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Abstract: In 1990 in Griswold, Connecticut, archaeologists excavated a burial found in a “skull and
crossbones” orientation. The lid of the 19th century coffin had brass tacks that spelled “JB55”, the
initials of the person lying there and age at death. JB55 had evidence of chronic pulmonary infection,
perhaps tuberculosis. It is possible that JB55 was deemed a vampire due to his disease, and therefore
had to be “killed” by mutilating his corpse. In an attempt to reveal the identity of JB55, DNA testing
was performed. Ancestry informative single nucleotide polymorphism (SNP) analysis using the
Precision ID Ancestry Panel indicated European ancestry. A full Y-chromosomal short tandem repeat
(Y-STR) profile was obtained, belonging to haplogroup R1b. When the Y-STR profile was searched in
the publicly accessible FamilyTreeDNA R1b Project website, the two closest matches had the surname
“Barber”. A search of historical records led to a death notice mentioning John Barber, whose son
Nathan Barber was buried in Griswold in 1826. The description of Nathan Barber closely fits the
burial of “NB13,” found near JB55. By applying modern forensic DNA tools to a historical mystery,
the identity of JB55 as John Barber, the 19th century Connecticut vampire, has been revealed.

Keywords: vampire; surname prediction; ancestry estimation; historical archaeology;
Next-Generation Sequencing; DNA identification; SNP; Y-STR; genetic genealogy; tuberculosis

1. Introduction

In 1990, an unmarked cemetery dating to the 18th–19th centuries was excavated in Griswold,
Connecticut, when skeletal remains were encountered during sand and gravel operations [1]. Of the
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twenty-seven burials discovered, a stone-lined grave containing a middle-aged male proved to be very
interesting. Brass tacks on the coffin lid spelled “JB55”, likely indicating the initials of the deceased and
the age at death of 55 years. The remaining hardware included screws and copper dowel hinges, which
dated the coffin to the early nineteenth century [1]. Most notably, the skull and femora of JB55 were
found in a "skull and crossbones" orientation (Figure 1), indicating postmortem rearrangement of the
remains. Additionally, JB55 displayed evidence of chronic lung infection in the form of proliferative
lesions on the pleural surfaces of the ribs (Figure 2) [2,3]. This lung infection may have been tuberculosis
(TB), a highly contagious disease caused by the Mycobacterium tuberculosis pathogen that was prevalent
in the 1800s before antibiotics became available. The side effects of TB include jaundice (pale and
yellow skin), red and swollen eyes, the presence of blood around the mouth from coughing, and
the overall appearance of “wasting away”, all of which align with the physical attributes commonly
associated with vampires [1,4,5].
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family members over nine years to tuberculosis or “consumption”. When another young son was
stricken with the illness, the family became convinced they were plagued by vampires. Therefore, they
disinterred the dead, burned and reburied their remains. The young boy recovered and they took this
as a sign that the practice worked [5,6]. Such vampire folklore attributed the high number of deaths
resulting from disease to vampires rising from the dead and feeding on living relatives. In attempts to
stop the vampire “epidemic”, the body of a diseased individual was often exhumed and examined.
The presence of certain characteristics (e.g., blood draining from the mouth and a bloated chest), while
now known to be associated with the natural process of decomposition, were mistaken for indications
of life [4,6]. In order to kill the vampire, the vital organs of the decedent were often burned, including
most notably the heart. When no organs were present, a common practice involved the separation of
the skull from the body [4]. As explained in their 1994 paper describing the JB55 burial, Sledzik and
Bellantoni hypothesized “that, in the absence of a heart to be burned, the apotropaic remedy was to
place the bones in a “skull and crossbones” arrangement. In support of this hypothesis, [the authors]
note that decapitation was a common European method of dispatching the dead vampire, and that the
Celts and Neolithic Egyptians were known to separate the head from the body, supposedly to prevent
the dead from doing harm [citing Barber 1988]” [4]. Based on pathological evidence and knowledge of
local vampire beliefs and burial practices, the totality of the evidence suggests that JB55 may have died
of TB and was treated as a vampire.

Samples from the remains of JB55 and other burials from the cemetery site were sent to the
National Museum of Health and Medicine (NMHM) in the early 1990s for curation and future scientific
investigation. At that time, a sample from the femur was sent to the Armed Forces DNA Identification
Laboratory (AFDIL, a branch of the Armed Forces Medical Examiner System (AFMES-AFDIL)) for
DNA testing. However, methods available at the time provided only limited information from
historical samples, such as mitochondrial DNA (mtDNA) control region sequence data. Since mtDNA
is maternally inherited and does not undergo recombination, it can be used as a maternal lineage
marker for DNA-assisted identification. Yet in the absence of known maternal relatives for mtDNA
sequence comparison, the identification of JB55 was not possible. Today, advances in DNA technology
make it possible to learn more from ancient and historic burials than ever before. Single nucleotide
polymorphisms (SNPs) can provide valuable information on individual ancestry, as can haplogrouping
of haploid markers. Additionally, the analysis of short tandem repeats (STRs) in the Y-chromosome
may enable surname prediction of an unknown individual [7]. The goal of the present study was to
apply current DNA techniques in an attempt to reveal the identity of JB55. This report exemplifies
the strength of genomic technology in settling a decades-old historical mystery, that of the Griswold,
Connecticut vampire.

2. Materials and Methods

2.1. Contamination Prevention

The laboratory work was performed at the AFMES-AFDIL, an ISO 17025 accredited forensic DNA
testing laboratory. The lab is divided into designated spaces for: (1) sample preparation and bone
powdering; (2) DNA extraction, library preparation, and PCR setup; and (3) post-PCR manipulation
and sequencing. The clean laboratories are supplied with positive pressure and are decontaminated
with bleach on a regular basis. The post-amplification laboratories have negative air pressure to contain
amplified product. Standard precautionary measures are taken to prevent contamination of the sample
with exogenous DNA. These include the use of double gloves, sleeve guards, disposable personal
protective equipment, molecular grade reagents, and UV-irradiated consumables.

2.2. DNA Extraction

Two independent DNA extractions were completed from approximately 500 mg each of femoral
bone powder. An extraction reagent blank (RB) was generated for each extraction and processed
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simultaneously. The bone was demineralized overnight at 56 ◦C in 7.5 mL of 0.5 M EDTA with 1%
N-Lauryl sarcosine and 200 µL of 20 mg/mL proteinase K (Thermo Fisher Scientific, Waltham, MA,
USA) [8]. Following complete demineralization, an organic extraction was performed. This involved
two equi-volume washes with phenol chloroform isoamyl alcohol (PCIA) followed by centrifugation
for 3 minutes at 4000× g. The upper aqueous layer was transferred to an Ultra-4/10 KDa filter (Millipore
Sigma, Burlington, MA, USA) for buffer exchange. After the sample was concentrated to 500 µL by
centrifugation at 5,000× g, two washes were completed using 2 mL 10 mM Tris-HCl (pH 7.5). Quantity
sufficient (qs) elution buffer (Tris-EDTA: 10 mM Tris-HCl, 0.1 mM EDTA, pH 7.5) was added to bring
the final sample volume up to approximately 200 µL.

2.3. DNA Repair and Purification

DNA extracts and associated RBs were treated with the NEBNext FFPE DNA Repair Mix (New
England BioLabs, Ipswich, MA, USA) following the manufacturer’s recommended protocol. This
enzymatic DNA repair step has been shown to improve PCR amplification of DNA extracted from
historical bone samples [9]. Repaired samples were purified using the QIAGEN MinElute PCR
purification kit (QIAGEN, Hilden, Germany). DNA was eluted in 53 µL of sterile Tris-EDTA.

2.4. DNA Quantification

Quantification of human DNA was completed using the Plexor HY DNA Quantification Kit
(Promega Corporation, Madison, WI, USA) following the manufacturer’s protocol. The human DNA
concentration was used to determine input volume into the SNP and Y-chromosomal short tandem
repeat (Y-STR) assays.

2.5. Precision ID Ancestry SNP Panel

The Precision ID Ancestry SNP panel (Thermo Fisher Scientific, Waltham, MA, USA) was
utilized for ancestry estimation to verify the anthropological assessment of European ancestry. PCR
amplification was completed from 1 ng human DNA input with the following modifications to the
standard protocol: 9 µL 2x KAPA HiFi HotStart Uracil+ ReadyMix, and 6 µL Precision ID Ancestry
Panel. PCR was performed following the manufacturer’s protocol using 23 cycles. PCR-amplified
libraries were purified using a 1.8x AMPure XP reaction (Beckman Coulter, Indianapolis, IN, USA), and
eluted in 50 µL of Tris-EDTA. SNP amplification success was confirmed using the Agilent Bioanalyzer
2100 dsDNA HS kit. Library preparation of SNP amplicons was completed using the KAPA Hyper
Prep kit (KAPA Biosystems, a Roche company, Wilmington, MA, USA) following the manufacturer’s
protocol for sequencing on the Illumina MiSeq. DNA input into the library was determined using
the Qubit 2.0 Fluorometer (Thermo Fisher Scientific). Adapter ligation utilized duplexed, 8 base pair
adapters for Illumina (Integrated DNA Technologies, Skokie, IL, USA) at a concentration of 15 µM.
Following adapter ligation, 8 PCR cycles were carried out for each sample, and amplified libraries were
purified using a 0.8× AMPure XP reaction. DNA was re-suspended in 20 µL of Tris-EDTA. Library
success was confirmed using the Agilent Bioanalyzer 2100 dsDNA HS kit. Samples and associated
controls were pooled in equimolar concentration to generate a pool for sequencing. The molarity
of the pool was determined using the Agilent Bioanalyzer 2100 dsDNA 7500 assay. The pool was
diluted to a final loading concentration of 8 pM. The PhiX v3 Sequencing Control (Illumina, San Diego,
CA, USA) was diluted and denatured separately, then spiked into the final pool at 5%. Paired-end
sequencing was completed using an Illumina MiSeq Reagent Kit v3 (600-cycle, 2 × 300) on the MiSeq
FGx Desktop Sequencer.

The obtained raw fastq files were aligned to the human genome (Hg19) with a burrow-wheeler
alignment algorithm—BWA-mem [10]. Samtools and Picardtools were used for sorting and indexing
the BAM files [11,12], then Genome Analysis Toolkit (GATK) was used for variant calling and extracting
information on base read counts per position [13]. The final genotypes, exceeding 6X coverage
and minor allele frequency of 10%, were analyzed with three different methods for biogeographic
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ancestry (BGA) inference: Snipper [14], STRUCTURE/CLUMPAK [15,16] and principal component
analysis (PCA). A reference population grid was gathered from publicly available curated data
and was composed of 510 individuals in total, and divided into 6 main populations: Africa (AFR)
108 individuals—Yoruba in Ibadan, Nigeria; Europe (EUR) 99 individuals—Utah Residents (CEPH)
with Northern and Western European Ancestry; East Asia (EAS) 103 individuals—Han Chinese
in Beijing, China; America (AMR) 85 individuals—Peruvians from Lima, Peru; South Asia (SAS)
103 individuals—Gujarati Indian from Houston, Texas; and, Oceania (OCE) 14 individuals—Papuan
from the Human Genome Diversity Project (HGDP) panel [17]. The reference data were extracted from
1000 Genomes Project Phase 3 (release 20130502) [18] for all populations but the Oceanians, which were
extracted from the Simons Genome Diversity Project (SGDP) [19]. The gathered reference data took
into account a balanced distribution of individuals per population, except for the Oceanians, which
present in general a low number of samples with available data.

2.6. Y-STR Typing and Y-haplogroup Prediction

Y-STR amplification was completed using the AmpFlSTR Yfiler PCR Amplification Kit (Applied
Biosystems, Thermo Fisher Scientific), following a modified protocol intended for low copy number
samples [20]. The targeted DNA input was 100–200 pg human DNA based on the Plexor HY
quantification results. Amplified products were prepared for electrophoretic separation using the
following conditions: 10 µL Hi-Di Formamide, 0.3 µL GeneScan 500 LIZ (LIZ-500) and 1.0 µL amplified
product or allelic ladder.

Data were analyzed using GeneMapper ID version 1.4 (Thermo Fisher Scientific), and allele
calls were assigned using the allelic ladder provided by the manufacturer. An analytical threshold
of 40 relative fluorescence units (RFU) and a stochastic threshold of 100 RFU were used for allele
calling. Known artifacts (i.e., pull-up, spikes and split peaks resulting from incomplete adenylation)
were manually removed based on results from previous studies [20]. A Y haplogroup assignment
was determined from the consensus Y-STR profile using the Y haplogroup predictor NEVGEN [21].
To further resolve the R1b haplogroup, 4 variants representing major subclades of R1b with suspected
Western European ancestry were typed: variant rs9786076 for R1b-L11, variant rs34276300 for R1b-P312,
including additional sublineage branches of R1b-L21 using variant rs11799226, and R1b-Z195 using
variant rs568477247 (see Table S1). Surname prediction was performed by searching for a match to the
Y-STR profile within the FamilyTreeDNA website [20].

3. Results

3.1. DNA Quantification

The femoral sample of JB55 produced sufficient DNA for SNP and Y-STR typing based on the
Plexor HY quantification (Table 1). Both the autosomal and Y-chromosomal targets were successfully
amplified from both JB55 DNA extracts, indicating approximately 0.2 ng/µL autosomal DNA in a
200 µL DNA extract. Moderate degradation was observed, as twice as much DNA was amplified from
the 99 bp autosomal target than was amplified from the 133 bp Y-chromosomal target. The reagent
blanks failed to produce amplifiable human DNA.

Table 1. Plexor HY DNA quantification results from JB55 extracts 1 and 2, and corresponding reagent
blanks (RBs). DNA concentration values are shown, and all DNA extracts contained 200 µL volume.

Sample ID
Autosomal DNA

Concentration
(99 bp target) (ng/µL)

Y-Chromosomal DNA
Concentration

(133 bp target) (ng/µL)

Autosomal:
Y-Chromosomal DNA

Ratio

JB55-1 0.2009 0.0871 2.3072
RB-1 0 0 0

JB55-2 0.1735 0.0802 2.1624
RB-2 0 0 0
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3.2. Ancestry Estimation from Precision ID Ancestry SNP Panel

A total of 87.8% and 89.7% of genotypes (considering the full 165 Precision ID Ancestry SNP
Panel) were obtained for the two tested extracts, JB55-1 and JB55-2, respectively (Table S2). Genotypes
were overall concordant between the two extracts in the successfully typed loci. The final genotypes
were uploaded into Snipper with the reference population grid. According to the Snipper report,
both extracts (JB55-1 and JB55-2) presented a predicted admixture of 100% European biogeographical
ancestry and are more than a billion times more likely to be European than South Asian or American.
PCA analysis (Figure 3A) reveals that both samples are found within the European cluster (in blue)
when plotting the 1st component (PC1) versus the 2nd component (PC2) or the 2nd component (PC2)
versus the 3rd component (PC3). Finally, a STRUCTURE run was performed for three simulations with
K = 6 (previously established for the Precision ID Ancestry Panel as optimum K), for 100,000 burning
and 100,000 Markov chain Monte Carlo iterations. STRUCTURE was run in correlated allele frequencies
and admixed ancestry model and signed POPFLAG for reference populations. All three simulations
produced the same patterns, which were combined and plotted using CLUMPAK (Figure 3B), showing
both JB55-1 and JB55-2 belong to the European cluster (blue). When joining all analysis, we can infer
both JB55 extracts are most probably of European descent.
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Figure 3. Bio-geographical ancestry inference for the two JB55 extracts using the Precision ID Ancestry
single nucleotide polymorphism (SNP) panel and custom reference data. (a): Graphical representation
of the principal components analysis (PCA) showing principal components (PC) 1 and 2 (left), and
2 and 3 (right). (b): Plot represents proportions of ancestry for K = 6 obtained with STRUCTURE.
Individuals are colored in the PCA according to the six different clusters corresponding with six major
populations in the STRUCTURE plot—AFR: Africa, EUR: Europe, SAS: South Asia, EAS: East Asia,
OCE: Oceania and AMR: America.
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3.3. Y-STR Analysis

3.3.1. Yfiler Y-STR Typing

Complete Y-STR profiles were obtained from both JB55 DNA extracts, with the exception of
DYS438, which was not typed in the second DNA extract (Table 2). To confirm the allele observed at
DYS438, the Yfiler amplification product was sequenced on an Illumina MiSeq platform [22] using the
methods described in Appendix A. The sequenced STR data (Tables S3 and S4) were analyzed using
STRait Razor v.2.6 [23], which indicated a 12 allele at DYS438 in both of the JB55 DNA extracts (Table 3).
Although the allelic read count was only 8 for the second JB55 DNA extract, the sequence data confirm
the authenticity of the DYS438 allele having 12 repeats.

Table 2. Y-chromosomal short tandem repeat (Y-STR) profiles obtained from each of the two JB55 DNA
extracts using a low copy number AmpFISTR Yfiler amplification procedure and allelic separation by
capillary electrophoresis.

Locus JB55-1 Allele(s) JB55-2 Allele(s)

DYS19 15 15
DYS385 11,13 11,13
DYS389I 13 13
DYS389II 29 29
DYS390 23 23
DYS391 11 11
DYS392 13 13
DYS393 13 13
DYS437 15 15
DYS438 12 No Data
DYS439 12 12
DYS448 19 19
DYS456 15 15
DYS458 17 17
DYS635 23 23

Y GATA H4 12 12

Table 3. DYS438 alleles obtained from Illumina sequencing of the Yfiler amplification product from the
two JB55 DNA extracts. The stutter product with the highest read count is also shown (11 for JB55-1
and 13 for JB55-2).

JB55-1 JB55-2

Allele Read Count % of Total Reads Allele Read Count % of Total Reads

12 12,343 96.3% 12 8 88.9%
11 386 3.0% 13 1 11.1%

Other 87 0.7% Other 0 0%
Total 12,816 100% Total 9 100%

3.3.2. Y Haplogroup Estimation and Surname Prediction

The consensus Y-STR profile was then searched for in NEVGEN [21] for Y haplogroup estimation.
The highest ranked result obtained was R1b, the most common Y haplogroup in Western Europe [24].
Further haplogroup resolution was gleaned from typing samples JB55-1 and JB55-2 using several
Y-SNPs for the inference of successive R1b branches, R1b-L11, R1b-P312, R1b-L21 or R1b-Z195. For both
samples, JB55 produced a derived allele at R1b-L11 (rs9786076-C), and at R1b-P312 (rs34276300-A),
but yielded ancestral haplotypes for R1b-L21 (rs1179922-C) and R1b-Z195 (rs568477247-G). JB55
therefore could be resolved to the branch R1b-P312. With this information, the Y-STR profile was then
compared against those in the publicly accessible FamilyTreeDNA R1b Project website [25] restricting
to those individuals with the haplogroup R1b-P312 to identify any close matches that may have a “B”
surname. Although surname prediction from Y-chromosomal DNA has limitations [26], it was worth
attempting for JB55 due to the presumed initials on the coffin. The results yielded only two individuals
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in the R1b-P312 subclade who shared an almost identical Y-STR profile to JB55 with the exception of
one locus (Y-GATA-H4), differing by only 1 repeat. JB55 has 12 repeats at Y-GATA-H4, whereas the
two individuals in the FamilyTreeDNA R1b Project website have 11 repeats. The surname Barber was
listed for both individuals, a compelling result given the expectation that the surname of JB55 also
begins with a “B”.

4. Discussion

The JB55 DNA samples were of relatively high quality, given the age of this historical archaeology
case dating to the mid-nineteenth century. Moderate DNA degradation was observed, yet ample
DNA of sufficient fragment length was obtained for nuclear DNA profiling using forensic PCR
amplification kits. This was demonstrated through the autosomal SNP analyses that showed JB55
to be of European ancestry. The genetic ancestry prediction is consistent with the anthropological
assessment [1], and helps to establish the authenticity of the DNA results from this historical burial [1].
JB55’s Y-chromosomal DNA was analyzed using STR and SNP analyses, which indicated a R1b-P312
haplogroup that is common in Western Europe. The Y-STR profile, when searched for in a publicly
accessible genetic genealogy website designated for haplogroup R1b, produced two close matches that
both had the surname Barber.

After discovering the predicted surname based on the Y-chromosomal DNA data, historical
records were searched to determine whether there was a J. Barber buried in Griswold, Connecticut
in the early 1800s. The Charles R. Hale Collection of Cemetery Inscriptions and Newspaper Notices,
1629–1934, contains a wealth of vital records that were documented for the state of Connecticut during
the Works Progress Administration era [27]. A death notice in the Hale index describes a John Barber
whose son Nathan Barber died in Griswold, CT in 1826 at the age of 12. This historical record closely
matches the archaeological evidence, as a subadult “NB13” was discovered near JB55 in the cemetery,
along with an adult female “IB” [1,4]. Although there is now a likely name for JB55, as well as NB,
no further information on John Barber or Nathan Barber could be found in current genealogical
databases or historical resources. A future project to compare DNA profiles between JB55, NB13 and
IB is now in the planning stages. It may also be possible to test pathological rib samples from JB55
to evaluate the tentative diagnosis of tuberculosis. Future work involving genetic genealogy [28]
may lead to living descendants of JB55, and possibly verify the identity of the Griswold, Connecticut
vampire as John Barber.

To our knowledge, this is the first study that applies DNA testing to identify the remains of a
historical case with no presumed identity. While JB55’s burial context offered some clues, the primary
evidence that led to his (tentative) identification as John Barber was Y-chromosomal DNA profiling and
surname prediction from a genealogical database. Thus, the JB55 case required a different approach
than the traditional route taken to identify famous historical persons, such as King Richard III [29] and
the Romanov family [30–32]. Since the presumed identities were known in these latter, high profile
cases, DNA analysis was focused on the comparison of DNA profiles obtained from the unidentified
remains with those of one or more living relatives. This was not possible for JB55, who was anonymous
except for his initials, age, relative time period, and location. Similarly to the famous cases, however, the
identification of JB55 was solved by making use of uniparentally inherited lineage markers, which are
important when a generational gap precludes traditional means of kinship assessment from autosomal
STR profiles. Together, these studies underscore the relevance of the haploid markers of mtDNA and
the Y-chromosome in historical remains identification.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/9/636/s1,
Table S1: Y-SNP typing of several R1b branches specific to Western European ancestry, Table S2: Genotype and
number of reads per SNP for JB55-1 and JB55-2 samples, Table S3: JB55-1 sequenced Y-STR data obtained from
STRait Razor v.2.6., Table S4: JB55-2 sequenced Y-STR data obtained from STRait Razor v.2.6.
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Appendix A Illumina Sequencing of Yfiler Amplification Product

Yfiler amplicon product was purified using 1.8x Agencourt AMPure XP purification. Amplicon
concentration for downstream library preparation was evaluated with the Agilent DNA High Sensitivity
Kit on the 2100 BioAnalyzer instrument. Libraries were prepared using the KAPA Hyper Prep kit for
Illumina platforms (Kapa Biosystems, Wilmington, MA, USA) following the manufacturer’s protocol
for sequencing on the Illumina MiSeq. Adapter ligation utilized dual-indexed adapters for Illumina
(Integrated DNA Technologies, Skokie, IL, USA) at a concentration of 15 µM. No library amplification
was performed. Libraries were quantified using the Agilent DNA High Sensitivity Kit on the 2100
BioAnalyzer instrument. Based on the molarity, samples were individually normalized to 4 nM and
pooled in equal volume for sequencing. The final pool was diluted to 10 pM and spiked with denatured
PhiX Sequencing Control v3 at a 5% concentration. Single-end sequencing was completed for 500 cycles
using an Illumina MiSeq Reagent Kit v3 (600-cycle) on the MiSeq FGx Desktop Sequencer. STRait razor
v.2.6 [23] was used for sequenced STR data analysis.
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