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Surgical flaps are frequently affected by ischemia/reperfusion (I/R) injury. Calcium-sensing receptor (CaSR) and stromal cell-
derived factor-1𝛼 (SDF-1𝛼) are closely associated with myocardial I/R injury. This study was performed to evaluate the feasibility
of applying SDF-1𝛼 to counteract CaSR activation-mediated I/R injury in ischemic free flaps. Free flaps that underwent ischemia
for 3 h were equally randomized into five groups: CaCl

2
, NPS2143 + CaCl

2
, SDF-1𝛼 + CaCl

2
, AMD3100 + SDF-1𝛼 + CaCl

2
, and

normal saline. The free flaps were harvested to evaluate flap necrosis and neovascularization after 2 h or 7 d of reperfusion. p-
CaSR/CaSRwas extensively expressed in vascular endothelial cells of free flaps after I/R injury, and activation of the SDF-1𝛼/CXCR4
axis and NPS2143 could reduce the expression of cleaved caspase-3, caspase-9, FAS, Cyt-c, and Bax and increase Bcl-2 expression;
the opposite was true after CaSR activation. Interestingly, initiation of the SDF-1𝛼/CXCR4 axis might abrogate CaSR activation-
induced I/R injury through enhancement of microvessel density. In conclusion, CaSR might become a novel therapeutic target of
free flaps affected by I/R injury. Activation of the SDF-1𝛼/CXCR4 axis and NPS2143 could counteract CaSR activation-mediated
I/R injury and promote free flap survival through inhibition of caspase-3/caspase-9-related cell apoptosis and enhancement of
neovascularization.

1. Introduction

Surgical flaps are frequently used to repair defects caused by
congenital diseases, trauma, or tumor excisions in plastic and
reconstructive surgery. However, partial or total necrosis of
flaps after early ischemia is commonly encountered [1, 2].
Ischemia/reperfusion (I/R) injury is considered the primary
cause of flap necrosis [3].

Calcium-sensing receptor (CaSR), which was originally
cloned from parathyroid chief cells by Brown et al. in 1993
[4], is expressed in various tissues and organs such as
the myocardium, brain, lung, and kidney [5, 6]. Increasing
evidence has demonstrated that CaSR is associated with cell

apoptosis and “calcium overload,” causing I/R injury [7, 8].
Recent studies have suggested that CaSR is also expressed
in vascular smooth muscle cells [9], human umbilical vein
endothelial cells [10], porcine coronary artery endothelial
cells [11], and the rabbit superior mesenteric artery [12], but
not in the vascular endothelial cells of skin flaps.

Stromal cell-derived factor-1 (SDF-1), which belongs to
the CXC chemokine family, was initially characterized as
a pre-B-cell stimulatory factor and cloned from mouse
bone marrow stromal cells by Nagasawa et al. in 1994 [13].
SDF-1 is well known for its promotional function in neo-
vascularization, including angiogenesis and vasculogenesis.
For example, SDF-1 plays a critical role in angiogenesis
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by regulating endothelial sprouting in vitro and in vivo
[14]; this can significantly reduce ischemic free flap necrosis
[15, 16], as we previously reported [17]. SDF-1 also confers
protection against myocardial I/R injury with less apoptotic
cell death [18]. However, no previous studies have shown
either protection against I/R injury or an antiapoptotic effect
by SDF-1 in skin flaps.

This study was performed to determine whether CaSR
is functionally expressed in the vascular endothelial cells
of free flaps and plays a critical role in I/R injury of free
flaps.The authors also assessedwhether the administration of
SDF-1𝛼 can protect free flaps against I/R injury and alleviate
CaSR activation-mediated I/R injury in rat free flaps. Finally,
whether the above effects can be neutralized by the CXCR4
antagonist AMD3100 was also examined.

2. Materials and Methods

2.1. Establishment of Oversized Epigastric Axial Skin Flap
Model to Mimic Free Flap Model. This study was approved
by the Chongqing Medical University Medical Center Insti-
tutional Animal Care and Use Committee. Male Sprague-
Dawley rats (Central Animal Laboratory of Chongqing
Medical University) weighing 220 to 280 g were housed
under specific pathogen-free conditions and treated accord-
ing to National Institutes of Health guidelines. Specialists at
Chongqing Medical University monitored the health of the
animals weekly.The rats were anesthetized by intraperitoneal
injection of sodium pentobarbital (30mg/kg) as previously
described [19]. The right superficial epigastric artery- and
vein-based epigastric axial skin flaps were approximately 5
× 6 cm in size and comprised skin and subcutaneous fascia,
including the panniculus carnosus, as previously described
[17], while the opposite superficial epigastric vessels were lig-
ated [20]. All rats were equally randomized into Groups A, B,
C, D, and E (𝑛 = 10 per group), in which they received CaCl

2

(0.1mL/kg; Sigma-Aldrich, St. Louis, MO, USA), NPS2143
(1mg/kg; Selleck Chemicals, Houston, TX, USA) + CaCl

2
,

SDF-1𝛼 (10mg/kg; Cyagen Biosciences, Santa Clara, CA,
USA) + CaCl

2
, AMD3100 (5mg/kg; Sigma-Aldrich) + SDF-

1𝛼 + CaCl
2
, and normal saline (NS) only, respectively [21].

The second reagents were administrated through the femoral
vein 10min after the first treatment and 10min earlier than
the third treatment. A 3 h period of flap ischemia was elected
among different time points (i.e., hours 1, 2, 3, and 4) based
on the highest expression of phosphorylated CaSR (p-CaSR)
protein (Supplemental Figure 1). Upon completion of a 3 h
period of ischemia induced by clamping the pedicle vessels
with double microvascular clamps [22] to mimic ischemia of
free flaps, the clamps were removed, and all of the free flaps
were sutured to the original sites with interrupted 5-0 Ethilon
(Ethicon, Inc., Somerville, NJ, USA).The rats recovered from
anesthesia in a 20∘C to 25∘C environment before they were
returned their feeding cages, and penicillin (200,000U/d)
was intramuscularly administered for 3 d thereafter. The rats’
diet, mental status, and flap survival were observed and
recorded daily. The free flaps were harvested after 2 h or 7 d

of reperfusion (𝑛 = 5 per group), and all rats were killed by
an overdose of sodium pentobarbital.

2.2. Evaluation of Free Flap Survival. The flaps were pho-
tographed on postoperative day 7. The survival status of the
free flaps was blindly assessed with respect to their color,
presence of bleeding upon cutting, gross appearance, and
area, even if covered with scar tissue.The area of survival and
total flap surface area were evaluated using Image-Pro Plus
software (version 5.0; Media Cybernetics LP, Silver Spring,
MD,USA).Thenecrotic ratiowas expressed as the percentage
of necrotic area relative to the total flap surface area as
previously described [17]. The tissues harvested from the
conjunctive areas between the flaps and the recipients were
cut into 5 𝜇m thick paraffin sections or prepared for other
assays.

2.3. Western Blot Analysis. Western blot analysis was con-
ducted as previously described [17, 23]. Briefly, tissues
from the conjunctive area were collected, lysed in modified
RIPA buffer, centrifuged, and quantified using the Bradford
method (Beyotime, Shanghai, China). After quantification of
the protein concentration, equal amounts of protein lysate
were separated by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis according to established protocols. The
proteins were transferred from the gels to PVDF mem-
branes (Pall, Port Washington, NY, USA) in a sandwich
model at 200mA for 90min. The membranes were then
placed in TBS/T, probed with antibodies to p-CaSR (1 : 500;
Bioworld Technology, St. Louis Park, MN, USA), CXCR4
(1 : 200; Santa Cruz Biotechnology, Dallas, TX, USA), Cyt-
c (1 : 1000; Cell Signaling Technology, Danvers, MA, USA),
Bax (1 : 100; Santa Cruz Biotechnology), Bcl-2 (1 : 200; Santa
Cruz Biotechnology), caspase-9 (1 : 200; Santa Cruz Biotech-
nology), FAS (1 : 200; Santa Cruz Biotechnology), cleaved
caspase-3 (1 : 1000; Cell Signaling Technology), or 𝛽-actin
(1 : 1000; Cell Signaling Technology), and incubated at 4∘C
overnight. All membranes were followed by anti-rabbit/anti-
mouse secondary antibodies (1 : 1000; Beyotime) at 37∘C for
2 h. Quantity One (Version 4.5.2; Bio-Rad, Hercules, CA,
USA) was used to determine the protein expression, which
was recorded as the ratio of the target protein relative to 𝛽-
actin [24].

2.4. Quantitative Real-Time PCR (qPCR) Analysis. qPCR was
performed to detect the mRNA expression of a variety of
signaling pathways, such as CaSR, CXCR-4, Cyt-c, and FAS,
as previously described [23, 25]. Total RNA was isolated
from the conjunctive areas using TRIZOL Reagent (Invit-
rogen, Thermo Fisher Scientific, Waltham, MA, USA) and
subjected to reverse transcription reactions with hexamer
and M-MuLV reverse transcriptase (New England Biolabs,
Ipswich, MA, USA). These cDNA products were used as
the PCR templates. The primer sequences used in real-time
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qPCR were as follows: CaSR forward 5-TGGCTCCCT-
GATCGGCTATACC-3, reverse 5-GGGAAGGCTTGA-
AGAGGATAATGTA-3; CXCR4 forward 5-GCAATG-
GGTTGGTAATCCTG-3, reverse 5-CCAGAAGGGGAG-
TGTGATGA-3; Cyt-c forward 5-CACAGATGCCAA-
CAAGAACAA-3, reverse 5-GTCTGCCCTTTCTCCCTT-
CT-3; FAS forward 5-GTCTTGGGGATTTGCCTACA-3,
reverse 5-GAACGCTACTGGGTTTGTCC-3; and GAPDH
forward 5-GACATGCCGCCTGGAGAAAC-3, reverse 5-
AGCCCAGGATGCCCTTTAGT-3. PCR was performed
using a real-time qPCR system (SYBR� Premix Ex Taq�
II; TaKaRa, Tokyo, Japan), with 39 cycles of denaturation at
95∘C for 30 s, annealing at 60∘C for 30 s, and polymerization
at 72∘C for 30 s. The relative gene expression levels were
calculated according toΔCt (ΔΔCt) method as follows: target
amount = 2−ΔΔCt [26]. GAPDH was used as an internal
control.

2.5. Immunohistochemical (IHC) Analysis and Neovascular-
ization. IHC was used to detect the types of vital molecules
expressed in tissues from conjunctive areas collected after
2 h or 7 d of reperfusion as previously described [17, 25,
27]. Briefly, 5 𝜇m thick paraffin sections were stained with
antibodies to CD34 (1 : 250; Abcam, Cambridge, UK) and
CaSR (1 : 200; Bioworld Technology).Themicrovessel density
(MVD) in neovascularization was assessed by measuring the
number of CD34-positive capillaries in 18 fields as described
by Hollingsworth et al. [28].

2.6. Apoptosis Assay. An In Situ Cell Death Detection Kit
(Roche, Basel, Switzerland) was utilized for quantitative
detection of apoptotic cells by labeling DNA strand breaks
(free 3-OH terminal) at the single-cell level [29]. Briefly,
5 𝜇m thick paraffin sections were managed as in regular IHC,
and then TUNEL reaction mixture (TdT-mediated dUTP-
X nick-end labeling, at 37∘C for 60min), Converter-POD
(at 37∘C for 30min), and DAB (at room temperature for
10min)were sequentially added to the sections.The apoptotic
ratio was calculated as the percentage of the number of
TUNEL-positive cells relative to the total number of vascular
endothelial cells [30].

2.7. Statistical Analysis. All data are expressed as the mean ±
standard deviation and were evaluated using SPSS (Version
19.0; IBM Corp., Armonk, NY, USA). Comparisons were
examined using Tukey’s method for one-way analysis of
variance. A value of 𝑃 < 0.05 was considered statistically
significant. The histograms were created by GraphPad Prism
5 (GraphPad Software, La Jolla, CA, USA), and the final
figures were assembled by CorelDRAW(R) Graphics Suite X4
(Corel, Ottawa, Ontario, Canada).

3. Results

3.1. Evaluation of Free Flap Survival. The necrotic ratio
(percentage of necrotic area relative to total flap surface area)
was calculated by computer-aided planimetry to evaluate
the free flap survival on postoperative day 7. Five deciduous

flaps were supplemented because of scratching by the rats.
As shown in Figure 1(a), the necrotic sites were consistently
located at the edge and distal end of each flap. The necrotic
ratios in the five groups (CaCl

2
, NPS2143 + CaCl

2
, SDF-

1𝛼 + CaCl
2
, AMD3100 + SDF-1𝛼 + CaCl

2
, and NS) were

14.16% ± 0.36%, 5.49% ± 0.62%, 4.87% ± 0.24%, 7.00% ±
0.09%, and 9.92% ± 0.41%, respectively.The necrotic ratio in
the CaCl

2
group was significantly higher than those in the NS

control group and other treatment groups, while the necrotic
ratios in the NPS2143 + CaCl

2
and SDF-1𝛼 + CaCl

2
groups

were significantly lower than that in the NS group (Figure 1).

3.2. Apoptosis Analysis. As shown in Figure 1(b), apoptotic
cells were detected by TUNEL staining after 2 h or 7 d of
reperfusion. The numbers of apoptotic cells in the CaCl

2

groupwere remarkably higher than those in the other groups,
while the apoptotic cells in the NPS2143 + CaCl

2
and SDF-1𝛼

+ CaCl
2
groups were notably decreased (Figure 1).

3.3. Immunohistochemical Analysis and Assessment of Neo-
vascularization. The MVD was evaluated to assess the neo-
vascularization of free flaps affected by I/R injury after 2 h
or 7 d of reperfusion (Figure 2(a)). The mean MVDs for
the five groups after 2 h of reperfusion were 3.00 ± 0.81,
9.14 ± 1.57, 9.29 ± 1.98, 5.57 ± 1.27, and 4.71 ± 0.95, while
the mean MVDs for the five groups after 7 d of reperfusion
were 4.57 ± 0.98, 11.29 ± 2.56, 11.43 ± 2.51, 7.71 ± 1.80, and
7.00 ± 0.82. These groups acquired the same tendency at two
different points. The CaCl

2
group showed the lowest MVD,

while the NPS2143 + CaCl
2
and SDF-1𝛼 + CaCl

2
groups

showed notably enhanced neovascularization compared with
the control group (Figure 2).

As shown in Figure 2(b), CaSR was assessed by IHC
staining. The mean optical densities of the five groups after
2 h of reperfusion following ischemia were 0.154 ± 0.005,
0.022 ± 0.004, 0.022 ± 0.006, 0.066 ± 0.002, and 0.084 ± 0.002,
while the mean optical densities after 7 d of reperfusion were
0.129 ± 0.009, 0.026 ± 0.007, 0.023 ± 0.003, 0.060 ± 0.004,
and 0.085 ± 0.004; that is, these groups also manifested the
same trend.TheCaCl

2
group exhibited the highest expression

of CaSR in vascular endothelial cells and partial blood cells,
while the NPS2143 + CaCl

2
and SDF-1𝛼 + CaCl

2
groups

showed the lowest CaSR expression compared with the NS
control group (Figure 2).

3.4. Expressions of Various Proteins by Western Blot Analysis.
The protein expression levels of p-CaSR, CXCR4, FAS, Cyt-
c, caspase-9, cleaved caspase-3, Bax, and Bcl-2 were assessed
by western blot analysis after 2 h or 7 d of reperfusion of free
flaps. The expression levels of p-CaSR, FAS, Cyt-c, caspase-
9, cleaved caspase-3, and Bax were higher in the CaCl

2

group than in all other groups, while these proteins showed
significantly lower expression levels in the NPS2143 + CaCl

2

and SDF-1𝛼 + CaCl
2
groups. The expression level of p-CaSR

was significantly different after 2 h of reperfusion between the
different treatment groups after I/R of free flaps; however, no
significance difference was observed after 7 d of reperfusion
among Groups B, C, D, and E after I/R. The expression levels
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Figure 1: (a) Free flap survival status on day 7 after ischemia/reperfusion (I/R).The necrotic ratio in the CaCl
2
group was significantly higher

than that of the other groups, while the necrotic ratios in the NPS2143 + CaCl
2
and SDF-1𝛼 + CaCl

2
groups were significantly lower than

that in the NS group. (b) Apoptotic cell analysis by TUNEL staining after 2 h or 7 d of reperfusion. Apoptotic cells in the CaCl
2
group were

remarkably increased, while apoptotic cells in the NPS2143 + CaCl
2
and SDF-1𝛼 + CaCl

2
groups were notably decreased compared with the

other groups. ∗∗∗𝑃 < 0.001 versus CaCl2 group,
###
𝑃 < 0.001 versus SDF-1𝛼 + CaCl

2
group, ##𝑃 < 0.01 versus SDF-1𝛼 + CaCl

2
group.

of FAS andCyt-c showed the same tendency both after 2 h and
7 d of reperfusion of free flaps.The protective protein CXCR4
showed the strongest expression, while the proapoptotic
protein caspase-9 displayed the weakest expression with time
in the SDF-1𝛼 + CaCl

2
group. Unlike the other proapoptotic

proteins, Bcl-2/Bax showed higher expression in the SDF-1𝛼
+ CaCl

2
group than in all other groups (Figure 3).

3.5. mRNA Expressions by qPCR Analysis. The mRNA
expression levels of CaSR, CXCR4, FAS, and Cyt-c were
detected by qPCR analysis after 2 h or 7 d of reperfusion of
free flaps. The expression level of CaSR was higher in the
CaCl
2
group than those in the NPS2143 + CaCl

2
and SDF-

1𝛼 + CaCl
2
groups at both time points. The expression level

of CXCR4 in the SDF-1𝛼 + CaCl
2
group was significantly

higher than that in the CaCl
2
group and control group after

I/R. Furthermore, the expression levels of FAS andCyt-c were
higher in the CaCl

2
group than those in all other groups after

2 h or 7 d of reperfusion of free flaps, showing a consistent
tendency with the expression levels of CaSR and western blot
analysis (Figure 4).

4. Discussion

In this study, the authors investigated whether CaSR is
functionally expressed in the vascular endothelial cells of
free flaps and plays a detrimental role in I/R injury of free
flaps. They also assessed whether administration of SDF-1𝛼
can protect free flaps from I/R injury and alleviate CaSR
partial (control group) or extensive (such as CaCl

2
group)

activation-mediated I/R injury in rat free flaps.
According to the results from the CaCl

2
(a CaSR agonist)

group, NPS2143 (a CaSR inhibitor) + CaCl
2
group, SDF-1𝛼

(a CXCR4 agonist) + CaCl
2
group, AMD3100 (a CXCR4

antagonist) + SDF-1𝛼 + CaCl
2
group, and NS control group,

p-CaSR and CaSR were extensively expressed in the vascular
endothelial cells of free flaps (Figures 2 and 3). Additionally,
the level of p-CaSR expression was closely associated with the
level of I/R injury.

Functional studies have demonstrated that activation of
CaSR by I/R could lead tomyocardial I/R injury by activating
cell apoptosis [6, 31, 32] and “calcium overload” because
CaCl
2
is a typical agonist of CaSR [7]; however, NPS2143 is

known to inhibit CaSR [33]. Consistentwith other studies, the
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Figure 2: (a) MVD in neovascularization stained by CD34-positive capillaries was examined using IHC staining after 2 h or 7 d of
reperfusion. The CaCl

2
group yielded the lowest MVD, while the NPS2143 + CaCl

2
and SDF-1𝛼 + CaCl

2
groups exhibited notably enhanced

neovascularization compared with the control group. (b) CaSR by IHC staining after 2 h or 7 d of reperfusion.The CaCl
2
group exhibited the

highest expression of CaSR in vascular endothelial cells and partial blood cells, while the expressions levels of CaSR in the NPS2143 + CaCl
2

and SDF-1𝛼 + CaCl
2
groups were lower than those in the NS control group. ∗∗∗𝑃 < 0.001 versus CaCl2 group,

∗
𝑃 < 0.05 versus CaCl2 group,

###
𝑃 < 0.001 versus SDF-1𝛼 + CaCl

2
group, ##𝑃 < 0.01 versus SDF-1𝛼 + CaCl

2
group.

authors demonstrated that a high expression level of p-CaSR
indicates severe I/R injury of free flaps, while a low p-CaSR
expression level indicates mild I/R injury (Figures 1–4). The
CaCl
2
group exhibited significantlymore flap necrosis, which

was consistent with the higher number of apoptotic cells
detected by the TUNEL staining (Figure 1); lower MVD and
more CaSR detected by IHC staining (Figure 2); the highest
proapoptotic protein expressions of p-CaSR, cleaved caspase-
3, and caspase-9 detected by western blot analysis (Figure 3);
and the highest mRNA expression of CaSR detected by qPCR

analysis (Figure 4). However, the NPS2143 + CaCl
2
group

exhibited less flap necrosis, which was consistent with fewer
apoptotic cells (Figure 1), a high MVD, less CaSR (Figure 2),
and low proapoptotic protein expressions of p-CaSR, cleaved
caspase-3 and caspase-9 (Figure 3) after 2 h of reperfusion
but not always after 7 d of reperfusion of free flaps. These
results imply that the potential hypoxic signaling pathways
that stimulate revascularization were downregulated and
that the revascularization process might cease after 7 days
[34]. These results suggest that extensive CaSR activation
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2
group,

while the expression levels of these proteins were significantly lower in the NPS2143 + CaCl
2
and SDF-1𝛼 + CaCl

2
groups. The expression

levels of p-CaSR showed a significant difference at hour 2 but not on day 7 after I/R of free flaps. The expression level of CXCR4 was the
strongest while that of caspase-9 was the weakest in the SDF-1𝛼 + CaCl

2
group over time. ∗∗∗𝑃 < 0.001 versus CaCl2 group,

∗∗
𝑃 < 0.01 versus

CaCl
2
group, ###𝑃 < 0.001 versus SDF-1𝛼 + CaCl

2
group, ##𝑃 < 0.01 versus SDF-1𝛼 + CaCl

2
group.

plays a detrimental role in I/R injury of free flaps by pro-
moting caspase-3/caspase-9-dominated cell apoptosis and
that extensive activation of CaSR could be induced by the
administration of CaCl

2
while this proapoptotic effect could

be neutralized by NPS2143
.

A variety of approaches or reagents have been admin-
istered to exert preventive effects against necrosis of free
flaps or skin grafts [1, 17, 35–37]. According to previous
studies, SDF-1 plays a critical and unique role in angiogenesis
and vasculogenesis by enhancingMVD in neovascularization
[15, 17]. AMD3100 functions as an antagonist of CXCR4
[16]. No relationship has previously been observed between
CaSR and the SDF-1𝛼/CXCR4 biological axis. However, the
present study initially revealed that the SDF-1𝛼/CXCR4 axis
was intimately associated with CaSR activation in I/R injury
of free flaps. The SDF-1𝛼 + CaCl

2
group exhibited the least

flap necrosis, which was consistent with fewer apoptotic
cells (Figure 1), high MVD, less CaSR (Figure 2), and low
proapoptotic protein expression of p-CaSR, cleaved caspase-
3 and caspase-9 (Figure 3) after 2 h of reperfusion but not
necessarily after 7 d of reperfusion of free flaps, revealing a

tendency very similar to that in the NPS2143 (i.e., a CaSR
inhibitor) + CaCl

2
group. The AMD3100 + SDF-1𝛼 + CaCl

2

group displayed an almost opposite tendency compared with
the SDF-1𝛼+CaCl

2
group.These results suggest that the SDF-

1𝛼/CXCR4 axis activated by SDF-1𝛼 might protect free flaps
from I/R injury by inhibiting caspase-3/caspase-9-induced
cell apoptosis and that the activation of SDF-1𝛼/CXCR4 axis
and this antiapoptotic effect could almost be neutralized by
AMD3100

.

These results provide insight into the activation of the
SDF-1𝛼/CXCR4 axis, showing that this axis could function
as a CaSR inhibitor to significantly alleviate the extensive
CaSR activation-mediated I/R injury of free flaps through
the inhibition of cell apoptosis by reducing the proapoptotic
protein expressions of FAS, Bax, Cyt-c, caspase-9, and cleaved
caspase-3 and increasing the antiapoptotic protein expression
of Bcl-2 (Figure 5). Interestingly, these results also suggest
that initiation of the SDF-1𝛼/CXCR4 axismight neutralize the
CaSR partial or extensive activation to alleviate the I/R injury
of free flaps by enhancement of MVD in neovascularization
through the abundant expression of CD34.
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Figure 4: The mRNA expression levels of CaSR, CXCR4, FAS, and Cyt-c were detected by qPCR analysis after 2 h or 7 d of reperfusion of
free flaps. The expression levels of CaSR, FAS, and Cyt-c were higher in the CaCl

2
group than those in all other groups at both time points.

The expression level of CXCR4 in the SDF-1𝛼 + CaCl
2
group was significantly higher than that in the CaCl

2
and control groups after I/R of

free flaps. ∗∗∗𝑃 < 0.001 versus CaCl2 group,
∗∗
𝑃 < 0.01 versus CaCl2 group,

∗
𝑃 < 0.05 versus CaCl2 group,

###
𝑃 < 0.001 versus SDF-1𝛼 +

CaCl
2
group, ##𝑃 < 0.01 versus SDF-1𝛼 + CaCl

2
group, #𝑃 < 0.05 versus SDF-1𝛼 + CaCl

2
group.
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Figure 5: Schematic diagram of the interaction between SDF-1𝛼/CXCR4 and CaSR. Activation of CaSR increased the expression of Bax, then
Cyt-c, caspase-9, and cleaved caspase-3; it finally caused cell apoptosis. Activation of the SDF-1𝛼/CXCR4 axis alleviated this process as Bcl-2.
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In summary, extensive p-CaSR/CaSR expression was
initially demonstrated in vascular endothelial cells of free
flaps affected by I/R injury, and inhibition of p-CaSR might
become a novel therapeutic target for free flaps affected
by I/R injury. The authors conclude that activation of the
SDF-1𝛼/CXCR4 axis and NPS2143 could protect free flaps
from I/R injury and counteract partial or extensive CaSR
activation-mediated necrosis of free flaps by inhibiting exten-
sive caspase-3/caspase-9 expression-induced cell apoptosis
and enhancement of MVD in the neovascularization of free
flaps. However, the underlyingmechanism of the interactions
between the SDF-1𝛼/CXCR4 axis and CaSR or other G
protein-coupled receptors remain to be elucidated.
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