
ARTICLE

Eigenmode orthogonality breaking and anomalous
dynamics in multimode nano-optomechanical
systems under non-reciprocal coupling
Laure Mercier de Lépinay1, Benjamin Pigeau1, Benjamin Besga1 & Olivier Arcizet1

Thermal motion of nanomechanical probes directly impacts their sensitivities to external

forces. Its proper understanding is therefore critical for ultimate force sensing. Here, we

investigate a vectorial force field sensor: a singly-clamped nanowire oscillating along two

quasi-frequency-degenerate transverse directions. Its insertion in a rotational optical force

field couples its eigenmodes non-symmetrically, causing dramatic modifications of its

mechanical properties. In particular, the eigenmodes lose their intrinsic orthogonality. We

show that this circumstance is at the origin of an anomalous excess of noise and of a violation

of the fluctuation dissipation relation. Our model, which quantitatively accounts for all

observations, provides a novel modified version of the fluctuation dissipation theorem that

remains valid in non-conservative rotational force fields, and that reveals the prominent role

of non-axial mechanical susceptibilities. These findings help understand the intriguing

properties of thermal fluctuations in non-reciprocally-coupled multimode systems.
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The sensitivity of any sensor based on a mechanical oscil-
lator is intrinsically limited by its thermal noise, a random
position fluctuation which can mask the signal under

investigation. Hence, understanding and reducing thermal noise
is a permanent objective in force, position or metric sensing to
approach ultimate sensitivities.

The recent advent of nanomechanical oscillators1–3 has boos-
ted the force sensitivity by orders of magnitudes4, enabling single
electron imaging5, or ultimate mass sensing6–8, opening per-
spectives in both fundamental and applied science9–13. Their
ultralow-stiffness generally comes with a sizeable thermal posi-
tion noise, that can spread over distances approaching their
intrinsic dimensions. These resonators are all the more sensitive
to environmental inhomogeneities which manifest themselves as
external force field gradients. The latter can be mapped by
tracking modifications of the probe nanomechanical properties
(frequency shifts, change in oscillation amplitude, or damping
rates) as standardly used in atomic force microscopes14. The force
gradients are probed along the oscillating direction, either normal
or parallel15 to the sample. Consequently, a force probe
deformable along several directions of space allows for vectorial
force field imaging16–18, conveying a supplementary physical
richness to a traditionally scalar measurement. In particular
multidimensionality allows for force fields to present vorticity.
Therefore it becomes possible to inspect the role of non-
conservative force landscapes, that is, force fields that do not
derive from a potential energy, here because they sustain a non-
zero rotational.

Our 2D nanomechanical force probe is a singly clamped sus-
pended nanowire oscillating along both transverse
directions13, 16–25. Nanoresonators with similar geometry were
employed in MRFM applications20, 26, in electrostatic force field
sensing17–19, but all the developments presented here also apply
to doubly clamped nanobeams oscillating in and out of plane4, 27–
30 and more generally to multimode mechanical systems coupled
through any external force field. Nanowires identical to the ones
used in this work were previously employed to map the optical
force field generated at the waist of a strongly focused laser beam,
using pump-probe measurements at low power in absence of
distortion of the eigenmodes basis. This revealed the non-
conservative nature of the optical force field through a direct
measurement of its non-zero force rotational16. It was theoreti-
cally suggested that it could generate a warping of the eigenmode
basis and an altered dynamics, but no experimental proof could
be drawn since only a scalar 1D readout was available at that
time. Recently, a novel universal method based on a dual, 2D
motion detection was introduced17 to image any 2D force fields
even when pump-probe measurements16, 18 cannot be employed.
Simultaneous tracking of the eigenfrequency shifts and eigen-
mode rotations of a quasi frequency-degenerate nanowire gives
access to the entire structure of the 2D force field gradient
experienced by the nanowire extremity. This method is immune
to a distortion of the eigenmode basis and therefore not limited to
the measurement of small force fields gradients. In particular it
gives access to shear components of the force field which are
essential to understand the physics at play in sharply varying
force fields landscapes. The measurement principle was verified
on a conservative electrostatic force field17. The present work
proves and extends its validity in the case of non-conservative
force fields.

Non-conservative force fields can couple mechanical degrees of
freedom in a non-symmetric way. For example, if a charged
particle is immersed in a magnetic field, the components of its
motion along perpendicular directions are non-symmetrically
coupled through the Lorentz force: the force experienced along
the two transverse directions being proportional to the speed

along the other direction but with an opposite sign. Similarly, the
Coriolis force, which is also proportional to the speed of a moving
mass, is responsible for the apparent rotation of a Foucault
pendulum. As early noticed in optical tweezers experiments31–33,
the radiation pressure force field is non-conservative as it presents
a non-zero rotational. It was shown that this optical force field
structure can strongly alter the Brownian motion of an over-
damped trapped particle, causing the emergence of so-called
Brownian vortexes34, 35. Here, we exploit an analogous rotational
optical coupling force, but on an under-damped resonator which
permits to investigate eigenmodes cross-coupling. This arrange-
ment thus represents a unique situation where non-symmetric
but reactive (instantaneous) mode coupling is achieved via a
rotational force field. The field of cavity optomechanics has
recently developed a strong interest in multimode coupling
phenomena such as back-action cancelation36, two-mode back-
action-evading measurements37, cavity-assisted optical hybridi-
zation between mechanical eigenmodes38–41 and this class of
systems was also subject to significant theoretical develop-
ments42–44. In those implementations, only one single cavity
mode was involved, so that the cavity-mediated mechanical cross-
coupling remained symmetric (even though non-reciprocal
energy transfer41 could be achieved on proper paths in control
parameter space). Asymmetric mechanical coupling should in
principle arise in multimode cavity optomechanics using multiple
optical modes45, 46 or engineered optomechanical arrays47.

In this work, we investigate the thermal noise and the driven
dynamics of a singly clamped suspended nanowire oscillating
along both transverse directions immersed in a optical tunable
rotational force field. We report on the observation of the
warping of the eigenmodes basis, thus breaking its original
orthogonality, and on an alteration of the thermal noise spectra.
We show experimentally that the position fluctuations now
deviate from the fluctuation dissipation relation (FDR) in its
original formulation, as the rotational force field brings the sys-
tem out of equilibrium, which violates a fundamental hypothesis
used for the FDR derivation. All these rather intriguing obser-
vations are quantitatively explained by our model which also
suggests a generic methodology to correctly describe the fluc-
tuations and dynamical properties of multimode resonators
strongly coupled by non-reciprocal mechanisms. Our experiment
thus represents a first exploration of the novel physics emerging
in this non-reciprocal coupling situation, in a simple system
where all discussed quantities can be directly mapped and
visualized in a 2D space.

Results
The experiment. The experiment is sketched in Fig. 1a. It is
conducted on a 165 μm-long and ’120 nm-diameter Silicon
Carbide nanowire (NW) suspended at the extremity of a sharp
tungsten tip. Using high numerical aperture microscope objectives
and a XYZ piezostage, a 633 nm probe laser is strongly focused on
the NW vibrating extremity. Its position fluctuations δr(t) are
encoded on the reflected field. This field is collected on a split
photodetector followed by a low noise amplifier providing the sum
and difference of photovoltages: V�;�ðr0 þ δrðtÞÞ. Their temporal
fluctuations δV�;�ðtÞ ¼ δrðtÞ � =V�;� convey projective mea-
surements of the 2D NW trajectory, δr�;� � δrðtÞ � e�;�, pro-
jected along two measurement vectors e�;� � =V�;�= =V�;�

�� ��,
which are simply the local gradients of the maps shown in Fig. 1b.
Operating at the working point highlighted by � in Fig. 1b where
the measurement vectors are quasi-orthogonal permits to realize a
full 2D readout of the NW position fluctuations through a
simultaneous acquisition of both signals. A position tracking can
be activated to stabilize the NW position with respect to the probe
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beam. The 2D optical readout of the NW vibrations is fully
described in17.

The non-conservative force field16 is generated by an
independent counter-propagating tightly focused 532 nm laser
beam. The spatial structure of the optical force field experienced
by the nanowire is sketched in Fig. 1d and tuned by moving the
focusing objective with a XYZ piezo-scanner while its magnitude,
proportional to the optical pump power, is varied with an acousto-
optic modulator (AOM). The latter can also be simultaneously
used to modulate the pump intensity and resonantly drive the NW
so as to measure its mechanical response (see Supplementary
Note 1) to the local optical force. Three particular positions within
the force-applying laser, visible on Fig. 1d, were investigated, each
featuring a different local force structure: the central position
marked by⊗ as a zero-rotational test point and the positions and
for positive and negative force rotational.

Intrinsic nanowire properties. Firstly, these were determined in
the absence of green light, first by acquiring the noise spectral

densities Sδr�;� ½Ω� measured on each projected displacement
channel on two spectrum analyzers, see the foreground of Fig. 1e.
Both fundamental eigenmodes are visible, oscillating around 6.7
kHz with a quality factor of ≈3000 in vacuum (10−3 mbar),
identical for both modes within 5%. They present a quasi-
degenerate character (0.3%) with a frequency splitting of (Ω2−
Ω1)/2π ≈ 20 Hz, which renders the NW extremely sensitive to the
shear components of any external force field17. The intrinsic
eigenmodes’ orientations (e1,2) are determined from the com-
parison of the peak spectral densities measured on each mea-
surement channel. The displacement associated with each mode
is rectilinear along directions forming angles of respectively θ1=
−28° and θ2=+62° with the ex axis (≈2° uncertainty determined
from statistical analysis) so that the modes are found to be per-
fectly perpendicular in absence of external force field. The impact
of the probe beam on the NW dynamics was minimized by
reducing optical force field gradients (operation with an enlarged
optical waist at low power 15 μW on the optical axis of the probe
beam, where any possible residual force field is irrotational). The
effective mass of both modes amounts to Meff= 1.5 × 10−15 kg,
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Fig. 1 The experiment. a The transverse vibrations of a singly-clamped nanowire are optically read out by focusing a red probe laser beam on its vibrating
extremity while recording the reflected intensity fluctuations on a dual photodetector. A counter propagating focused green laser beam generates a tunable
optical force field of non-conservative (rotational) nature16. b Horizontal, XZ maps of the sum/difference DC signals V�=�ðrÞ obtained by piezo-scanning
the nanowire in the probe laser waist. The measurement location � provides quasi-orthogonal projective measurement vectors e�;� allowing for a 2D-
measurement of the nanowire’s motion. c Steady-state driven trajectories obtained under resonant optical actuation at low optical power (2 μW) for a set
of driving frequencies spanning across both eigenfrequencies (300 trajectories (gray curves) from 6670 to 6810 kHz, the red/blue curves are the
resonantly driven trajectories). eF: optical actuation force vector, e1,2: uncoupled eigenvectors. d Sketch of the optical force field structure. Measurement
positions indicated by �; ; feature zero, positive and negative force field rotational respectively. e Calibrated thermal noise spectra measured on each
measurement channel: Sδr�;� ½Ω� at position for increasing green optical power
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corresponding to a spring constant of ≈3 μNm−1, which conveys
a force sensitivity of ≈10 aNHz−1/2 at room temperature.

Secondly, response measurements were realized by injecting a
small amount of green light (2 μW), which was intensity
modulated with the AOM to exert a time-modulated force. After
a transitory period the monochromatic drive generates a steady-
state trajectory in space, whose projections along e�;� are
measured by the dual 2D readout on a network analyzer featuring
two synchronized measurement channels. Sweeping the excita-
tion tone across both eigenfrequencies permits to build the set of
steady-state driven trajectories in 2D shown in Fig. 1c after a
geometrical reconstruction which is explained in the Supplemen-
tary Note 5. On the green optical axis, the optical actuation force
vector is quasi-aligned with ez, see Fig. 1c, and can thus drive both
eigenmodes. This representation offers a very straightforward
determination of the eigenmodes orientations in space as those
correspond to directions where maximal oscillation amplitudes
are observed. The results of this method are in excellent
agreement with the above measurements derived from 2D
thermal noise analysis. The linearity of the response was verified
up to large driven amplitudes, approaching 300 nm. Beyond this
point the NW may exit the linear measurement area and a
mechanical bistability appears at even larger drive amplitudes.

Observation of eigenmodes warping. We then insert the NW in
a non-conservative force field by increasing the green optical
power and positioning the NW on the left side of the green
optical waist where the force field rotational is maximal16 (this
position is indicated by in Fig. 1d). We now focus on the vec-
torial aspect of the nanowire motion perturbed by rotational
forces. We insist that this work deals with rotational force fields
that do not entail a dynamical bifurcation as in16. To do so we
keep the optical powers below the onset threshold or work with
optical force field gradient structures {gij} that will not cause a
bifurcation at any optical power. Thermal noise spectra (Figs. 1e
and 2b) and driven trajectories (Fig. 2a) were recorded for
increasing green optical powers, up to 80 μW but not above to
avoid the dynamical instability appearing beyond the bifurca-
tion16. Strikingly visible on the 2D representations of the driven
trajectories (Fig. 2a) appears a strong warping of the eigenmodes
orientations which progressively rotate towards a common
orientation pointing here around +40° from ex. The corre-
sponding thermal noise spectra are shown in Figs. 1e and 2b.
They show a merging of the eigenfrequencies, a global noise
increase and anomalous spectral lineshapes. Eigenfrequencies Ω±/
2π and eigenmodes orientations θ± deduced from both response
and noise analyses are reported on Fig. 2c, d. Figure 2f shows the
displacement noise spectral densities Sδrθ ± ½Ω± � at the dressed
eigenfrequencies computed for a projective measurement angle
aligned with each eigenmode17. A noise excess 30 times larger
than the undressed thermal noise is observed when approaching
the bifurcation. This is larger than the factor 2 expected for the
independent summation of two uncorrelated noise spectral den-
sities of similar eigenmodes whose directions become collinear.
Radiation pressure noise is largely negligible here and cannot
account for this noise excess. A significant increase of the driven
response is also visible in Fig. 2a despite the constant drive
strength employed (see Supplementary Note 1) and the quasi-
perpendicular orientation of the driving vector (eF) with respect
to the dressed eigenmodes orientations (e±) close to the bifurca-
tion. A model is now presented that accounts for all these
observations and gives an insight into the physics at play in 2D
oscillators cross-coupled through non-conservative (rotational)
force fields.

Model. The dynamics of the NW deflection δr(t) around its rest
position r0, restricted to the 2 fundamental eigenmodes polarizations
follows: δ€r ¼ 	Ω

2 � δr	 Γδ _rþ ðFðr0 þ δrÞ þ δFþ δFthÞ=Meff .

Ω
2 � Ω2

1 0
0 Ω2

2

� �
is the intrinsic restoring force matrix expressed

in the unperturbed e1,2 basis, Γ the mechanical damping rate, Meff

the effective mass, δF an external probe force and δFth represents
the Langevin force vector which drives the NW along each
uncoupled axis independently48 with a white force noise of
spectral density SthF ¼ 2MeffΓkBT . Response measurements con-
firm the absence of delay on mechanical time scales in the
establishment of the optical force experienced by the NW con-
secutive to an intensity change, as expected for radiation pressure
forces16. As a consequence, the external force experienced by the
NW extremity F(r0+ δr) only depends on its position within the
force field. For small position fluctuations with respect to the
characteristic length scale of the force field structure, the force can
be linearized as Fðr0Þ þ ðδr � =ÞFjr0 . The static force causes a
static NW deflection which can amount to ≈100 nm for the lar-
gest power employed and redefines the working position within
the optical force field. The second linear term–proportional to the
NW deflection–represents an additional restoring force which
modifies the oscillator’s dynamics. The eigenmodes coupling
matrix is thus built out of the 4 components of the 2D external
force field gradients: gijðr0Þ � 1

Meff
∂iFj
��
r0
. Shear components (i ≠ j)

control the cross-coupling between eigenmodes. In Fourier space,
we have δr½Ω� ¼ χ½Ω� � δFth½Ω� where χ½Ω� is the modified
mechanical susceptibility matrix:

χ	1½Ω� � Meff
~χ	1
11 ½Ω� 	 g11 	g21

	g12 ~χ	1
22 ½Ω� 	 g22

 !
: ð1Þ

M	1
eff ~χ11;22½Ω� � M	1

eff =ðΩ2
1;2 	 Ω2 	 iΩΓÞ are the original uniaxial

mechanical susceptibilities. Diagonalizing the susceptibility matrix
gives the new eigenmodes labeled with ± indices whose eigen-

frequencies read: Ω2
± � Ω2

1kþΩ2
2k

2 ± 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

2k 	Ω2
1k

� �2
þ4g12g21

r
and

whose unitary eigenvectors written in the original eigenvectors basis

are e	 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g212þΔΩ2

?
p ΔΩ2

?
g12

� �
and eþ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g221þΔΩ2
?

p 	g21
∇Ω2

?

� �
. We

used Ω2
ik � Ω2

i 	 gii and ΔΩ2
? � Ω2

2k 	 Ω2
	 ¼ Ω2

þ 	Ω2
1k. The

eigenvalues of the susceptibility matrix are defined by
χ	1
± ± ½Ω� � Meff ðΩ2

± 	 Ω2 	 iΩΓÞ. At first order shear compo-
nents are responsible for the eigenmode rotation. The scalar
product of the eigenvectors follows e− · e+∝ rot(F) · ey∝ g12−
g21. In a conservative force field, g12= g21, both eigenmodes are
equally rotated so that they preserve their original orthogonality
as verified in17. Instead, the eigenmodes orthogonality is broken
in non-conservative force fields, that is, in the case of a real but
non-symmetric coupling matrix, as experimentally observed and
shown in Fig. 2d.

From these expressions, see Supplementary Note 3, one can
compute the projected thermal noise spectra Sδrβ ½Ω� and the
steady-state trajectories δrðtÞ ¼ Re χ½Ω�δF eF e	iΩtð Þ driven by a
time-modulated force vector δFðtÞ ¼ Re δF eF e	iΩtð Þ. As in
standard cavity optomechanics, our model makes use of a
mechanical susceptibility modified by the light field (which can
become non-symmetrical when the coupling force presents a
non-zero rotational, leading to non-reciprocal coupling) while the
Langevin forces and intrinsic damping rates remain unchanged.

Anomalous thermal noise spectra. Well visible in Fig. 2b is the
distortion of the measured thermal noise spectra into non-
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standard lineshapes presenting asymmetric peaks at large power.
Such signatures are absent in conservative force fields17 and
illustrate a large deviation from the normal mode expansion:
thermal noise spectra cannot be described anymore as the sum of
two spectra featuring Lorentzian mechanical susceptibilities dri-
ven by independent Langevin forces. Such a deviation may in
some systems originate from the conservative coupling of two
resonators with heterogeneous damping49, 50, but it is not the case
here since no damping modification is measured at any optical
power. Instead, each couple of thermal noise spectra can be very
well simultaneously fitted with the model (solid lines in Fig. 2b)
featuring unmodified identical damping rates. The unperturbed
mechanical properties (Ω1,2, Γ, θ1,2, and Meff) were fixed to the
previously determined values, so that the only fitting parameters
are the 4 components of the force field gradients gij which are
reported in Fig. 2e. They vary with the green optical power but
deviate from the expected linearity at large optical powers. This

deviation is due to the static deflection which displaces the NW in
the force gradient landscape. The measured shear gradients g12
and g21 are different, which directly demonstrates the non-
conservative nature of the optical force field created by the green
laser at the measurement position.

The above determination of the force field gradients results
from fits of the entire NW thermal noise spectra in 2D. Another
method makes use of the measured perturbation of the
eigenmodes (rotations and frequency shifts from Fig. 2c, d)
following the protocol exposed in17 and Supplementary Notes 4
and 7. The gij obtained from this method are also reported in
Fig. 2e (solid lines) and a good agreement is observed between
both methods. The derivation based on spectral analysis still
operates close to the bifurcation while it becomes difficult to
determine the eigenmode properties when they are not spectrally
resolved anymore (gray shaded area in Fig. 2c, d).
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Excess of thermal noise. Figure 2f shows the evolution with
increasing pump power of Sδrθ ± ½Ω± �, the thermal noise
measured at resonance in the optimum readout configuration,
that is, for a measurement vector aligned with the eigenmode.
The model predicts (see Supplementary Note 3) a noise spectral
density of:

Sδrθ± ½Ω� ¼
2ΓkBT

Meff ðΩ2
± 	Ω2Þ2þΩ2Γ2

� 	 1þ g21	 g12ð Þ2

Ω2

	Ω2

� �2
þΓ2Ω2

0
B@

1
CA:

ð2Þ

The first fraction directly corresponds to 2kBT
Ω Imχ ± ± ½Ω�, which

is the thermal noise expected assuming the validity of the
FDR48, 51 when measuring along an eigenmode direction e±. As a
consequence, the fraction in the parenthesis represents the
expected excess of noise, which is governed by (rot F)2. As
observed experimentally, see Fig. 2b, the noise excess is not
homogeneously spectrally distributed, but peaked at the second
eigenmode frequency. As such one can conclude that it is not
possible to define a standard effective temperature48, 52 in our
system. The 30-fold increase of the resonant noise spectral
densities is well fitted by the above expression evaluated at Ω±

using the experimentally derived force field gradients, see Fig. 2f.
Since a single 1D measurement cannot discriminate a noise
increase from an eigenmode rotation, because they both cause a
change of the measured signal strength (thermal noise or
response), we underline that noise thermometry of 2D coupled
systems can be subject to large misinterpretations if a proper 2D
readout is not implemented.

Deviation from the fluctuation-dissipation relation. The strong
asymmetry observed in the thermal noise spectra, the obvious
deviation from the normal mode expansion and the measured
excess of noise naturally call for an investigation of the FDR in
our system. For a generic oscillator at thermal equilibrium in the
linear response regime, the FDR connects the thermal noise
spectrum Sδrβ ½Ω� measured in an arbitrary direction eβ to the
imaginary part of the NW mechanical susceptibility48, 51, 53

according to:

SFDRδrβ
½Ω� ¼ 2kBT

jΩj Imχββ½Ω�
��� ���; ð3Þ

where we have used the tensorial form of the 2D mechanical
susceptibility: χμν ½Ω� � eμ � χ½Ω� � eν corresponding to a drive
along eν and a measurement along eμ. The mechanical suscept-
ibility involved in the FDR corresponds to the one determined
from a response measurement realized with a test force of the
same spatial profile as the readout mode48 and oriented along the
measurement vector eβ.

The comparison between the noise spectra given by Eqs. (2)
and (3) evaluated for eβ= e± shows that the fluctuations in our
system are not expected to verify the FDR. We will now directly
experimentally verify this conjecture, through a simultaneous
measurement of both the thermal noise spectra and the 2D
mechanical susceptibility.

Measurements were first performed on the left side of the
optical axis (position in Fig. 1d), see Fig. 3a–c, using 63 μW of
pump power which is sufficient to break the eigenmode
orthogonality while remaining spectrally resolved (see Fig. 2d).
The orientation and magnitude of the driving force vector δFeF
are determined as fit parameters of the response measurements

(Fig. 3b) with the mechanical susceptibility of Eq. (1) using the
force field gradients gij deduced from the fit of the 2D Brownian
motion (Fig. 3c). The results for the two measurement channels
(both in amplitude and phase) are shown in Fig. 3b and
accurately catch the data on a very large dynamical range (>40
dB) for a driving force of 270 aN oriented at 94° from ex. In this
situation, the driving vector is quasi aligned with the e� readout
vector, see Fig. 3a. The axial susceptibilities χ�� and χ�� can then
be evaluated using expression (1) and the set of determined gij.
Note that a weak coherent parasitic background was added to fit
the responses to account for parasitic electrical crosstalk. The
thermal noise spectra expected from the expression for the
fluctuation dissipation relation (3) and computed from χ�� and
χ�� were then reported in Fig. 3c (solid dark lines) and compared
to the spectra measured on each measurement channel. While the
two quantities coincide far from resonance, a strong deviation is
observed in the vicinity of eigenfrequencies, larger than 10 dB on
each channel. As stated above, the fact that the deviation is
maximal at resonance is well captured by Eq. (2). This
discrepancy demonstrates the deviation from the FDR in our
system.

A similar control measurement set was realized in absence of
non-conservative force field in position � using the lowest static
green optical power (2 μW) which still experimentally allowed
identical intensity modulation amplitude to maintain the same
driving force, see Fig. 3d–f. Here also, the only free parameters
were the orientation and strength of the driving force vector used
to probe the mechanical responses. In this case an excellent
agreement is obtained between the two members of Eq. (3) which
validates the procedure. Without surprise, in absence of non-
conservative force field when the eigenmodes orthogonality is
preserved, the FDR is verified in our system.

Finally, measurements were performed on the other side of the
beam at position in Fig. 1d in an opposite rotational where
eigenmodes also loose their orthogonality but eigenfrequencies
are repelled from each other instead of merging. The analog of
Fig. 2 at that position is given in the Supplementary Note 2. A
large deviation from the FDR is similarly observed at large pump
power (80 μW), see Fig. 3i, especially pronounced at the
eigenmodes resonances. This underlines that the deviation is
not due to the frequency merging mechanism but instead—as will
now be discussed—to the eigenmodes orthogonality breaking
induced by the non-conservative force field.

The rotational force field is indeed responsible for bringing the
system in an out-of-equilibrium steady state, violating a
fundamental—but often delicate to verify—hypothesis required
to establish the FDR.

Non-axial contributions. Inspecting the geometrical properties of
the tensorial susceptibility permits a phenomenological under-
standing of the deviation. For the purpose of illustration, we focus
on the situation where the measurement vector is aligned with one
eigenmode: eβ= e+. A drive vector aligned with the eigenmode eF
= e+ generates a driven displacement confined along the eigen-
mode orientation characterized by the uniaxial component of the
tensorial susceptibility χþþ ¼ 1=Meff ðΩ2

þ 	 Ω2 	 iΩΓÞ. This is the
axial susceptibility involved in the FDR expression (3) when
measuring along e+. Its resonance frequency differs from the
uncoupled one but it does so much too weakly (<0.5% relative
frequency shift) to account for the observed excess of noise whose
origin is now sought in the non-axial susceptibility terms, that is,
the component that characterizes the response in one direction to a
force exerted along another direction.
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Strikingly, as shown in Fig. 4a (gray curves), a drive vector
almost perpendicular to e− can generate a significant displace-
ment along e+, larger than the one obtained with a drive vector
aligned with e+ (blue curve). Indeed, the maximum resonantly
driven displacement along one eigenmode orientation is shown to

be obtained for a drive applied perpendicularly to the other
eigenmode: θ ± opt

F ¼ θ
 þ π=2 (see Supplementary Note 5). In
absence of perpendicularity breaking, one recovers the intuitive
result that the drive of one eigenmode is most efficient if it is
applied in the direction of this eigenmode. The counter-intuitive
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Fig. 3 Deviation from the fluctuation-dissipation relation. a Spatial structure of the optical force field at built from the force gradients deduced from thermal
noise analysis for 63 μW of pump power (100 nm scalebar). The 2D representations of the driven trajectories are built from the response
measurements–amplitude and phase–on each readout channel (�;�) obtained from one single frequency sweep and shown as dots in b. c Corresponding
thermal noise spectra (solid light lines) measured on each channel, jointly fitted (dashed lines) to estimate the gij parameters. The values of the latter were
then fixed to fit the response measurements (solid lines in b) with the actuation amplitude (found to amount to 270 aN) and direction (represented as eF in
a) as only free parameters. This fitting step completed the determination of the susceptibility matrix whose particular uniaxial components χ�� and χ��
were injected in the second member of Eq. (3) to compute the thermal noise spectra expected from the FDR (solid dark lines on c). Pronounced
discrepancies (>10 dB) between these estimates derived from the fluctuation dissipation relation and the direct experimental traces are emphasized as
colored areas. Panels d–f are taken in position ⊗ at low optical power (2 μW) where the shear force field gradients can be neglected. There the measured
spectra are in excellent agreement with the prediction of the fluctuation dissipation relation. Panels g–i are taken on the other side of the optical axis () with
an opposite rotational where no frequency merging occurs, see Supplementary Note 2. A similar substantial deviation is observed
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character of this observation arises from the fact that one expects
to optimize the drive efficiency of an eigenmode e+ by
maximizing the driving force coordinate along this direction,
but often forgets that the coordinate to maximize is the
contravariant coordinate ε+ defined by: eF= ε− e−+ ε+ e+ rather
than the covariant coordinate ε+= eF · e+. Indeed the two
coincide in more familiar orthogonal bases (see orthogonal
projections in the unperturbed situation of Fig. 4b) but differ in
warped bases (see Fig. 4a, c). The geometric representation given
in Fig. 4d can be used to determine the contravariant coordinate’s
expression: εþ ¼ eF � e?	=sinðarccosðe	 � eþÞÞ. The maximum
enhancement of the non-axial susceptibility is therefore given
by εþmax ¼ ð1	 ðe	 � eþÞ2Þ	1=2, which establishes a direct con-
nection between the increased mechanical response and the
eigenmodes orthogonality breaking. As a consequence, in a non-
conservative force field, the transverse components of the
tensorial susceptibility (χ?i � ei � χ � e?i ) allow each mode to be
simultaneously driven by the second, lateral uncorrelated
Langevin force. This mechanism quantitatively accounts for the
observed excess of noise analyzed in Fig. 2f.

Modified fluctuation dissipation relation. Further developing
the model exposed above, it is possible to demonstrate, see
Supplementary Note 6, that the deviation from FDR observed in
such a non-reciprocally coupled system verifies

X
μ¼β;β?

Sδrμ 	
2kBT
Ωj j Imχμμ

��� ���� �
¼ SthF χαβ 	 χβα

��� ���2; ð4Þ

where {eα, eβ} represents an arbitrary couple of two orthogonal
orientations, as sketched in Fig. 4e. This expression represents a
patch for the FDR in our system, valid in the out-of-equilibrium
but stationary regime explored here. It underlines the role of non-
symmetric coupling (χ12− χ21∝ g12− g21) in the observed
deviation and the importance to determine the entire 2D tensorial
mechanical susceptibility to describe the fluctuations of a multi-
mode nanomechanical system. We note that the quadratic
dependence of the deviation in rotF originates from the fact that
the NW is exploring a rotational force field along Brownian
trajectories whose statistics is unbalanced by the non-conservative
force (see Supplementary Note 8). Equation 4 also suggests a very
generic methodology to check whether the FDR applies in such a
system, that consists in measuring the resemblance between any
couple of opposite transverse susceptibilities χαβ, χβα. This
approach therefore only requires the analysis of response mea-
surements that can be repeated and averaged and realized with a
small resolution bandwidth in order not to be limited by the

measurement background noise. This remark might be of great
use for systems where the experimental verification of the FDR is
rendered delicate by a low signal-to-noise ratio that would not
allow for the measurement of thermal motion in real time. This
situation is often encountered in optomechanical systems at low
phonon occupancy where it becomes difficult to verify the equi-
librium hypothesis.

The transverse response asymmetry can be clearly visualized in
the configuration of Fig. 4a with feα; eβg ¼ fe	; e?	g. For a drive
along e−, no transverse motion is generated so that
e?	 � χ � e	 ¼ 0. On the contrary, driving along e?	 � eF, produces
a significant displacement along e− (gray curves) so that
e	 � χ � e?	≠0.

The weighted spectral integral of Eq. (4) yields the power
injected by the non-conservative force field and fully dissipated by
damping forces (see Supplementary Note 8), according to the
Harada-Sasa theorem54, 55 for any out-of-equilibrium systems. In
contrast with the original theorem, we propose here a spectral,
non-integrated formulation of the deviation to the FDR applied
to non-reciprocally coupled systems. The injected power also
corresponds to the entropy production rate in the system56, see
Supplementary Note 8, which further underlines the key role of
the non-axial susceptibilities from a thermodynamical point of
view. The imbalance between opposite transverse susceptibilities
appears in warped, non-orthognal eigenbases since χαβ− χβα∝
e+ · e−: the last equation therefore draws a direct link between the
breaking of the eigenmodes orthogonality and the violation of the
fluctuation-dissipation relation in non-reciprocally coupled
multimode systems. Hence, this equation is important for the
description of fluctuations in such out-of-equilibrium systems
and represents an important result of this work.

In summary, we reported on eigenmodes warping, distortion of
thermal noise spectra and deviation from the FDR when inserting
a multimode 2D nanoresonator in a non-conservative but non-
viscous coupling force field35. Our model quantitatively accounts
for all observations and accurately describes the fluctuations and
driven dynamics of the strongly and non-reciprocally coupled 2D
system. This work experimentally validates the principle of force
field sensing17 based on the recording of eigenmodes orientations
and frequency shifts in the yet unexplored non-conservative case.
It sheds light on some subtleties arising in noise thermometry in
strongly confined optical fields and points out the importance of
the transverse mechanical susceptibilities in the observed
phenomenology. Similar signatures should be observable in
any non-reciprocally coupled dual physical systems and in
particular in multimode cavity-optomechanics. This system
may also be of great interest to test new formulations of
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Fig. 4 Tensorial structure of the 2D mechanical response. a–c Driven trajectories obtained at the three different locations of Fig. 3 for varying orientations
of the drive vector (fixed magnitude of 270 aN). Red/blue curves are expected when driving along e−/+, reaching a maximum amplitude represented as a
dashed orange circle. Gray curves are measured for the drive orientation of Fig. 3. Black curves represent the entire set of trajectories obtained for all drive
orientations, see Supplementary Note 5. (100 nm scalebars) d Gray: Illustration (in the situation) of the expansion of a unitary vector eF on the non-
orthogonal {e±} base: eF= ε− e−+ ε+ e+. Its contravariant coordinate ε+ is maximized when the force vector is aligned with the covariant element e?	 of
the dual base, perpendicular to e− (angle marked by a blue square). e Sketch of a possible couple of transverse mechanical susceptibilities whose
asymmetry determines the magnitude of the deviation from the FDR according to Eq. (4)
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fluctuation theorems57–60 based on 2D trajectory analysis. It is
also an interesting platform for investigating real time dynamics
in rotational force fields35.

Data availability. The data that support the findings of this study
are available from the corresponding author upon request.
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