wound infection-associated pathogens [58]. The PU and PU-NL
films did not cause the formation of considerable inhibition zones for the used bacterial
species, which indicates that these films’ anti-bacterial properties should be improved
by incorporation of anti-bacterial agents (Table 2, Figure 5A). Therefore, the effect of
incorporation of propolis water and the ethanolic extract was assessed on the anti-bacterial
activity of the films. PU-NL/EEP and PU-NL/WEP exhibited significantly bigger zone
of inhibition against both S. aureus and E. coli in comparison with PU and PU-NL films.
Also, the PU-NL/EEP caused higher anti-bacterial properties compared with PU-NL/WEP.
This observation is consistent with previous studies that demonstrated the advantages
of EEP over WEP for anti-bacterial purposes [59,60]. EEP antibacterial activity can be
attributed to the presence of phenolic compounds and flavanones with high antimicrobial
effects [55]. PU-NL/EEP caused significantly lower antibacterial activity against E. coli in
comparison with S. aureus. Previous studies have reported that structural difference in
these two bacterial strains’ outer shells is the main reason for this observation. The cell wall
of E. coli is covered by a thick membrane of lipopolysaccharide, while S. aureus has a single
peptidoglycan layer. So, E. coli exhibits more resistance to hydrophobic antibacterial agents
like EEP [60,61]. Taken together, as PU-NL/EEP exhibited more efficacy according to
anti-bacterial properties compared with PU-NL/WEP, so this composite film was selected
for further assessments in this study.

Table 2. Antibacterial activity of the PU, PU-NL, PU-NL/WEP, and PU-NL/EEP films according to
the zone of inhibition test.

Microorganism PU PU-NL PU-NL/WEP PU-NL/EEP

E. coli 0 0 4.3 ± 0.3 7.2 ± 0.4
S. aureus 0 2.1 ± 0.3 10.5 ± 0.7 11.2 ± 0.6

3.9. Cellular Biocompatibility

An ideal wound dressing should exhibit high biocompatibility with skin fibroblast [62].
As Figure 5B illustrates, the biocompatibility of PU, PU-NL, and PU-NL/EEP films was
assessed with the skin normal fibroblast cells (L929 cell line). All the samples exhibited high
biocompatibility with L929 cells at all time points. NL addition into PU, caused marginally
higher viability, particularly in the 3rd and 7th day, as was reported elsewhere [63]. In
addition, the highest cell viability was observed at the PU-NL/EEP films. Previous studies
have reported the anti-proliferative effects of EEP on neoplastic cells. However, these effects
of EEP were absent for normal cells including normal fibroblast in specific concentrations
of EEP, which is consistent with our observations [64]. Also, many previous studies
used EEP in their wound dressing structure and reported high biocompatibility with skin
fibroblasts [55,56].

3.10. Fibroblast Adhesion to the PU-NL/EEP Wound Dressing

The surface of a wound dressing should prepare an appropriate matrix for skin
fibroblast adhesion and cell supporting behavior [65]. As the PU-NL/EEP films were
completely biocompatible according to the MTT assay, a reasonable cell attachment was
expected. Figure 6 shows SEM images of L929 cells on the PU-NL/EEP films after 1 and
7 days. The PU-NL/EEP films had a suitable surface for cell adhesion, spreading, and
growth, as Figure 6A,B represent. The number of cells was significantly higher in the
surface of the PU-NL/EEP films on the 7th day in comparison with the 1st day. Also,
the cells have attached and expanded their podocytes properly on the PU-NL/EEP films
(Figure 6C), which demonstrate high interaction of cells adhesion molecules with the film
structure.
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3.11. In Vivo Wound Healing Assessment

The film’s effect as a wound dressing for accelerating the wound healing process was
assessed in the Wistar rats’ full-thickness skin wound model. The wounds were treated
with PU, PU-NL, and Pu-NL/EEP films in different groups (n = 8). No evidence of wound
complications like necrosis or inflammation was observed in the treatment groups. As
Figure 7A illustrates, the wound at the PU-NL/EEP group was approximately closed
after 10 days from the operation. While wound at the other groups was still unhealed.
As Figure 7B illustrates, at both time points (5th and 10th days), the PU-NL/EEP group
exhibited a significantly (p < 0.05) higher wound closure rate compared with the control, PU,
and PU-NL treated groups. The histological investigations approved these observations
as the wounds treated with the PU-NL/EEP films exhibited more developed epidermis
and dermis in comparison with other treatment groups [62]. Therefore, significantly higher
wound healing activity was detected at PU-NL/EEP wound dressing-treated group in
comparison with control, PU, and PU-NL groups.
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PU, PU-NL, and PU-NL/EEP groups. The data are expressed as mean ± standard deviation, (n = 8,
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4. Conclusions

The current contribution aimed to synthesize PU composite open-cell foam containing
NL, coated by green antibacterial propolis, as a candidate for wound dressing applications.
The open-cell structure of the foams was confirmed by SEM, an appropriate property for
wound dressing. Both NL and propolis coating led to an increase in mechanical strength
and hydrophilicity, compared with pure PU. Antibacterial activity of the samples was
demonstrated against Escherichia coli and Staphylococcus aureus, which was significantly
higher for PU-NL/EEP. In addition, in vitro cytocompatibility assessments showed that
while all the foamed samples have high cell viability and cell adhesion, it is appropriately
higher for PU-NL/EEP. Also, in vivo animal studies revealed that PU-NL/EEP promoted
better skin wound healing.
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