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The application of RNA sequencing has enabled the characterization of genome-
wide gene expression in the human brain, including distinct layers of the neocortex.
Neuroanatomically, the molecular patterns that underlie the laminar organization of the
neocortex can help link structure to circuitry and function. To advance our understanding
of cortical architecture, we created LaminaRGeneVis, a web application that displays
across-layer cortical gene expression from multiple datasets. These datasets were
collected using bulk, single-nucleus, and spatial RNA sequencing methodologies and
were normalized to facilitate comparisons between datasets. The online resource
performs single- and multi-gene analyses to provide figures and statistics for user-
friendly assessment of laminar gene expression patterns in the adult human neocortex.
The web application is available at https://ethanhkim.shinyapps.io/laminargenevis/.
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INTRODUCTION

RNA sequencing has provided molecular markers of human brain anatomy by revealing spatial
gene expression patterns. The application of these techniques has provided genome-wide profiles
of expression, but the brain’s complexity has limited our understanding of its cellular, molecular,
and laminar architecture. Specifically, while the cytoarchitecture of the recently evolved neocortex
has been characterized, we lack a strong understanding of its layer-specific gene expression.

Currently, few web applications can be used to visualize gene expression in the adult human
neocortex. The Allen Brain Atlases from the Allen Institute of Brain Science (AIBS) and other tools
allow viewing spatial expression patterns (Hawrylycz et al., 2012; Shen et al., 2012; Zeng et al., 2012;
Guo et al., 2019; Maynard et al., 2021). These web applications can be used to examine laminar
expression profiles and the regional variation that is associated with laminar differences across the
cortex. However, there are no visualization tools to analyze expression across human neocortical
layers for multiple datasets. Several datasets provide this laminar data but due to differences in
the scopes and methods used, accessing and comparing this data is difficult and time-consuming.
Here, we present LaminaRGeneVis, a web application for analyses of gene expression across human
neocortical layers. LaminaRGeneVis enables visualization and analysis of data from layer-specific
bulk-tissue, single-nucleus, and spatial transcriptomic RNA sequencing studies.
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DATA AND METHODS

Datasets
We used data from three studies that assayed genome-
wide expression across the layers of the human neocortex
in neurotypical donors. First, He and colleagues transversely
sliced dorsolateral prefrontal cortex samples (DLPFC) from
postmortem brains (He et al., 2017). Guided by their analyses,
we focused on their first dataset (DS1) which contains expression
data from four brains and was obtained from SRA using project
code SRP065273. A second study of the DLPFC from three adult
donors employing the spatial transcriptomics 10× Genomics
Visium platform was obtained from the spatialLIBD R package
(Maynard et al., 2021). The third dataset is from AIBS and assayed
expression with single-nucleus RNA sequencing (snRNA-seq)
in three brains1. We chose to use data only from the middle
temporal gyrus, as this region had the most samples. The
data was also split into three cell types as labeled by AIBS:
GABAergic, glutamatergic and non-neuronal. While methods
for spatial dissection vary, all three of these studies employed
RNA sequencing and profiled the adult human neocortex.
The characteristics of these datasets are described in Table 1.
Similarity analyses were performed on the datasets to validate
subsequent expression correlation and layer-specific enrichment
analyses. The results of those analyses are available in the
Supplementary Material.

Dataset Processing
To be able to compare the varying types of data, we processed
and standardized the data such that each dataset was represented
in a gene expression matrix. Our processing resulted in five
such matrices, one each from the He et al. and Maynard et al.
studies, and three for the AIBS snRNA-seq data, one for each
major cell-type label they provided (GABAergic, glutamatergic
and non-neuronal cells). Gene expression was represented in a
gene-by-layer expression matrix as counts per million (CPM).
A generalized visual schematic of our data processing pipeline is
shown in Figure 1. We detail the processing of each dataset, as
well as a summary of the source data, below.

Bulk-Tissue Data
The first of the bulk-tissue datasets is the He et al. study, where
the authors collected samples from the PFC from each of the six
male donors. From those larger tissue samples, they dissected out
18 50 micron thick slices parallel to the layers of the brain. Each
section was then mapped back as belonging to a specific cortical
layer and homogenized for RNA sequencing on the Illumina
HiSeq platform. There were two resulting datasets: Dataset 1 and
2. Guided by the analyses from the source study, we utilized
data from Dataset 1, which contained four male donors of the
total six available.

We downloaded the raw RNA-seq data from He et al. from the
Sequence Read Archive, project code SRP065273 in.fastq format.
Genome alignment was performed using STAR 2.7 (Dobin
et al., 2013) against the reference genome GRCh38.p13 with the

1https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-
areas-smart-seq

corresponding annotation file from Ensembl (Yates et al., 2020).
Default parameters were used. Aligned reads were quantified
using RSEM (Li and Dewey, 2011) against the same reference
genome and annotation file. This created a count matrix of 59,453
genes across 102 samples. In instances where multiple Ensembl
ID’s referred to the same HGNC gene symbol, we took the average
of the counts. For each of the samples that were labeled as the
same transverse slice (e.g., all samples with the S1 label for slice
1), we summed the counts across the sample columns for all 18
transverse slices. The resulting 18 columns were pseudo-bulked
at the layer level to create seven columns representative of the
six layers of the human neocortex and one white matter layer
using the mapping provided by He and colleagues (weighted
averages). To avoid taking the log of 0, we added 1 to all counts
prior to counts per million (CPM) normalization. We used the
cpm() function from the edgeR package (Robinson et al., 2010;
McCarthy et al., 2012) to CPM normalize the data, using log = T
to log2 transform the data. The final normalized expression
matrix contains 59,453 genes’ expression in the six neocortical
layers and one layer of white matter in the PFC.

Spatial Transcriptomics Data
The second study, which employed a spatial transcriptomic assay
is the Maynard study, which took coronal samples from the
DLPFC from two male donors and one female donor (Maynard
et al., 2021). From each coronal sample, they took four samples,
termed “spatial replicate samples” by the authors, that spanned
the cortical layers. Each of the replicate samples was run through
the 10X Genomics Visium platform, where tens of thousands of
small samples, termed “spots,” were assayed per sample using
specialized slides proprietary to the platform. Each of the spots
has the capability of assaying the whole genome. The result
of their data processing pipeline, as well as the raw data from
the Visium platform, is available for use as a package in the R
programming language.

To access the data from their study, we used the fetch_data()
function in their package with type = “sce_layer” to download
the sce_layer data, which is the overall matrix containing gene
expression data for 22,331 genes across the three donors and
their 12 replicate samples spanning the six neocortical layers
and one white matter layer. We only used the samples from
two of the three donors (sample ID’s: 151507, 151508, 151509,
151510, 151673, 151674, 151675, and 151676) that contained
data for all six cortical layers, reducing the number of usable
replicate samples to 8. In contrast to the He et al. data, gene
expression was represented in raw unique molecular identifier
(UMI) counts. After examining the count data, we determined
that the methods used to aggregate and normalize the He
et al. data would be appropriate. The final matrix contains
18,633 genes’ expression in the six neocortical layers in the
DLPFC, as well as a layer of white matter similar to the
He et al. matrix.

snRNA-seq Data From the Allen Institute of Brain
Science
The single nuclei data from the AIBS was generated by taking
samples from multiple cortical regions, such as the anterior
cingulate cortex and the middle temporal gyrus among others,
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TABLE 1 | Characteristics of the datasets used in analysis.

Dataset Technique
used

Type of
samples

used:

Gene
expression

quantification

Cortical
region

assayed:

# of genes
assayed

# of donors

He et al. Illumina
RNA-seq

Bulk-tissue Gene count PFC (BA 9, 10) 59,453 4 M

Maynard et al. 10× Visium Tissue sections Raw UMI count DLPFC (BA 46) 18,633 2 (1 M, 1 F)

Allen cell type database SMART-seq
snRNA-seq

Single nuclei Gene count MTG 50,286 3 (2 M, 1 F)

PFC, prefrontal cortex; DLPFC, dorsolateral prefrontal cortex; MTG, middle temporal gyrus; BA, Brodmann area; UMI, unique molecular identifier; M, male; F, female.

FIGURE 1 | Diagram of the data processing pipeline. For the He and Maynard data, the standardization and processing stages result in an expression matrix of
genes (rows) by layers, from layer 1 (L1) to 6 (L6) or white matter (WM). For the snRNA-seq data, the pipeline results in three gene expression matrices for each
major cell-type label provided by the AIBS (GABA: GABAergic, GLUT: glutamatergic, NONN: non-neuronal).

across three donors. Samples of target areas were taken from
coronal sections of the brain and each layer was dissected out.
These layers were homogenized and labeled with DAPI and
NeuN to identify if the cells were neuronal, or non-neuronal,
respectively. The homogenized sample was then run through
flow cytometry to separate out DAPI and NeuN-positive nuclei.
Once separated, the nuclei were sequenced by Illumina HiSeq to
quantify gene expression. The cells were given a layer label and
cell type labels. From the areas available, we chose to use only
the middle temporal gyrus due to the largest abundance of nuclei
(n = 15,519) sampled in the dataset. This data is available on their
Allen Brain Cell Types database under the “Multiple Cortical
Area – SMART-seq (2019) dataset.”

We accessed the AIBS data from https://portal.brain-map.
org/atlases-and-data/rnaseq/human-multiple-cortical-areas-
smart-seq. The count matrix provided nucleus-level data,
with cell-type and layer labels per nucleus. Using the provided
metadata, we first filtered out samples with outlier_call = TRUE
to remove any outlier nuclei. We then selected nuclei sampled
from the middle temporal gyrus (MTG). Of those nuclei, we
randomly downsampled the data such that per major cell type
label provided (GABAergic, glutamatergic, non-neuronal), it

contained the same number of nuclei per layer. This step was
taken to equalize the sparsity of lowly expressed genes. After
downsampling, the count matrix was pseudo-bulked at the
level of layers by summing the raw gene-expression counts
across all samples for each layer, cell type and gene. The bulked
dataset was normalized through CPM normalization and
log2-transformation, similar to the He and Maynard datasets.
We then separated the dataset by cell type labels (GABAergic,
glutamatergic, non-neuronal) to create three distinct normalized
expression matrices of 50,286 genes across the 6 neocortical
layers of the MTG.

Statistical Analyses
Gene Expression Correlation
Pearson correlation was used to assess agreement for single genes
between the Maynard and He datasets. This is calculated using a
given gene’s seven layer-specific expression values from the He
and Maynard datasets. For multiple genes, average correlation
is used. To add a genome-wide perspective, the percentile of
these correlations in reference to all other gene-to-gene values are
also calculated.
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Layer-Specific Gene Set Enrichment
To test for the enrichment of a set of genes in a given
layer, we first removed genes with CPM < 0.1 across all
layers, and normalized through log2-transformation then z-score
normalized. We sorted the normalized expression matrices per
layer by ranking the remaining genes in each dataset from the
most to least normalized expression. Within this ranking, the area
under the receiver operating characteristic curve (AUC) was used
to test whether the inputted set of genes were enriched or depleted
(enrichment: AUC > 0.5, depletion: AUC < 0.5). The Mann–
Whitney U test was used to determine statistical significance and
multiple-test corrected with Bonferroni correction.

Availability of Data and Code
Data used in the application and the code to process the
data are available online at https://github.com/ethanhkim/
laminargenevis. Scripts to process the raw data from He et al. are
available at https://github.com/derekhoward/he_seq.

RESULTS

We have developed an online web application, LaminaRGeneVis,
that can be accessed at https://ethanhkim.shinyapps.io/
laminargenevis/. The application allows users to visualize
layer-specific gene expression in the human neocortex using the
aforementioned processed data from He et al., Maynard et al. and
the AIBS. Furthermore, the application will also report statistical
analyses that assay agreement and test layer-specific enrichment
for a set of genes. As shown in Figure 2A, there are two main
“modes” of analyses: “Single Gene,” where a user can examine
the expression of a single gene across our curated datasets,
and “Multiple Genes,” where a user can review the expression
of multiple genes.

Single Gene Mode
The user can input their gene of interest by typing in its gene
symbol and selecting it from the drop-down list. Once submitted,
the gene’s normalized expression across the cortical layers in each
dataset is displayed as a bar plot. A text box below notes which
datasets assayed the queried gene and the agreement statistics
between the He and Maynard datasets. Agreement statistics that
compare the snRNA-seq expression profiles are not provided
because our genome-wide comparisons found much weaker
cross-dataset correlations when compared to the comparisons
between the He and Maynard datasets (Supplementary Results,
Tables 2, 3).

An example barplot of a single gene’s expression profile is
given in Figure 2B. As reported by the tool, the expression
correlation between the He and Maynard datasets for RELN is
0.916 (p = 0.0038). To provide a genome-wide perspective, a
ranking is also provided (91st quantile for RELN). We chose
RELN to demonstrate the tool due to its known layer specificity
(Martínez-Cerdeño and Clascá, 2002). In agreement with the
plotted values, it was found to mark layer I in the He et al.
and Maynard et al. datasets (also reported by LaminaRGeneVis).
Thus, both the barplot and correlation value provide users

with an understanding of a given gene’s expression pattern and
consistency across the human neocortical layers.

Multi-Gene Mode
In the Multi-gene mode, the application generates visualizations
for the queried gene set’s layer-specific enrichment and
normalized expression of each gene across datasets. Layer-
specific enrichment is first visualized as a heatmap that displays
the AUC values across layers and datasets. Normalized gene
expression is additionally displayed as a heatmap for 30 genes or
less and a dot plot otherwise. The dot plots also show the queried
genes’ median expression in each layer. Finally, a summary
textbox at the bottom reports information such as the number of
inputted genes assayed in each dataset and agreement statistics.

An example output of multiple genes’ expression profiles
is given in Figure 2C. This heatmap is the first visualization
shown and summarizes enrichment across datasets. The genes
used as input were found to mark layer 1 in a separate study
of laminar expression patterns (Zeng et al., 2012). This study
examined in situ gene expression patterns of ∼1,000 genes in the
human temporal and visual cortices. Reassuringly, these seven
marker genes highlight layer 1 in the He and Maynard datasets
that profiled the prefrontal cortex (both padjusted < 0.03). The
following five figures provided by the tool expand upon this
summary heatmap by providing per dataset heatmaps that mark
the expression of individual genes. These plots mark DISC1
as having discordant expression between the He and Maynard
datasets. In agreement, heterogeneous expression of DISC1 was
also noted by Zeng and colleagues (Zeng et al., 2012). Like
the Single Gene mode, the tool correlates laminar expression
profiles across the datasets. For these seven marker genes the
mean correlation is 0.866 (p = 0.0026, n = 6 layers). Genome-
wide, this correlation ranks in the 81st quantile in all single
correlation values, suggesting a high degree of bulk-tissue dataset
agreement. The given correlation values and the visualizations
provide multiple perspectives of a given gene set’s expression
across the laminar architecture of the human neocortex.

To further test our tool beyond the layer 1 markers, we
used each set of the Zeng et al. laminar markers as input.
These markers were identified from an independent experimental
method (in situ hybridization), and their survey examined two
regions, one of which was not profiled in the LaminaRGeneVis
datasets (visual cortex). As shown in Figure 3, we summarize
the six sets of results with a single heatmap that averages the
AUC values across the five datasets for a given input set of
marker genes (Figure 3). Although the absolute average mean
AUC value varies across the marker sets, the correct layer
had the highest AUC value for all layers except the fourth.
In summary, this agreement across the layers and datasets
further validates the ability of LaminaRGeneVis to assess laminar
expression patterns.

DISCUSSION

With the advances in sequencing and imaging techniques,
the ability to assay and image the human brain has become

Frontiers in Neuroinformatics | www.frontiersin.org 4 February 2022 | Volume 16 | Article 753770

https://github.com/ethanhkim/laminargenevis
https://github.com/ethanhkim/laminargenevis
https://github.com/derekhoward/he_seq
https://ethanhkim.shinyapps.io/laminargenevis/
https://ethanhkim.shinyapps.io/laminargenevis/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-16-753770 February 18, 2022 Time: 16:17 # 5

Kim et al. LaminaRGeneVis: Visualize Cortical Gene Expression

FIGURE 2 | (A) Overview diagram of the data processing steps and web application interface combined. (B) Example single-gene input settings and output for
RELN expression (CPM on a log scaled y-axis) across the cortical layers and white matter with color marking the source datasets and cell types. (C) Example
multi-gene input settings and heatmap visualization output for genes found to mark layer 1 in a separate study of laminar expression patterns (Zeng et al., 2012).
Cells are colored according to the enrichment of layer-specific expression of the input genes (AUC scores). P-values were calculated using the Mann-Whitney U test
and adjusted for multiple test correction through Bonferroni correction; asterisks (*) indicate pcorrected < 0.05.

increasingly more cost-efficient and powerful. This has led to
more studies examining the genome-wide expression profiles
of the brain. The resulting datasets have allowed researchers
to analyze aspects of neuroanatomy which were not possible

before these developments, such as cell-type-specific differences
in gene expression.

In lieu of a centralized platform to compare neuroanatomical
gene expression datasets, LaminaRGeneVis is beneficial to
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FIGURE 3 | Heatmap visualization of the LaminaRGeneVis enrichment AUC
values for the laminar specific expression markers provided by Zeng and
colleagues (x-axis). Each column displays the average AUC enrichment values
across the five datasets from layer 1 (L1) to 6 (L6).

researchers in a few ways. First, genes related to neurological
or neuropsychiatric disorders can be examined in a layer-
specific manner. Such layer-specific analyses are motivated by
neuropathological findings: thinning of layers III and V of the
frontal lobe have been observed in patients with schizophrenia
(Rajkowska et al., 2002; Williams et al., 2013; Wagstyl et al., 2016)
and the neuronal density in multiple cortical layers in various
cortical regions have been reported as being lower in patients
with major depressive disorder (Rajkowska et al., 1999), which is
consistent with suicide cases (Underwood et al., 2012); however,
it is unclear why those specific layers are more vulnerable.
Characteristics of these layers, such as their cell-type proportions
and transcriptomic fingerprints, can assist in understanding the
neural underpinnings of these disorders. Researchers studying
major depressive disorder, for example, could input their set
of disorder-related genes into our tool to easily visualize and
quantify expression across the cortical layers.

That leads to another benefit of our tool, which is comparisons
across datasets. As outlined, there are differences in accessibility
that make comparisons between datasets difficult and time-
consuming. Additionally, by using three datasets, we increase the
sample size to cover nine human brains. While all these datasets
provide genome-wide expression patterns across the layers,
they use different expression profiling techniques and cortical
regions, which allows users to extract robust patterns. While
LaminaRGeneVis is not a tool to conduct an extensive meta-
analysis, it provides easy-to-understand and straightforward
visualizations and analyses that join datasets.

However, our application is not without limitations. Its
most prominent limitations come from the data used in the
application. The data are sourced from different regions in the
brain: He et al. and Maynard et al. profiled the frontal lobe,
while the snRNA-seq data from AIBS used here is sampled from

the temporal lobe. It is well known that the thickness of the
cortical layers varies throughout the cortex (Brodmann, 1909;
von Economo et al., 2008), as well as cell-type-specific differences
(González-Acosta et al., 2018). This limited set of cortical regions
with laminar-specific expression limits the generalization of the
tool’s results. For example, there may be genes with laminar-
specific expression in the parietal cortex that are homogeneously
expressed across the layers of the prefrontal and temporal cortices
due to regional differences in cytoarchitecture. However, our tests
of the Zeng et al. markers that were partially obtained from
the visual cortex provide some support for regional consistency.
Another limitation comes from the sample processing methods
used across the datasets. For example, by isolating nuclei, the
AIBS data does not capture expression in the cell soma, axons
and dendrites. Recent evidence suggests that there are relatively
distinct transcriptomes in neuronal dendrites (Perez et al., 2021)
and axons (Maciel et al., 2018). By visualizing snRNA-seq, spatial
transcriptomic, and bulk-tissue RNA-seq data, LaminaRGeneVis
combines datasets. Finally, there is a neuronal bias in the snRNA-
seq AIBS data because they profiled fewer non-neuronal than
neuronal nuclei. Glial cells make up perhaps an equal, if not
greater, proportion of the total cells in the brain compared
to neuronal cells (von Bartheld et al., 2016). Due to these
differences, the tool clearly displays the cortical regions and if
data is from single nuclei or tissue sections. This allows the
user to gauge region- and technique-specific effects. We also
limit statistical comparisons to the He and Maynard datasets
that assay expression in the same region. We look forward to
adding data from additional transcriptomic studies to address
these limitations.

CONCLUSION

We have developed a web application for visualizing gene
expression across the laminar architecture of the adult
human neocortex. It reports cross-dataset correlation and
the enrichment of layer-specific expression. These functionalities
provide easily accessible figures and statistics for quick
assessment of expression across the layers of the human cortex.
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