
Clinical Trial/Experimental Study Medicine®

OPEN
Candidate genes investigation for severe
nonalcoholic fatty liver disease based on
bioinformatics analysis
Shan Qi, BM & Associate Chief Physiciana, Changhong Wang, BM & Associate Chief Physiciana,
Chunfu Li, BMa, Pu Wang, BMb, Minghui Liu, MM & Attending Physiciana,

∗

Abstract
Background:Nonalcoholic fatty liver disease (NAFLD) is themost common chronic liver condition worldwide. However, its etiology
and fundamental pathophysiology for the disease process are poorly understood. In this study, we thus used bioinformatics to
identify candidate genes potentially causative of severe NAFLD.

Methods: Gene expression profile data GSE49541 were downloaded from the Gene Expression Omnibus database. Tissues
samples from 32 severe and 40 mild NAFLD patients were evaluated to identify differentially expressed genes (DEGs) between the 2
groups, followed by analyses of Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes pathways. Then, a
weighted protein–protein interaction (PPI) network was constructed, and subnetworks and candidate genes were screened.
Moreover, the GSE48452 data (14 normal liver tissue samples and 18 nonalcoholic steatohepatitis samples) were used to verify the
results obtained from the above analyses.

Results:A total of 100 upregulated genes and 24 downregulated ones were identified in severe NAFLD. Functional enrichment and
pathway analyses showed that these DEGs were mainly associated with cell adhesion, inflammatory response, and chemokine
activity. The top 5 subnetworks were selected based on the PPI network. A total of 5 hub genes, including ubiquilin 4 (UBQLN4),
amyloid-beta precursor protein (APP), sex hormone–binding globulin (SHBG), cadherin-associated protein beta 1 (CTNNB1) and
collagen type I alpha 1 (COL1A1), were considered to be candidate genes for NAFLD. In addition, the verification data confirmed the
status of COL1A1, SHBG, and APP as candidate genes.

Conclusion:UBQLN4, APP,CTNNB1, SHBG, andCOL1A1might be involved in the development of NAFLD, and are proposed as
the potential markers for predicting the development of this condition.

Abbreviations: APP = amyloid-beta precursor protein, COL1A1 = collagen type I alpha 1, CTNNB1 = cadherin-associated
protein beta 1, DAVID = The Database for Annotation, Visualization, and Integrated Discovery, DEG = differentially expressed gene,
ES = enrichment score, FC = fold change, GEO = Gene Expression Omnibus, GO = Gene Ontology, HPRD = Human Protein
Reference Database, KEGG = Kyoto Encyclopedia of Genes and Genomes, NAFLD = Nonalcoholic fatty liver disease, NASH =
nonalcoholic steatohepatitis, PPI = protein–protein interaction, RMA = Robust Multichip Averaging, SHBG = sex hormone-binding
globulin, UBQLN4 = ubiquilin 4.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common
chronic liver condition worldwide.[1] Its incidence is as high as
30% in developed countries and nearly 10% in developing
countries.[2] NAFLD is a clinicopathologic syndrome that
encompasses several clinical entities, ranging from simple
steatosis to steatohepatitis, fibrosis, and end-stage liver disease.[3]

Because the etiology and fundamental pathophysiology underly-
ingNAFLD are poorly understood,[4] it is challenging to diagnose
and treat NAFLD patients before symptomatic cirrhosis or arises.
Gene expression profiling is considered as a powerful tool for

exploring diagnostic and predictive biomarkers, especially in the
targeting therapy for diseases such as cancer.[5,6] In a previous
study, the differences in expression of the transcriptome and
proteome in the liver between NAFLD and normal were
determined using a gene expression profile, and several key
pathways involved xenobiotic and lipid metabolism, inflamma-
tory response, and cell-cycle control were identified.[7] A study on
the differential gene expression in nonalcoholic steatohepatitis
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(NASH) also showed that the uptake transporter genes were
coordinately targeted for downregulation at the global level
during the pathological development of NASH.[8] In addition,
using microarray analysis, Moylan et al[9] indicated that the
expression of certain metabolism-related genes was induced in
severe NAFLD. Although many genes have been reportedly
related to the process of NAFLD development, candidate genes
potentially causative of severe NAFLD have not yet been
screened, and it has remained unclear whether such genes induce
severe NAFLD by interacting with each other.
Against the above background, the present study involved an

exploration of the candidate genes of NAFLD, the establishment
of a weighted regulatory network and the mining of hub genes in
severe NAFLD samples compared with mild NAFLD samples
were explored by using bioinformatic methods. We aimed to
provide molecular mechanisms underlying NAFLD, and investi-
gate new therapeutic targets of NAFLD.
2. Materials and methods

2.1. Samples

Gene expression profile data GSE49541[9] were downloaded
from Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/) with platform GPL570 (HG-U133_
jPlus_2) Affymetrix Human Genome U133 Plus 2.0 Array.
Data on 72 tissue samples were downloaded, including those
from 32 severe NAFLD patients (fibrosis stages 3–4) and 40
mild NAFLD patients (fibrosis stage 0–1). The groups were
matched for sex, age (±5 years) and body mass index ( kg/m2)
(±3 points). The samples were collected from NAFLD cases in
the Duke University Health System NAFLD Biorepository, with
approval from the Institutional Review Board of Duke
University. Biorepository liver samples are remnants from
clinically indicated liver biopsies.

2.2. Data preprocessing and differential expression
analysis

The normalization of gene expression profile data was performed
using the Robust Multichip Averaging (RMA) method[10] of the
affy package[11] in R (v.3.0.0) (http://bioconductor.org/biocLite.
R), and the Linear Models for Microarray Data (limma, http://
www.bioconductor.org/packages/release/bioc/html/limma.html)
package[12] was applied to identify the differentially expressed
genes (DEGs) by comparing the gene expression levels in samples
between mild and severe NAFLD cases. Resampling-based
empirical Bayes multiple testing procedures[13] were also
conducted to correct the P value. Subsequently, an adjusted P
value <.05 and jlogFC (log fold change)j >0.58 were selected as
the thresholds for DEG screening.

2.3. Gene Ontology annotation and pathway analysis

The Database for Annotation, Visualization, and Integrated
Discovery (DAVID)[14] (http://david.abcc.ncifcrf.gov/) is a tool
for the functional classification of genes that provides a
comprehensive set of functional annotation tools enabling
investigators to understand the biological meaning behind large
lists of genes. Here, DAVID was used for GO annotation analysis
(including the 3 categories of biological process, cellular
component, and molecular function 3 aspects) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
A P value<.05was considered to indicate a significant difference.
2

2.4. Weighted regulatory network construction

The protein–protein interactions (PPIs) that were related to genes
in GSE49541 were selected according to the Human Protein
Reference Database (HPRD, (http://www.hprd.org/).[15] The
average value of rank correlation coefficient ( rEij

�� ��) and the
difference (jDrEij j) for pairs of regulatory relationship in PPIs
were calculated according to the Eq. (1). The average absolute
value of the rank correlation coefficient in control samples was
considered as the weight of PPI,[16] and then the weighted PPI
network was constructed.

rEij ¼
Pðxik � xiÞðxjk � xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðxik � xiÞ

Pðxjk � xjÞ
q : ð1Þ

Here, Eij is the edge between gene Vi and gene Vj, k is the kth

sample, Vi and Vj are ranked by their expression in the samples,
respectively; Xjk is the rank of Vi of k

th sample, Xik is the rank of
Vj of k

th sample, xj and xj are the average rank s ofVi andVj in the
samples, respectively.

rE ij

�� �� ¼ 1
2

rEij1 þ rEij2

���
���; ð2Þ

� � � �

DrEij

�� �� ¼ 1
2

rEij1 � rEij2

�� ��; ð3Þ

Here, rEij1and rEij2 represent the Spearman coefficients of rEij2 in
2 samples, respectively.
Finally, based on the permutation test, the random jDrEij j of

each PPI was calculated. Subsequently, the sample labels were
permuted for 10,000 times and a random jDrEij j was generated.
The PPIs with a jDrEij j value >90% random jDrEij j value were
filtered out.[16]

2.5. Subnetwork investigation and protein–protein
interaction score calculation

In the PPI network, the nodes with a degree >15 were defined as
candidate genes potentially causative of disease, and the
subnetworks consisted of candidate genes and the genes with
which they interact. The score of PPIs in the subnetworks were
also calculated. Briefly, all PPIs in the weighted network were
ranked from large to small according to their weight coefficient
and this was defined as the background set (E), whereas the
subnetwork was defined as the objective set (S). Then, the
enrichment score (ES) of the subnetwork was calculated by
walking down background set using the Gene Set Enrichment
Analysis method[17] (http://www.broadinstitute.org/gsea/index.
jsp). The formula is listed as below:

PhitðS; iÞ ¼
X

Ej∈S;j�i

rj
�� ��P
NR

;

where

NR ¼
X
Ej∈S

rj
�� ��P

PmissðS; iÞ ¼
X

Ej∈S;j�i

1
N �NH

; ð4Þ

where Ej is the jth PPI in the ranked regulatory pairs; rj is the
weight of the jth PPI pair in background set; P is a parameter and
set as 1; N is the number of PPI in E; NH is the number of PPI in
the subnet S. The ES was equal to the maximum deviation
between Phit and Pmiss.
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The PPI without contribution to ES was removed from
subnetwork.[16,17] To estimate the significance of ES of the
subnetwork, pairs of background regulatory relationships were
rearranged randomly for 1000 times, the random ES of
subnetwork was calculated, while the ES was transformed into
Z value based on the equation[16]:

Zs ¼ ES� ES

S
0 ; ð5Þ

where ES (bar) is the mean of the random ES set and S0 is the
standard deviation of the random ES set.

2.6. Calculating the enrichment score of differentially
expressed genes in subnetwork

On the basis of the subnetwork obtained above, the ES of DEGs
were calculated. Briefly, the genes in gene microarray and
subnetwork were considered as background set and objective set,
respectively; then, these genes were arranged from large to small;
the ES of subnetwork walked by background set was calculated
using the following equation[16]:

PhitðStrimmed; iÞ ¼
X

gj∈Strimmed;j�i

rj
�� ��P
MR

;

where

MR ¼
X

gj∈Strimmed

rj
�� ��P

PmissðStrimmed; iÞ ¼
X

gj∈Strimmed ;j�i

1
M�MH

; ð6Þ

Here, gj is the j
th gene in the ranked genes, rj is the magnitude of

differential expression of the jth gene, P is a parameter and set
as 1, M is the number of genes in L, and MH is the number of
genes in Strimmed.
To estimate the significance of ES of the subnetwork, the

background genes were rearranged randomly for 1000 times.
The random ES of the subnetwork was calculated, followed by
the ES being transformed into a Z value based on the Eq. (5).

2.7. Candidate genes screening

The 2 Z values obtained as described above were normalized and
summed, followedby the acquisitionof the combined these 2parts.
Here, using this combined score, the top 5 subnetworks were
considered as candidate subnetworks of the disease, whereas the
hub genes were defined as candidate genes of the disease.[16]

2.8. Data verification

Gene expression profile data GSE48452 were downloaded from
the GEO database (http://www.ncbi.nlm.nih.gov/geo/) with the
platform (HuGene-1_1-st) Affymetrix HumanGene 1.1 STArray
[transcript (gene) version], including data on 14 normal liver
tissue samples and 18NASH samples. The liver samples had been
obtained from NAFLD patients, who had provided written
informed consent. The study protocol was also approved by the
institutional review board (“Ethikkommissionder Medizinischen
Fakult der University Kiel,”D425/07, A111/99). Empirical Bayes
analysis using t test procedures in the limma package (Version
3.10.3, http://www.bioconductor.org/packages/2.9/bioc/html/
limma.html) was applied to identify the DEGs by comparing
gene expression levels between normal and NASH samples.
3

Subsequently, an adjusted P value <.05 and jlogFCj >0.58 were
selected as the significance thresholds for DEGs. Subsequently,
the Pearson correlation analysis was performed to confirm the
differences between the key candidate genes in severe NAFLD
and the target DEGs with which they interacted.
3. Results

3.1. Identification of differentially expressed genes

The gene expression profile data were normalized by using the
RMA method (Fig. 1). Upon applying the thresholds of an
adjusted P value <.05 and jlogFCj >0.58, a total of 124 DEGs
were identified, including 100 upregulated genes and 24
downregulated ones (Supplementary Table 1, http://links.lww.
com/MD/B825). The heatmap of the DEGs is shown in Figure 2.
The top 10 upregulated genes and downregulated genes are listed
in Table 1.

3.2. Gene Ontology annotation analysis and pathway
analysis

GO annotation analysis of the DEGs was performed by using
DAVID, the main results of which are listed in Table 2
(Supplementary Table 2, http://links.lww.com/MD/B826). The
biological processes that were particularly commonly associated
with NAFLD were cell adhesion, chemotaxis, collagen fibril
organization, and inflammatory response; the cellular compo-
nents were extracellular matrix and collagen; and the molecular
function was chemokine activity. Furthermore, the identified
DEGs were significantly clustered in cell adhesion and chemokine
signaling pathways.
3.3. Weighted protein–protein interaction network analysis

Based on the HPRD, the PPIs related to genes in the gene
microarray were selected, and a PPI networkwas constructed. The
entire network consisted of 8964 nodes and 34,915 edges (Fig. 3).

3.4. The enrichment score of subnetwork and candidate
genes

By calculating the weighted PPIs of the subnetwork and the score
of DEGs, the significance of ES was estimated withZ value. Then,
the top 5 subnetworks with the highest Z values were selected
(Fig. 4). The corresponding hub genes were considered as
candidate genes, which included ubiquilin 4 (UBQLN4), also
known as ataxin-1-interacting protein (A1UP), amyloid-beta
precursor protein (APP), sex hormone–binding globulin (SHBG),
cadherin-associated protein beta 1 (CTNNB1) and collagen type
I alpha 1 (COL1A1) (Table 3).

3.5. The results of verification data

To confirm the above results, the DEGs between normal and
NASH samples were identified through data verification. A total
of 181 DEGs were identified, including 119 upregulated DEGs
and 62 downregulated DEGs (Supplementary Table 3, http://
links.lww.com/MD/B827). As shown in Table 4, COL1A1 and
SHBG exhibited significant differences in their expression level.
AKR1B10 and CYP2C19, which were included in the original
top10 DEGs, were also verified. UBQLN4, APP, and SHBG
interacted with the target DEGs in the PPI networks. Pearson
correlation analysis revealed that there were significant positive

http://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/packages/2.9/bioc/html/limma.html
http://www.bioconductor.org/packages/2.9/bioc/html/limma.html
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Figure 1. Box plot of gene expression profile data before and after normalization. The top box represents the distribution of data before normalization, and the
bottom box represents the distribution of data after normalization. Horizontal axis represents 72 nonalcoholic fatty liver disease samples.
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correlations between APP and its target-DEGs (COL1A2,
CRYAB, COL4A1) (P< .05, Fig. 4A–C).
4. Discussion

NAFLD, is an emerging public health problem, that may be a
highly chronic liver condition.[1] Although the histologic method
has been approved, a useful therapy method for treating NAFLD
is yet to be established.[18] Gene expression profiling is valuable
for researching diagnostic and predictive biomarkers of disease,
including NAFLD,[9] which may facilitate the development of
new therapeutic drugs. In the present study, a total of 124 DEGs
associated with severe NAFLD were identified by comparing the
gene expression profile with that in mild NAFLD. These DEGs
were mainly associated with cell adhesion, inflammatory
response, and chemokine signaling pathways. Selection of top
5 subnetworks based on the PPI network indicated that
UBQLN4, APP, CTNNB1, SHBG, and COL1A1 may be
involved in the development of NAFLD, and these were
considered to be markers with potential utility for predicating
NAFLD.
4

In a previous study, inflammation was proved to be associated
with the process of NAFLD development.[19] Mikolasevic et al[20]

demonstrated that in patients maintained on hemodialysis, there
is probably some interaction between NAFLD and inflammation,
malnutrition, and atherosclerosis. In support of this, a significant
correlation between the intima-media thickness of the carotid
artery and hepatic inflammation score was identified in NAFLD
rats.[21] Moreover, Browning and Horton[22] indicated that the
histological hallmarks of NASH, such as inflammation, cell
death, and fibrosis promoted the progression of NAFLD. In fact,
findings showed that inflammation resulting in a stress response
of hepatocytes, might lead to lipid accumulation, and therefore
could precede steatosis in NASH.[23] In another study based on
gene expression in human cases of NAFLD, Greco et al[19]

asserted that cell adhesion was significantly associated with liver
fat content. In severe liver injury, neural cell adhesion molecules
weaken the cell–cell and cell–matrix interactions, thereby
allowing ductular reactions/hepatic progenitor cells to migrate
for normal development and regeneration.[24] In fact, each
cell adhesion molecule may play an important role during
development in hepatic histogenesis, including hepatoblast/



Figure 2. The expression of differentially expressed genes in nonalcoholic fatty liver disease samples. The bottom horizontal axis represents nonalcoholic fatty liver
disease samples, the first 40 samples were from mild nonalcoholic fatty liver disease samples and the other 32 samples were from severe nonalcoholic fatty liver
disease. The right vertical axis represents genes. Red indicates upregulated genes and green indicates downregulated genes.

Table 1

The top 10 upregulated and downregulated differentially expressed genes.

Gene logFC Adjusted P value Gene logFC Adjusted P value

CXCL6 1.901064 7.62E-11 CYP2C19 �1.80146 1.00E-05
EPCAM 1.87717 1.27E-09 DHRS2 �1.21959 2.38E-04
AKR1B10 1.690964 7.00E-03 MT1M �1.13824 8.38E-03
CD24 1.571155 8.31E-11 RPS4Y1 �0.98888 4.60E-02
THBS2 1.386229 3.86E-12 GNMT �0.96755 1.51E-03
LUM 1.34156 2.70E-13 C5orf27 �0.94409 2.82E-02
STMN2 1.314227 1.19E-12 OAT �0.89612 3.22E-04
UBD 1.269138 1.37E-04 EIF1AY �0.8862 4.15E-02
GEM 1.266165 1.22E-11 FAM151A �0.86835 3.12E-02
CHI3L1 1.260242 1.41E-04 CNDP1 �0.85161 5.27E-04

FC = fold change.

Qi et al. Medicine (2017) 96:32 www.md-journal.com
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Table 2

Gene Ontology annotation analysis of differentially expressed genes in 3 aspects.

GO Term Count P

BP GO:0007155∼cell adhesion 23 2.60E-09
GO:0022610∼biological adhesion 23 2.67E-09
GO:0009611∼response to wounding 17 8.94E-07
GO:0042330∼taxis 9 1.76E-05
GO:0006935∼chemotaxis 9 1.76E-05
GO:0030199∼collagen fibril organization 5 4.94E-05
GO:0006954∼inflammatory response 11 1.01E-04
GO:0007626∼locomotory behavior 10 1.40E-04
GO:0006952∼defense response 14 3.91E-04
GO:0007160∼cell-matrix adhesion 6 4.20E-04

CC GO:0005576∼extracellular region 51 1.88E-16
GO:0044421∼extracellular region part 35 5.59E-15
GO:0031012∼extracellular matrix 22 9.60E-14
GO:0005578∼proteinaceous extracellular matrix 21 2.46E-13
GO:0044420∼extracellular matrix part 11 1.80E-08
GO:0005615∼extracellular space 21 1.60E-07
GO:0005581∼collagen 7 2.22E-07
GO:0005583∼fibrillar collagen 4 8.87E-05
GO:0005604∼basement membrane 6 3.09E-04
GO:0005584∼collagen type I 2 0.015121

MF GO:0005201∼extracellular matrix structural constituent 9 1.33E-07
GO:0008009∼chemokine activity 6 1.57E-05
GO:0042379∼chemokine receptor binding 6 2.15E-05
GO:0048407∼platelet-derived growth factor binding 4 5.11E-05
GO:0005125∼cytokine activity 9 6.07E-05
GO:0001871∼pattern binding 8 9.45E-05
GO:0030247∼polysaccharide binding 8 9.45E-05
GO:0005198∼structural molecule activity 14 4.07E-04
GO:0005539∼glycosaminoglycan binding 7 4.18E-04
GO:0030246∼carbohydrate binding 10 7.61E-04

KEGG_pathway hsa04512:ECM-receptor interaction 7 9.37E-05
hsa04510:Focal adhesion 7 8.86E-03
hsa04062:Chemokine signaling pathway 6 2.58E-02
hsa00591:Linoleic acid metabolism 3 2.61E-02

BP = biological process, CC = cellular component, MF = molecular function.

Qi et al. Medicine (2017) 96:32 Medicine
hepatocyte-stellate cell interactions. In the present study, the
selected DEGswere particularly associatedwith processes such as
cell adhesion and inflammatory response. Thus, we speculated
that these biological processes such as cell adhesion, fibrosis, and
inflammatory response might play important roles in the
development of NAFLD.
COL1A1 has been demonstrated to be upregulated in liver

fibrosis by the activation of stellate cells and the progression of
liver fibrosis.[26,27] Zhao et al[28] showed that COL1A1 gene
polymorphism was associated with liver fibrogenesis, since the T
allele at 1997 of COL1A1 was crucial to the increased
transcriptional activity. COL1A2 is an independent predictor
Figure 3. The top 5 subnetworks with the highest Z scores. Red spots represent di
expressed genes.

6

of survival in diseases. Many diseases that are inherited in an
autosomal dominant fashion are caused by mutations in
the COL1A1/COL1A2 genes.[30,31] Because COL1A1 and
COL1A2 were revealed to be DEGs associated with NAFLD
in this study, we speculated that not only COL1A2, but also the
dysregulation of COL1A1/COL1A2 participated in the progres-
sion of NAFLD. Furthermore, the present study based onGO and
KEGG pathway analyses showed that COL1A1might be related
to cell adhesion and inflammation; thus, COL1A1/COL1A2
might play important roles in diseases by regulating genes
associated with cell adhesion and inflammation. In addition,
COL1A1 was confirmed to be upregulated in NASH samples
fferentially expressed genes, and blue or yellow spots represent nondifferentially



[34]
Table 3

The candidate genes and their interacted genes.

Candidate genes Z score Target-DEGs

UBQLN4 1.68 SPP1, GPX7, OAT . . .
APP 1.56 COL1A2, CRYAB, COL4A1 . . .
SHBG 1.43 COL1A2, MT1F, PTGDS . . .
CTNNB1 1.39 RXRA, TCF4, H1F1A . . .
COL1A1 1.38 TXN, FGF7, HTRA1 . . .

Figure 4. Pearson correlation analysis between APP and the target-DEGs which they interact. A, the correlation between APP and COL1A2 (R=0.519, P= .002);
B, the correlation between APP and COL4A1 (R=0.638, P< .001); C, the correlation between APP and CRYAB (R=0.443, P= .011). R represents Pearson
correlation coefficient,R>0 indicates a positive correlation; R<0 indicates a negative correlation; if jRj is further away from 0, the correlation is stronger. The P value
indicates the significant difference. APP = amyloid-beta precursor protein, DEG = differentially expressed gene.

Qi et al. Medicine (2017) 96:32 www.md-journal.com
compared with the level in normal controls. SHBG, a glycopro-
tein expressed predominantly in the hepatocytes, regulates the
transport of sex steroid hormones in the bloodstream to their
target tissues.[32] As one of the circulation factors released from
fatty liver, SHBG was reported to be directly involved in the
pathogenesis of local and systemic inflammation, and peripheral
as well as hepatic insulin resistance.[33] In the present study, APP
and SHBG were shown to be connected by COL1A2, which
further indicates that the APP and SHBG genes have a close
relationship in the process of NAFLD development.
Ubiquilins (UBQLN), a family of ubiquitin-binding proteins,

are involved in several protein degradation pathways and have
Table 4

The results of verification data including the top 10 differentially exp

Genes

Top 10 DEGs CXCL6
EPCAM
AKR1B10
CD24
THBS2
CYP2C19
DHRS2
MT1M
RPS4Y1
GNMT

The 5 candidate genes COL1A1
UBQLN4
APP
SHBG
CTNNB1

Original indicates the upregulation and downregulation of DEGs in the manuscript.
DEG = differentially expressed gene, FC = fold change.
Bold values signify the P value in the table.
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been implicated in various diseases. Previous studies
indicated that the members of this family-mediated degradation
of misfolded proteins and they were implicated in a number of
pathological and physiological conditions.[34–36] For example,
Matsuda et al[37] indicated that UBQLN4 was highly expressed
in organs such as liver. Unfortunately, to date, few details of the
relationship between UBQLN4 and NAFLD have been
clarified. In this study, UBQLN4 was revealed to be a hub
gene in the PPI network. Thus, we speculated that UBQLN4
might participate in the progression of via the degradation of
misfolded proteins. CTNNB1 is located on the short arm of
chromosome 3, as determined by in situ fluorescence analy-
sis,[38] and has been reported to be commonly involved in
benign liver tumorigenesis.[39] Mutation of the CTNNB1 gene
mutation is also an important indicator of prognosis in primary
sporadic aggressive fibromatosis.[40] In addition, CTNNB1 was
also found to often display point mutations resulting in loss of
function in a range of cancers, with the notable exception in
hepatocellular carcinoma,[41] revealing that the expression level
of CTNNB1 might have great significance for liver function.
Kubota et al[42] indicated that mutational analysis of CTNNB1
for predicting disease such as solid-pseudopapillary neoplasm is
feasible. In the present study, CTNNB1 investigated given its
ressed genes and the 5 candidate genes.

LogFC P Original

0.153 .323 Up
0.532 .204 Up
1.693 .020 Up
0.495 .189 Up
0.453 .141 Up

�0.674 .030 Down
�0.271 .405 Down
�0.369 .321 Down
�0.340 .656 Down
�0.671 .055 Down
0.713 .005 Up
0.113 .241 /
0.056 .375 /

�1.008 .001 /
0.014 .833 /
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status here as a hub protein. The findings suggest that CTNNB1
is useful as a target gene for further investigation of NAFLD.
The analyses demonstrated the detailed action of these 2
candidate genes in NAFLD, and also showed that the
interaction between them is rare. Therefore, further experiments
are needed to explain the functions of CTNNB1 and UBQLN4
in NAFLD.
Despite all these results, there are some limitations in the

present study. First, verification experiments were not performed
because of the lack of sufficient liver tissue samples. Second, we
did not obtain the gene expression data, including for normal
liver tissue, severe NAFLD tissue, and mild NAFLD tissue,
categorized according to fibrosis stage in the NCBI database.
Therefore, more experiments and data are required to verify the
above results.
In conclusion, cell adhesion, fibrosis, and inflammatory

response might play crucial roles in severe NAFLD. Similarly,
5 candidate genes, namely UBQLN4, APP, CTNNB1, SHBG,
and COL1A1 might be involved in the development of NAFLD,
and might be considered as potential markers for predicting the
development of NAFLD. The findings of this study might explain
the development of NAFLD and reveal new target genes for
treating NAFLD.
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