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Background: The efficacy of deep brain stimulation (DBS) therapy in Parkinson’s
disease (PD) patients is highly dependent on the precise localization of the target
structures such as subthalamic nucleus (STN). Most commonly, microelectrode single
unit activity (SUA) recordings are performed to refine the target. This process is heavily
experience based and can be technically challenging. Local field potentials (LFPs),
representing the activity of a population of neurons, can be obtained from the same
microelectrodes used for SUA recordings and allow flexible online processing with less
computational complexity due to lower sampling rate requirements. Although LFPs
have been shown to contain biomarkers capable of predicting patients’ symptoms and
differentiating various structures, their use in the localization of the STN in the clinical
practice is not prevalent.

Methods: Here we present, for the first time, a randomized and double-blinded pilot
study with intraoperative online LFP processing in which we compare the clinical
benefit from SUA- versus LFP-based implantation. Ten PD patients referred for bilateral
STN-DBS were randomly implanted using either SUA or LFP guided targeting in
each hemisphere. Although both SUA and LFP were recorded for each STN, the
electrophysiologist was blinded to one at a time. Three months postoperatively, the
patients were evaluated by a neurologist blinded to the intraoperative recordings to
assess the performance of each modality. While SUA-based decisions relied on the
visual and auditory inspection of the raw traces, LFP-based decisions were given
through an online signal processing and machine learning pipeline.

Results: We found a dramatic agreement between LFP- and SUA-based localization
(16/20 STNs) providing adequate clinical improvement (51.8% decrease in 3-month
contralateral motor assessment scores), with LFP-guided implantation resulting in
greater average improvement in the discordant cases (74.9%, n = 3 STNs). The selected
tracks were characterized by higher activity in beta (11–32 Hz) and high-frequency (200–
400 Hz) bands (p < 0.01) of LFPs and stronger non-linear coupling between these
bands (p < 0.05).
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Conclusion: Our pilot study shows equal or better clinical benefit with LFP-based
targeting. Given the robustness of the electrode interface and lower computational
cost, more centers can utilize LFP as a strategic feedback modality intraoperatively,
in conjunction to the SUA-guided targeting.

Keywords: Parkinson’s disease, subthalamic nucleus, single unit activity, local field potentials,
electrophysiological targeting

INTRODUCTION

Deep brain stimulation (DBS) is an effective treatment option
for patients suffering from various neurological disorders such
as Parkinson’s disease (PD) (Benabid et al., 2008; Groiss et al.,
2009; Schiefer et al., 2011; Hariz, 2012, 2014; Odekerken et al.,
2013; Gunduz et al., 2017; Lee et al., 2018). Although the exact
mechanism of DBS remains to be explored, it is well-established
that stimulation of the subthalamic nucleus (STN) alleviates
the cardinal symptoms of PD (Limousin et al., 1998; Krack
et al., 2003; Herzog et al., 2004; Benabid et al., 2009). However,
stimulation can also result in side effects arising from unintended
activation of structures surrounding the STN (Krack et al., 2001;
Okun et al., 2003; Deuschl et al., 2006; Guehl et al., 2006; Wojtecki
et al., 2007; Benabid et al., 2009; Groiss et al., 2009; Richardson
et al., 2009; Zhang et al., 2016). Moreover, a multi-center study
has reported that the sub-optimal positioning of DBS electrodes
accounts for 46% of cases with inadequate clinical improvement
postoperatively (Okun et al., 2005). Thus, the clinical efficacy of
DBS therapy depends critically on accurate localization of the
STN (Zonenshayn et al., 2000; Sterio et al., 2002; Amirnovin et al.,
2006; Gross et al., 2006; Campbell et al., 2019).

Precise placement of the DBS lead can be challenging due to
the small size and the anatomical variability in the human STN
(Patel et al., 2008; Richardson et al., 2009). While MRI-guided
asleep DBS is being performed by some centers (Aziz and Hariz,
2017; Brodsky et al., 2017; Chen et al., 2018; Ho et al., 2018; Wang
et al., 2019; Liu et al., 2020), intraoperative electrophysiology
remains to be an important technique for localizing the STN,
despite the variations in the surgical procedure between medical
centers (Zonenshayn et al., 2000; Sterio et al., 2002; Amirnovin
et al., 2006; Gross et al., 2006; Abosch et al., 2013; Campbell
et al., 2019). A worldwide survey involving 143 DBS centers
reported that 83% of them use single unit activity (SUA)
recordings for DBS lead implantation (Abosch et al., 2013).
Typically, up to five microelectrodes are advanced toward the
target structure to obtain a 3-dimensional perspective (Gross
et al., 2006; Benabid et al., 2009; Abosch et al., 2013). SUA
is used to identify cells with firing characteristics consistent
with STN neurons and response characteristics confirming the
motor sub-territory of the STN based on a variety of visual
and auditory cues (Hutchison et al., 1998; Magnin et al., 2001;
Rodriguez-Oroz et al., 2001; Abosch et al., 2002; Benazzouz et al.,
2002). This procedure is subjective, heavily experience-based and
depends critically on the neurosurgeon’s or electrophysiologist’s
ability to recognize the STN (Benazzouz et al., 2002; Benabid
et al., 2009; Marceglia et al., 2010; Abosch et al., 2013). Aside
from difficulties in interpreting the data and small number

of neurons sampled by 1–5 microelectrodes, challenges in
interface stability (e.g., necessity of turning lights or other
devices off in the operating room) and high bandwidth/sampling
frequency requirements may complicate the collection and real-
time analysis of SUA (Novak et al., 2011; Rouse et al., 2011;
Thompson et al., 2014).

Local field potentials (LFPs), which represent the aggregated
synaptic potentials of a population of neurons (Priori et al., 2004;
Gross et al., 2006; Buzsáki et al., 2012), can be obtained from
the shaft of the same microelectrode used for SUA recordings.
Although LFPs have been shown to contain biomarkers capable
of predicting Parkinsonian symptoms (Foffani et al., 2003; Ray
et al., 2008; Lopez-Azcarate et al., 2010; Özkurt et al., 2011; Little
and Brown, 2012; Oswal et al., 2013; Priori et al., 2013; Brittain
and Brown, 2014; Ozturk et al., 2019) and differentiating basal
ganglia structures (Chen et al., 2006; Telkes et al., 2016; Kolb et al.,
2017) only a handful of centers around the world rely on LFPs for
the localization of the STN (Abosch et al., 2013).

Here, we present, for the first time, a randomized, double-
blinded study comparing the targeting performance of SUA- vs
LFP-based implantation. While SUA was interpreted by visual
and auditory inspection of the raw traces as done in clinical
practice, we employed real-time intraoperative processing of
LFPs to facilitate the selection of the implantation track.

Patients and Methods

Patients
Ten patients (four females, six males) with PD undergoing
bilateral STN-DBS implantation at Baylor St. Luke’s Medical
Center were included in the study. Their ages ranged between
40 to 64 (mean ± standard deviation = 55 ± 8.8) with
disease duration ranging from 4 to 16 years (mean ± standard
deviation = 9 ± 3.9). Nine patients were implanted with
Medtronic lead model 3389, and one was with model 3387
(Medtronic, Ireland). The study protocol was approved by
the Institutional Review Boards of Baylor College of Medicine
and University of Houston. All patients provided written
informed consent.

Study Design
This study investigates the functional utility of LFP versus
SUA in targeting the STN with an online processing pipeline
(Figure 1A) and compares both modalities in terms of clinical
outcomes postoperatively. The implantation modality for each
hemisphere (SUA vs. LFP) was randomly identified prior to
the surgery. If one hemisphere was implanted using LFP, the
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FIGURE 1 | Randomized double-blinded paradigm and the processing pipeline for LFPs. (A) The decision modality for each hemisphere was determined in the
beginning of the operation randomly. Intraoperative recordings included both SUA and LFP activity. However, only the decision modality, either SUA or LFP, was made
available to the electrophysiologist. After the implantation site was selected, the final position was confirmed with intraoperative imaging and clinical testing for motor
improvement and side effects, which was performed by a neurologist blinded to the electrophysiological recordings. (B) Signal processing and machine learning
pipeline for LFP-based decision making. The raw traces are de-correlated using least mean square (LMS) algorithm with the steepest descent update. Then, the LFP
traces were analyzed in the spectral domain using modified Welch periodogram with a 1 s Hamming window and 50% overlap. Individual spectra across depths
were combined to generate a 2D depth-frequency map (DFM) representing the depth-varying power spectrum of the LFPs. The track selection was performed
automatically using a linear discriminant analysis (LDA) classifier developed by Telkes et al. (2016), using the power in beta and HFO bands as input features.

other one was implanted using SUA. Three track MER was
performed with only the guiding waveform provided to the
electrophysiologist for decision making, while the other signal
was recorded in the background (blinded recordings) for off-
line comparison. After DBS lead placement in the selected
track, an intraoperative computed tomography (CT) fused
with preoperative magnetic resonance imaging (MRI) was used
to verify lead location. Finally, a neurologist blinded to the
recordings tested the patients for clinical benefit and side effects
intraoperatively and 3-months postoperatively (blinded testing).
To prevent possible interference induced by inter-rater variability

on the paired statistics performed in this study, the rating
neurologists (authors JS and AT, both MDS-UPDRS certified)
performed the clinical assessment for each patient consistently
(the same rater performed both OFF and ON assessments
of a patient, for both the left and right hemispheres). The
systematic testing done at 3-months postoperatively was used
to assess the clinical improvement by stimulation (medication
OFF/DBS ON). The clinical scores were computed as the sum of
Movement Disorders Society Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) Part-III items 3.3–3.8, 3.15–3.17 of the side
contralateral to the implant.
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Intraoperative Recordings
Patients were requested to stop medication at least 12 h prior
to surgery and all recordings were obtained in the awake state
using local anesthesia. On the morning of the surgery, all
patients obtained a head CT after application of the stereotactic
head frame. The stereotactic coordinates and trajectories to
the STN were identified by fusing preoperative MRI and
CT scans on a neuro-navigational platform (StealthStation,
Medtronic, Ireland). In each hemisphere, awake recordings
were performed using a set of three parallel microelectrodes
separated by 2 mm (center-to-center) using the 5-cannula
BenGun with “+” configuration. The preoperative planning
using direct targeting methods determined the “center” track.
Among “anterior, posterior, lateral and medial” tracks, two
other tracks were selected by the neurosurgeon on a patient
specific basis by taking into account the subject’s anatomy.
The microelectrodes (NeuroProbe, AlphaOmega, Israel) were
initially placed at least 15 mm above the stereotactic target
and advanced deeper with 0.5–1 mm steps using NeuroOmega
drive (AlphaOmega, Israel), in order to refine the radiographic
target. At each depth, by using the cannula as reference, at
least 20 s of SUA from the high-impedance tungsten tip (0.6–
0.8 M�) and LFP from the low impedance stainless-steel ring
(<10 K�, 3 mm above the tip) on the shaft were obtained
simultaneously. The entire data was recorded with Grapevine
Neural Amplifier (Ripple Neuro, UT) at 30 KHz and 16-bit
A/D resolution, and LFPs were down-sampled to 2 KHz before
further processing.

Signal Processing
The signals were recorded and visualized in real-time with
an in-house built Simulink model and processed with custom
MATLAB scripts using version R2014a (Mathworks, Natick, MA,
United States) and gHiSys high-speed online processing library
(gTec, Austria). The entire online processing was performed on
a 17” laptop with quad-core (2.4 GHz) processor and 12 GB
memory. The SUA data were high-pass filtered at 300 Hz with
a second order infinite-impulse response filter and presented
to the electrophysiologist in visual and auditory format, similar
to the commercially available devices. After the mapping was
completed, the SUA traces were plotted depth by depth from
all three tracks for reviewing and final decision. The entry
to and exit from the STN was determined by an experienced
neurophysiologist by listening to and visually observing the firing
patterns of neurons. The entry to the STN was identified with
a prominent increase in the background activity and discharge
rates (Figure 2A), as reported previously (Hutchison et al., 1998;
Novak et al., 2007). Among three, the track with the longest span
of cell firing and background activity was selected for the chronic
DBS electrode implantation (Abosch et al., 2002; Benazzouz
et al., 2002; Gross et al., 2006). In those hemispheres where the
implantation was performed based on LFPs, the same procedures
were used to process SUA data offline, following the implantation
of the DBS electrode.

The LFPs were processed intraoperatively with the real-time
implementation of the signal processing pipeline (Figure 1B)

provided by Telkes et al. (2016). Specifically, LFP raw traces were
visualized initially and it was noted that tracks were difficult to
distinguish, due to common activity coming from the reference
contact (cannula) masking spatially localized patterns. In order
to eliminate the common activity without affecting the localized
neural activity, the LFP from tracks were de-correlated using a
least mean square (LMS) algorithm with the steepest descent
update. Explicitly, each track was predicted by using a linear
weighted combination of other two channels and the residual
was used for the further processing. With this adaptive approach,
the common activity was eliminated across tracks and only
spatially specific information was preserved (Telkes et al., 2016).
LFP traces were then analyzed in the spectral domain using
a modified Welch periodogram. A fast Fourier transform was
computed at each depth with a 1 s Hamming window and
50% overlap and presented to the electrophysiologist in near
real-time in the form of online spectrograms (Supplementary
Video S1). After the mapping was completed, a median spectrum
was calculated from the spectra to eliminate localized artifacts
at each depth. Then, spectra across depths were combined
to generate a 2D depth-frequency map (DFM) representing
the depth-varying power spectrum of the LFPs of each track
(Telkes et al., 2016, 2018). The maps were then normalized
with the average baseline of three tracks and transformed into
log scale (Figure 1B). The tracks were not normalized by their
own baseline but by the mean of all three tracks in order to
compare the signal power between them. The baseline used
for normalization was selected as the highest depths which are
assumed to be in the white matter. The STN was identified
by distinct LFP activity in beta (11–32 Hz) and HFO (200–
400 Hz, high-frequency oscillations) ranges. The track containing
the largest beta and HFO bandpower for the longest span was
selected as the implantation site for the DBS electrode (Zaidel
et al., 2010; Wang et al., 2014; Telkes et al., 2016; van Wijk
et al., 2017). This selection was performed automatically using
a linear discriminant analysis (LDA) classifier developed by
Telkes et al. (2016). Specifically, after obtaining the normalized
depth-frequency maps, the beta and HFO sub-band powers were
extracted for each track and depth from these maps. Then, the
sub-band power features were normalized between zero and one
with a Min-Max normalization method for the minimization
of inter-subject variability in LFP power, and a binary LDA
classifier was applied for classification. This classifier was trained
by contrasting the LFP sub-band features coming from selected
and non-selected tracks using the data from the 24 PD patients
analyzed in Telkes et al. (2016). During online classification, the
neural data in each track and at each depth were fed to the
classifier. Therefore, each electrode trajectory received a vote at
each depth from the classifier. The decision distance of the LDA
classifier was plotted to give visual feedback regarding the votes
and related confidence of the classifier (Figure 1B). The track that
received the longest span of decision distances voting for in-STN
was selected for the final DBS electrode implantation (Figure 1B).
Once again, in those hemispheres where the implantation was
performed based on SUA, the same signal processing pipeline was
executed offline to process LFPs, following the implantation of
the DBS electrode.
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FIGURE 2 | Representative SUA and LFP raw traces and depth-frequency maps (DFM) from two STNs where the suggested track by SUA and LFP overlapped (left
panel) and did not overlap (right panel). (A,B) SUA raw traces presented from 5 mm above down to 5 mm below the dorsal border of the STN, with 0.5 mm steps.
The dorsal border is marked by an increased spiking and background activity. Red asterisks denote suggested track by the corresponding modality and black
asterisk next to the track name denotes the implanted track. (C,D) The decorrelated LFP traces are provided in a similar fashion to SUA traces. Although it can be
observed that the oscillatory activity increases after crossing the dorsal border, the nature of the change can be visualized better in the spectral domain where (E,F)
DFMs of the corresponding LFPs are presented. The entry to STN is characterized with increased activity in both beta and HFO ranges. (G,H) Decision plots of the
classifier voting whether each track is in- or out-STN at each traversed depth. The track with the longest in-STN vote is selected as the implanted track, as indicated
with the black arrows. The SUA activity was stronger in the lateral track (A) and the corresponding LFPs agreed (G) in the left panel. On the right panel, SUA (B),
which was the decision modality, suggested the medial track. However, after intraoperative imaging validation the lead was placed in the center track, which agreed
with the LFP-based decision (H).

Additional offline analysis was performed postoperatively to
investigate the cross-frequency coupling (CFC) between beta
and HFO bands. The comodulograms representing CFC were
computed using the phase-locking principle (Penny et al., 2008)
with amplitude frequency axis from 150 to 450 Hz with 10 Hz
steps and 50 Hz filter bandwidth, and phase frequency axis from
6 to 40 Hz with 1 Hz steps and 3 Hz filter bandwidth.

Statistics
Normality of all distributions was tested using Anderson-Darling
test and it was found that most of them are non-normal
(p < 0.05). Statistical tests were performed in a paired fashion
using non-parametric Wilcoxon signed rank test to compare the
clinical scores in the OFF- and ON- DBS states, the beta and
HFO bandpowers and the coupling strength between them. The

Frontiers in Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 611

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00611 June 10, 2020 Time: 20:45 # 6

Ozturk et al. Intraoperative LFPs for Targeting of STN

sample size and significance levels are provided throughout the
text, when referred.

RESULTS

A total of 60 microelectrode tracks from 20 STNs were
included in this study. Figure 2 illustrates offline comparison of
representative LFP and SUA data from two STNs, where both
modalities suggested the same track in one (Pt5, left hemisphere)
and different tracks in another (Pt10, right hemisphere). The
SUA-predicted tracks were determined by the longest span of
background and spiking activity (Figures 2A,B) whereas the
longest span of in-STN votes of the classifier were considered in
LFP-based selection (Figures 2C–F). The decision distance (y-
axis of Figures 2G,H) represented the confidence of the classifier
which used the power in beta and HFO bands of LFP as input
features. Note that, although the randomized decision modality
was SUA for the right hemisphere of patient 10 (Figure 2, right
panel) suggesting implantation in the medial track, intraoperative
CT favored the center track as the target, which was used as the
final implantation location. The offline analysis of LFPs agreed
with the radiographic decision as well.

Distribution of decisions for all hemispheres given by each
modality as well as their randomization is provided in Figure 3A.
In 16/20 hemispheres, the SUA and LFP recordings were
concordant in their prediction of implantation track. In those
four discordant hemispheres, the LFP was the decision modality
in only one of them and the final implantation validated by
intraoperative CT and clinical testing agreed with LFP-suggested
track. In remaining three STNs where SUA was the decision
modality, the lead had to be repositioned based on intraoperative
CT validation and/or stimulation testing. For two STNs (Pt6, left;
Pt10 right), the track suggested by the SUA, did not agree with
the track residing within the target confirmed radiographically
(according to intraoperative CT scans merged with preoperative
MRI). Therefore, the DBS electrode was placed into the most
likely track suggested by the radiography. Interestingly, for these
two STNs, the track suggested by the imaging agreed with
LFPs. In one STN (Pt1, left), the lead was moved to posterior
track due to stimulation side-effects during intraoperative testing
and imaging considerations, without the use of microelectrode
recordings. This STN was excluded from further analysis. The
repositioned hemispheres are marked with a star on Figure 3A.
Overall, the track favored by SUA was implanted in a total of
16 chronic lead placements whereas LFP-favored track was used
in 19. In addition to intraoperative radiographic validation, all
20 implantations were visualized postoperatively by merging the
preoperative MRI and postoperative CT images using LeadDBS
(Horn and Kühn, 2015). It was observed that at least one contact
of the DBS lead was within the STN (Figure 3B).

The mean lateralized MDS-UPDRS part III improvement for
19 STNs was 51.8% at 3-month postoperative programming
(mean ± standard deviation OFF score = 16.3 ± 5.4, ON
score = 6.5 ± 4.6, Figure 3C). When the track decisions were
compared across modalities in terms of outcome measures, the
16 STNs where both modalities agreed had average clinical

improvement of 55.5%. Of the tracks with LFP-SUA mismatch,
the mean improvement in three LFP-concordant implantations
was 74.9% (Figure 3D).

The average DFMs and CFC comodulograms of selected vs
other tracks from 19 STNs are presented in Figure 4. The left
hemisphere of patient 1 was excluded since the electrode was
repositioned due to side effects observed during intraoperative
stimulation testing without neural recordings. The STN was
characterized by exaggerated activity in the beta and HFO ranges
in the selected track while the average map of the non-selected
tracks contained weaker beta and HFO activity, as presented
in Figure 4A. The power of these two bands were significantly
higher in the selected track, both in dorsal and ventral regions
(Figure 4B, p < 0.01, n = 19). Although three patients had
localized HFO activity above the STN border (see representative
DFMs in Figures 2E,F), there was no significant difference in
HFO bandpower between selected and other tracks at this depth
range. The dorsal half of STN demonstrated CFC between the
phase of beta and the amplitude of slow HFO (200–280 Hz)
oscillations whereas the ventral half was coupled with fast HFO
(280–400 Hz) band as illustrated in Figure 4C. Amongst all
selected tracks, the beta-HFO coupling strength was significantly
higher in both dorsal and ventral territories, when compared to
other tracks (Figure 4D, p < 0.05, n = 19).

DISCUSSION

In this blinded study, we compared the functional utility of LFPs
for the implantation of DBS electrode against the widely used
method, SUA (Benabid et al., 2009; Przybyszewski et al., 2016;
Valsky et al., 2017). We observed an overall agreement in track
prediction between both modalities (16/20 hemispheres) with
adequate clinical benefit (55.5%) from chronic DBS, comparable
to previous reports (Limousin et al., 1998; Krack et al., 2003;
Walter and Vitek, 2004). In the three discordant cases, our
findings suggest that the mean improvement in motor symptoms
with LFP guided implantation may be greater.

The large overlap between optimal tracks predicted by both
SUA and LFP is not a surprise as firing activity and field potentials
have shown to be linked (Kühn et al., 2005; Buzsáki et al., 2012;
Telkes et al., 2016; Meidahl et al., 2019), and supports the use
of LFP-guided lead placement. A possible explanation for the
mismatched hemispheres could be the stability issues in the
electrode tip - tissue interface (Amirnovin et al., 2006; Hill et al.,
2011; Harris et al., 2016). In one STN presented in Figure 2B,
although the background activity in center track SUA increases
after the border (0 mm), a potential tip failure (i.e., bending
or damage to the fine tip of microelectrode that could reduce
the high impedance, which is essential to capture SUA) could
have prevented the isolation of individual neurons. Since the
LFP traces (Figure 2D) and DFM (Figure 2F) of the same STN
show strong activity correlated with intraoperative CT, a technical
or hardware issue specific to the tip of the microelectrode is a
distinct possibility. Even without any damage, the SUA tip may
not necessarily isolate single neurons at every site (Benazzouz
et al., 2002; Weinberger et al., 2006; Sharott et al., 2014) by
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FIGURE 3 | The distribution of selected tracks by SUA and LFP, and the corresponding motor improvement. (A) The BenGun representation of suggested and
implanted tracks for individual STNs. For each hemisphere, the randomized implantation modality is written at the bottom. There were three cases where the
decision modality was SUA, but the lead had to be repositioned (denoted by asterisk): left hemisphere of patient 1 moved to posterior track due to intraoperative
stimulation side effects, without use of electrophysiology (excluded from further analysis); left hemisphere of patient 6 and right hemisphere of patient 10 repositioned
due to discrepancy with the intraoperative imaging. In the latter two cases, the LFP suggested track agreed with the final decision. (B) The illustration of implanted
DBS leads generated by merging preoperative MRI and intraoperative CT using Lead DBS toolbox (Horn and Kühn, 2015). In all hemispheres, at least one contact
was observed to be in STN. (C) The distribution of total contralateral motor UPDRS scores in the DBS OFF and DBS ON states for 19 hemispheres. There was a
significant clinical motor improvement (51.8%) after DBS treatment (p < 0.01, n = 19). (D) The tracks suggested by SUA and LFP overlapped for 16 STNs, with
average improvement of 55.5%. When there was a disagreement and the implant location agreed with LFP (n = 3), the average improvement was 74.9%. Individual
data points are presented with circles to emphasize the unequal sample size between groups.

being too far to the cells or by damaging them (Buzsáki, 2004;
Harris et al., 2016). In such instances, the electrophysiologist faces
the uncertainty of missing the target or missing the neurons.
By contrast, the stainless-steel ring on the shaft where LFPs
are recorded has more structural integrity, larger surface and
smaller impedance (Lenz et al., 1988; Gross et al., 2006), and
captures the oscillatory activity from a population of neurons

(Priori et al., 2004; Gross et al., 2006; Buzsáki et al., 2012), thereby
limiting the chances of missing the electrophysiological activity
(Buzsáki et al., 2012; Priori et al., 2013; Thompson et al., 2014).
Supporting the favorability of LFP recordings, we found that
among three cases where SUA was the deciding modality but the
implantation track had to be modified, two of the final locations
agreed with the LFP-based track selection (Figure 3A).
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FIGURE 4 | LFP patterns of selected and non-selected (other) tracks. (A) DFM averages of LFPs recorded from selected and other tracks 5 mm above and below
the dorsal border of 19 STNs. One hemisphere which was repositioned due to side effects without recordings was excluded from the electrophysiological averages.
The white dashed lines represent the dorsal border and, the dorsal and ventral regions of STN. Upon entry to the STN, there was a marked increase in the beta and
HFO activity. The dorsal half was dominated with slow HFOs (200–280 Hz) whereas the ventral half had HFOs in the 280–400 Hz range. (B) The beta and HFO
bandpowers are contrasted between selected and other tracks in three spatial regions: above (5–0 mm), dorsal (0 to -2 mm) and ventral (-2 to -5 mm) STN. There
was significant difference in both beta and HFO bandpower in dorsal and ventral regions (p < 0.01, n = 19). (C) The CFC patterns contrasted from the same depth
regions revealed beta-slow HFO coupling in the dorsal territory, whereas there was beta-fast HFO coupling in the ventral territory of the selected track. (D) The mean
beta-HFO coupling strength was significantly higher in both dorsal and ventral territories (p < 0.05, n = 19).

Intraoperative electrophysiological recordings for the accurate
localization of STN have been a vital step for DBS electrode
implantation (Zonenshayn et al., 2000; Sterio et al., 2002;
Amirnovin et al., 2006; Gross et al., 2006; Abosch et al., 2013;
Campbell et al., 2019). SUA has been the most commonly
used electrophysiological signal for targeting (Gross et al.,
2006; Abosch et al., 2013; Campbell et al., 2019), which
strongly relies on subjective interpretation of single unit firings
(Benazzouz et al., 2002; Benabid et al., 2009; Marceglia et al.,
2010; Abosch et al., 2013). Recently, there have been reports
to ameliorate this disadvantage by identifying and clustering
firing types (Kaku et al., 2019, 2020) or by detecting entry
and exit of the STN automatically (Wong et al., 2009; Zaidel
et al., 2009; Pinzon-Morales et al., 2011; Valsky et al., 2017;
Thompson et al., 2018). However, the volatile interface stability
and increased computational power requirement arising from
higher sampling rates might still favor LFPs (Rouse et al.,
2011; Buzsáki et al., 2012; Priori et al., 2013; Thompson
et al., 2014). Growing literature supports the utility of LFPs in
intraoperative mapping (Chen et al., 2006; Przybyszewski et al.,
2016; Telkes et al., 2016; Kolb et al., 2017; Lu et al., 2019).
Our results also support the use of LFPs intraoperatively for
DBS lead implantation. The processing pipeline and real-time
visualization tool (Supplementary Video S1) presented here can
facilitate this process.

The exploration of disease biomarkers for the development
of novel technologies such as closed loop DBS have been of
great interest lately (Little and Brown, 2012; Priori et al., 2013;
Meidahl et al., 2017; Hell et al., 2019). In this regard, LFPs
can provide variety of non-binary patterns including power of
distinct oscillatory bands and their nonlinear interactions. There
is an abundance of studies reporting the response of LFP-derived
biomarkers to medication (Foffani et al., 2003; Priori et al.,
2004; Marceglia et al., 2006; Kane et al., 2009; Lopez-Azcarate
et al., 2010; Özkurt et al., 2011; Ozturk et al., 2019) and DBS

(Kühn et al., 2008; Eusebio et al., 2011; McConnell et al., 2012)
therapies, as well the correlation between these biomarkers and
cardinal symptoms of PD (Kühn et al., 2006; Weinberger et al.,
2006; Ray et al., 2008; Lopez-Azcarate et al., 2010; Oswal et al.,
2013; Brittain and Brown, 2014; Ozturk et al., 2019). We and
others have previously shown that these patterns can provide
utility in contact selection (Ince et al., 2010; Connolly et al.,
2015) or targeting the optimal location for DBS implantation
(Chen et al., 2006; Thompson et al., 2014; Telkes et al., 2016;
Kolb et al., 2017; Lu et al., 2019). Specifically, oscillations in
the beta and HFO range and their cross-frequency interactions
have been used to pinpoint the “sweet spot” for DBS (Wang
et al., 2014; Connolly et al., 2015; Telkes et al., 2016; Horn
et al., 2017; van Wijk et al., 2017; Hell et al., 2019). When
comparing the selected track with others, we have observed that
the bandpowers of beta and HFO oscillations were significantly
higher in both dorsal and ventral parts of the STN. Postoperative
analyses revealed that the coupling pattern between phase of beta
and amplitude of HFO differed in dorsal and ventral territories,
similar to previous reports distinguishing both regions with
electrophysiology (Rodriguez-Oroz et al., 2001; Theodosopoulos
et al., 2003; Zaidel et al., 2009; Telkes et al., 2018). This difference
is expected as the dorsolateral STN has been associated with
motor functions and exhibited distinct oscillatory/bursting single
unit firings whereas ventromedial STN is associated with limbic
functions and tonic firings (Abosch et al., 2002; Gross et al.,
2006; Zaidel et al., 2010; Thompson et al., 2018; Campbell
et al., 2019; Kaku et al., 2020). Interestingly, we also noted
HFOs above STN in three patients (see Figure 2E). This activity
could be originating from other structures such as thalamus or
zona incerta (ZI) (Thompson et al., 2014; Yang et al., 2014; Lu
et al., 2019; Meidahl et al., 2019). Previous work has shown
that dorsolateral STN and ZI stimulation provides the greatest
improvement in PD motor symptoms (Gourisankar et al., 2018),
which correlates with our observation. However, lack of activity
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in the bulk of our recordings begs for further investigation
regarding the out-of-STN oscillatory activity in more patients.

CONCLUSION

In this report, we assessed the functional utility of LFP-
based lead implantation against the gold standard SUA method
using intraoperative online signal processing and compared
these modalities in terms of clinical outcomes. Our results
suggest that the LFP oscillations can be a more stable, less
processing-intensive method that can be integrated in the
intraoperative workflow together with SUA-based mapping,
without affecting the surgical procedure. In addition to the
functional role of LFPs in intraoperative target mapping, the
fact that LFPs can also be recorded from the chronic DBS
lead after the surgery is another potential advantage that
might guide therapeutic programming to a higher efficacy and
efficiency. Here, we provided results of a pilot study with
ten patients. Future clinical trials with more subjects will be
needed to establish if LFPs can become the standard of care for
intraoperative mapping.
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