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Abstract

YES proto‐oncogene 1 (YES1) is an SRC family kinase (SFK) that plays a key

role in cancer cell proliferation, adhesion, invasion, survival, and angiogenesis

during tumorigenesis and tumor development. Reports suggest that YES1

amplification is associated with resistance to chemotherapeutic drugs and

tyrosine kinase inhibitors (TKIs) in human malignancies. However, the

mechanisms of drug resistance have not been fully elucidated. In this article,

we review the literature on YES1 and discuss the implications of YES1

signaling for targeted therapy and chemotherapy resistance in malignancies.

Moreover, recent advances in targeted therapy for YES1‐amplified malig-

nancies are summarized. Finally, we conclude that targeting YES1 may

reverse drug resistance and serve as a valuable tumor treatment strategy.
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1 | BACKGROUND

Studies of driver mutations in malignancy, such as those
in epidermal growth factor receptor (EGFR), anaplastic
lymphoma kinase (ALK), and human epidermal growth
factor receptor 2 (HER2), have provided more treatment
options for patients with advanced malignancies [1–3].

However, some patients still do not benefit from targeted
therapy because they either have acquired or primary
resistance or lack targetable driver mutations. Drug
resistance remains a serious problem in the course of
treatment, which limits the application of targeted
therapy and is one of the most important challenges in
the treatment of malignancies today [4]. Therefore, there
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is an urgent need to improve anticancer treatment
strategies, including developing new drugs and address-
ing drug resistance.

YES proto‐oncogene 1 (YES1) is one of the nine
members of SRC family kinases (SFKs), and the other
members are SRC, FYN, LYN, BLK, LCK, HCK, FGR, and
YRK. YES1, SRC, and FYN are widely expressed in
mammalian tissues, while LYN, LCK, FGR, BLK, and
HCK are more expressed in the hematopoietic system [5].
SFK is an important nonreceptor tyrosine kinase (RTK) that
can regulate the cellular function of normal cells. SFK
signaling has been shown to be related to the growth,
survival, invasion, adhesion, and migration of cancer cells,
and plays a role in resistance to targeted therapy, endocrine
therapy, chemotherapy, and radiotherapy [6, 7]. Recently,
YES1 has received increasing attention for its potential
oncogenic properties and its use as a biomarker in various
tumors. Upon stimulation by RTKs, including EGRF,
PDGFR, CSF1R, and FGFR, YES1 is recruited to activate
and phosphorylate these membrane receptors that regulate
downstream substrates and exert partial biological effects.
YES1 is the only member of the SFK family to show gene
amplification in primary tumors of untreated patients [8].
Previous laboratory studies supported that YES1 amplifica-
tion mediates resistance to anti‐HER2 drugs and EGFR‐
tyrosine kinase inhibitors (TKIs) among others [9, 10].

In this review, we describe the role of YES1 and its
signaling in tumors, focusing on the role of YES1
amplification in TKI and chemotherapy resistance.
Recent advances in targeted therapy for YES1‐amplified
malignancies are analyzed. Targeting YES1 may reverse

drug resistance and serve as a valuable therapeutic
strategy in tumor treatment.

2 | FUNCTION AND SIGNALING
OF YES1 IN TUMORS

It has been observed that YES1 plays a vital role in the
occurrence and development of various malignant tumors
such as non‐small cell lung cancer (NSCLC), breast cancer,
colorectal cancer, prostate cancer, esophageal cancer, gastric
cancer, liver cancer, thyroid cancer, glioblastoma, pancreatic
cancer, and melanoma [11–21]. We investigated genomic
data from patients with somatic YES1 amplification in
various malignancies, including NSCLC, breast, colorectal,
bladder, and prostate cancers, from the cBioPortal for Cancer
Genomics databases. The prevalence of YES1 amplification
in various malignancies is shown in Figure 1. In addition,
the correlation between YES1 expression from the Human
Protein Atlas database and the prognosis of various tumors is
shown in Figure 2. The results showed that high expression
of YES1 was associated with shorter progression‐free survival
(PFS). Recent studies have shown that YES1 overexpression
can promote the level of tumor‐infiltrating regulatory T cells,
thereby forming an immunosuppressive tumor micro-
environment [22]. This might explain the poorer survival
outcome of patients with high YES1 expression. Therefore,
YES1 may be a predictor of decreased tumor PFS.

YES1 is associated with cell proliferation, migration, and
metastasis. Overexpression of the nontyrosine protein kinase
YES1 is associated with activation of the focal adhesion

FIGURE 1 Prevalence of YES1 amplification in tumors from the cBioPortal database. AML, acute myeloid leukemia; GBM,
glioblastoma; LGG, low‐grade glioma; RCC, renal cell carcinoma. YES1, YES proto‐oncogene 1.
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FIGURE 2 Expression of YES1 and its relationship to the prognosis of multiple tumors from the Human Protein Atlas database.
(a) Endometrial cancer; (b) cervical cancer; (c) pancreatic cancer; (d) melanoma; (e) stomach cancer; (f) NSCLC; (g) head and neck cancer;
(h) thyroid cancer. Y‐axis: survival probability. X‐axis: time (years). NSCLC, non‐small cell lung cancer; YES1, YES proto‐oncogene 1.
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kinase [14], YES1‐associated protein 1 (YAP1) [23], and
mammalian target of rapamycin (mTOR) [24] pathways.
Garmendia et al. [11] reported that amplification of YES1
leading to YES1 overexpression is an altered oncogenic
driver in NSCLC that induces tumor growth and metastatic
spread. The underlying mechanism may be that YES1
promotes S6K and protein kinase B (AKT) phosphorylation
and affects phosphatidylinositol‐3‐kinase (PI3K)/AKT/
mTOR pathway. YES1 overexpression can also modulate
the microenvironment to promote tumor growth. Several
studies have shown that the circFUT8/miR‐944/YES1 axis
affects proliferation, migration, and invasion of NSCLC
cells [25]. Several YES1‐related signaling axes have also been
reported in other cancers, and in malignant mesothelioma.
YES silencing leads to cell growth inhibition, which is
dependent on G1 cell cycle arrest and induction of apoptosis,
and knockdown of YES decreases levels of cyclin D by
inactivation of β‐catenin signaling. RBM15‐mediated m6A
modificationmay promote hepatocellular carcinoma progres-
sion through the IGF2BP1‐YES1‐MAPK axis [26]. In gastric
cancer, the EPHA2‐YES1‐Annexin A2 (ANXA2) axis has
been confirmed to be a new invasion and metastasis
pathway. Among them, YES1 activated by EPHA2 phospho-
rylates ANXA2 at Tyr24, leading to ANXA2 activation and
increased ANXA2 nuclear distribution, which contributes to
invasion and metastasis [27]. Furthermore, some micro-
RNAs regulate tumor progression by interacting with YES1.
For example, circ‐ZNF124‐regulated mir‐498 directly binds
to YES1messenger RNA and inhibits NSCLC progression by
inactivating the Wnt/β‐catenin signaling pathway. Moreover,
a study showed that overexpression of mir‐133a inhibits the
proliferation of NSCLC cells. In gastric cancer, miR‐140‐5p
affects phenotype by regulating YES1 [16, 28–30].
Wang et al. [31] found that the levels of phosphorylated
SFK, EGFR, AKT, and extracellular signal‐regulated kinase 1
and 2 (ERK1/2) were significantly increased in YES1‐
amplified cells, and they confirmed that YES1 overexpres-
sion is upstream of abnormal activation of SFK, EGFR, AKT,
and ERK1/2 signaling pathways. One study showed that
YES1 is required for EGFR nuclear translocation [32]. In
addition to the classic cytoplasmic EGFR signaling pathway,
there is also a signaling pathway affected by nuclear EGFR
[33–35], and the nuclear translocation of EGFR leads to
resistance to multiple treatments such as targeted therapy,
chemotherapy, and radiotherapy [36–40].

YAP1, originally identified as YES1‐associated protein 1,
is a key effector of the HIPPO signaling pathway and plays a
vital role in anticancer drug resistance [41–43]. Literature
data suggest that YES1 regulates YAP1 activity indirectly
through serine phosphorylation and directly through nuclear
localization, and the mechanism by which YES1 regulates
YAP1 may also depend on the cellular environment [15, 44].
However, the molecular and functional relationship between

YES1 and YAP1 is complex and has not been thoroughly
elucidated.

3 | ROLE OF YES1 IN
ANTICANCER THERAPY
RESISTANCE

3.1 | YES1 resistance to EGFR‐TKIs

To date, third‐generation small‐molecule TKIs targeting
EGFR have been developed for the treatment of EGFR‐
mutant cancers. Despite high response rates to these
EGFR‐TKIs, resistance remains inevitable for most
patients with malignancies. Studies have shown that
YES1 amplification is associated with acquired resistance
to first‐generation EGFR‐TKIs [45, 46]. Yu et al. [45] first
identified a patient who acquired YES1 amplification
after erlotinib treatment. Wei et al. [46] reported that
YES1 expression was upregulated 1.5‐fold in a stable
gefitinib‐resistant cell line, and these resistant cells
responded to SFK‐targeting dasatinib. However, none
of the studies further elucidated how YES1 amplification
plays a role in acquired resistance to erlotinib and
gefitinib. Garmendia et al. [11] reported that YES1 is one
of the drivers of NSCLC tumor growth and progression,
and YES1 overexpression was associated with YES1
amplification. These investigators demonstrated that
knockdown of YES1 expression by specific small inter-
fering RNAs decreased the levels of phosphorylated S6K,
a downstream effector of mTOR, and that YES1 over-
expression resulted in increased levels of phosphorylated
S6K, whereby YES1 maintained mTOR pathway activity.
There is evidence that activation of mTOR confers
resistance to erlotinib and gefitinib [47, 48]. Thus,
although not directly validated, YES1 amplification may
be involved in resistance to EGFR‐TKIs through activa-
tion of the mTOR pathway. Fan et al. [9] demonstrated
that acquired amplification of YES1 is a mechanism of
resistance to EGFR inhibition and that activation of YES1
expression resulted in resistance to all three generations
of EGFR‐TKIs, including erlotinib, afatinib, and osimer-
tinib. Ichihara et al. [49] demonstrated that amplification
of YES1 mediates acquired resistance to osimertinib. In
their study, treatment of YES1‐amplified cells with
osimertinib alone inhibited phosphorylation of EGFR
but not other downstream effectors (e.g., ERK, AKT, or
S6). Therefore, YES1 amplification may lead to osimerti-
nib resistance by activating corresponding signaling
pathways, such as AKT and MAPK pathways. Pharma-
cological or genetic inhibition of YES1 expression
restored sensitization to osimertinib in cells with YES1
amplification. Moreover, combined treatment with
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osimertinib and SFK inhibitors inhibited both EGFR and
downstream effector signaling, thereby increasing apo-
ptosis in vitro. The relationship between YES1 amplifica-
tion and primary resistance to EGFR‐TKIs remains
unclear. We reported for the first time a case of primary
afatinib‐resistant lung adenocarcinoma patient carrying
EGFR exon 21 L858R missense mutation and YES1
amplification [50]. The potential role of YES1 in primary
EGFR‐TKI resistance needs further exploration.

3.2 | YES1 signaling mediates resistance
to HER2‐targeted drugs

HER2 is an RTK and a member of the ERBB protein
family. To date, HER2‐targeted therapy has made
significant progress, and a variety of HER2‐targeted
drugs have come out one after another, including anti‐
HER2 antibodies (trastuzumab and pertuzumab), pan‐
HER inhibitors (afatinib and neratinib), and trastuzumab
emtansine (T‐DM1). Amplification of YES1 has been
reported as a mechanism of HER2‐targeted drug resist-
ance in various cancers, including gastric cancer,
NSCLC, and breast cancer [10, 31, 51, 52]. Wang et al. [31]
found that YES1 was overexpressed in T‐DM1‐resistant
cells with YES1 amplification. YES1 activates different
proliferation‐related signaling pathways, including EGFR,
PI3K, and MAPK pathways, resulting in cross‐resistance to
all types of HER2‐targeting drugs such as antibodies,
antibody‐drug conjugates, and small‐molecule inhibitors.
The interaction between YES1 and HER2 was elucidated
by Takeda et al. [52], who believed that YES1 directly binds
and activates HER2, and YES1 amplification is the mecha-
nism of neratinib resistance in HER2‐driven breast and lung
cancers. Multiple studies confirmed that the SRC family
inhibitor dasatinib overcomes HER2‐targeted drug resistance
mediated by YES1 amplification [10, 31, 51, 52]. As precision
medicine continues to advance in cancer treatment,
new therapeutic strategies need to be identified to
overcome HER2‐targeted drug resistance caused by YES1
amplification.

3.3 | Role of YES1 in resistance to
other TKIs

Iida et al. [32] found that YES1 overexpression leads to
nuclear EGFR translocation and mediates cetuximab
resistance in a NSCLC cell line. Fan et al. [9] reported
that YES1 amplification may lead to resistance to ALK‐
TKIs in NSCLC patients. In their study, among 17
patients with ALK fusion‐driven, two patients with YES1
amplification developed resistance to ALK‐TKIs.

However, these researchers did not further explore the
specific mechanism of YES1 amplification leading to
ALK‐TKI resistance. Lun et al. [53] demonstrated that
overexpression of YES1 activates ERK1/2 in an MEK‐
independent manner in melanoma cells. In their study,
YES1 expression activated ERK, which induced resist-
ance to combination therapy with vemurafenib
(BRAFV600E inhibitor) and CI1040 (MEK inhibitor).
Therefore, this research group suggested that the over-
expression of YES1 is one of the key mechanisms of drug
resistance in melanoma cells carrying BRAFV600E muta-
tion, and YES1 is one of the kinases that can induce
BRAF‐MEK combined inhibitory drug resistance. Kim
et al. [54] revealed that YES1 expression was upregulated
in a dose‐dependent manner in nilotinib‐ and imatinib‐
resistant cell line models. The researchers believed that
when the endogenous BCR‐ABL oncoprotein is inacti-
vated by TKI inhibitors, the activated YES1 kinase may
provide another means to engage in survival pathways.
However, YES1 expression in imatinib‐resistant chronic
myelogenous leukemia patients did not differ signifi-
cantly between strong and poor responders. One
explanation for this finding is the relatively small clinical
sample size in this study. Therefore, further studies with
larger clinical sample sizes are needed [54].

3.4 | YES1 regulates tumor cell
sensitivity to chemotherapy

Paclitaxel, a tubulin‐binding agent, is an antitubulin
chemotherapy drug. Studies have shown that over-
expression of SFKs mediates paclitaxel resistance in
various cancer types, and inhibition of SFKs increases
paclitaxel sensitivity [55]. Arima et al. [56] demonstrated
that YES1 and its mitotic phosphorylation confer
paclitaxel resistance. These researchers demonstrated
that cyclin‐dependent kinase 1‐mediated phosphoryl-
ation of YES1 was associated with mitotic arrest
and apoptosis in antitubulin chemotherapy. MiR‐199a
is a negative regulator of various cancers [57].
Chen et al. [58] confirmed that YES1 expression was
directly regulated by miR‐199a and found that miR‐199a
was negatively correlated with YES1 expression. Ectopic
expression of miR‐199a decreased the expression of
YES1, whereas overexpression of YES1 downregulated
the expression of miR‐199a. Low miR‐199a expression
leads to overexpression of YES1, which mediates
paclitaxel resistance in prostate cancer. Touil et al.
[59] found that YES1 expression levels were increased
by 5‐fluorouracil (5‐FU) chemotherapy that patients
expressing high YES1 levels had a poorer prognosis. The
YES1/YAP axis plays an important role in 5‐FU
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chemoresistance through the joint acquisition of stem
cell‐like phenotype and cell quiescence. Altogether,
YES1 regulates sensitivity to chemotherapy, and high
expression of YES1 may be one of the mechanisms of
chemotherapy resistance. The role of YES1 in targeted
therapy and chemotherapy resistance is shown in
Figure 3.

3.5 | Novel therapies for YES1‐amplified
and YES1‐overexpressing malignancies

Studies have shown that patients with YES1 amplifica-
tion may benefit from SFK inhibitors, such as
dasatinib. Dasatinib restored the sensitivity of YES1‐
amplified lung cancer cells to EGFR‐TKIs, such as

osimertinib and gefitinib [46, 49]. Yoshioka et al. [51]
showed that dasatinib monotherapy or combination
therapy with afatinib overcame the acquired resistance
to afatinib in YES1‐ and HER2‐amplified gastric cancer
cells. Other studies have shown that combination
therapy with dasatinib can overcome acquired resist-
ance to neratinib in YES1‐ and HER2‐amplified breast
and lung cancers, and acquired resistance to trastuzu-
mab, lapatinib, and T‐DM1 in YES1‐amplified and
HER2‐positive breast cancers [10, 31, 52]. Recently,
Hamanaka et al. [15] generated the YES1 inhibitor
CH6953755. They demonstrated that YES1 amplifica-
tion is a potential driver in several tumor types. In their
study, CH6953755 had selective antitumor activity
against cancers with YES1 amplification, both in vitro
and in vivo.

FIGURE 3 Role of YES1 signaling in resistance to targeted therapy and chemotherapy. AKT, protein kinase B; EGFR, epidermal growth
factor receptor; ERK1/2, extracellular signal‐regulated kinase 1 and 2; 5‐FU, 5‐fluorouracil; HER2, human epidermal growth factor receptor‐
2; mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol‐3‐kinase; TKI, tyrosine kinase inhibitor; YES1, YES proto‐
oncogene 1.
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4 | CONCLUSION

YES1 is critical for resistance to cancer therapy,
including multiple TKIs and chemotherapeutics. Target-
ing YES1 may reverse drug resistance and serve as a
valuable therapeutic strategy in cancer treatment. There-
fore, further studies are warranted to reveal the roles of
YES1 overexpression and YES1 amplification in resist-
ance to anticancer therapy. In conclusion, YES1 and
regulatory molecules of the YES1 signaling pathway have
the potential to be used as novel, reliable and rational
molecular targets for antimalignant tumor therapy.
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