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Abstract. Colorectal cancer (CRC) is among the most 
common cancers. In fact, it is placed in the third place among 
the most diagnosed cancer in men, after lung and prostate 
cancer, and in the second one for the most diagnosed cancer in 
women, following breast cancer. Moreover, its high mortality 
rates classifies it among the leading causes of cancer‑related 
death worldwide. Thus, in order to help clinicians to optimize 
their practice, it is crucial to introduce more effective tools 
that will improve not only early diagnosis, but also prediction 
of the most likely progression of the disease and response to 
chemotherapy. In that way, they will be able to decrease both 
morbidity and mortality of their patients. In accordance with 
that, colon cancer research has described numerous biomarkers 
for diagnostic, prognostic and predictive purposes that either 
alone or as part of a panel would help improve patient's clinical 

management. This review aims to describe the most accepted 
biomarkers among those proposed for use in CRC divided 
based on the clinical specimen that is examined (tissue, faeces 
or blood) along with their restrictions. Lastly, new insight 
in CRC monitoring will be discussed presenting promising 
emerging biomarkers (telomerase activity, telomere length and 
micronuclei frequency).
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1. Introduction

Colorectal cancer (CRC) is ranked as one of the most common 
types of cancer. In fact, according to data from the USA, for 
the male population it is ranked third of the most diagnosed, 
after lung and prostate cancer, and for the female population, 
it is ranked second, following breast cancer (1). Moreover, it is 
considered as one of the leading causes of cancer-related death 
worldwide (2,3) In the USA alone, CRC is responsible for the 
second greatest number of cancer-related deaths. As a matter 
of fact, the American Cancer Society estimated that for 2013 
alone, the number of first diagnosed CRC cases and that of 
deaths due to CRC was as high as 142,820 and about 50,830, 
respectively (4). However, regardless of the fact that both public 
and medical awareness concerning CRC has risen during the 
last decade, approximately 50% of the patients referred with 
CRC, at the time of diagnosis present distant metastases. It 
is clear that CRC is a rather heterogeneous disease by means 
of its various clinical manifestations, biological behavior and 
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in-tumor variety of mutations (5,6) making it a true chal-
lenge, not only to detect in an early stage, but also to treat or 
even manage in the long term. Nowadays, it is evident that 
CRC is a multifactorial/polygenic disease arising both due 
to epigenetic as well as genetic manifestations occurring in 
a number of genes with an unparalleled role for the main-
tenance of normal cellular homeostasis. Such genes may be 
tumor suppressor genes, oncogenes, mismatch repair genes 
and cell cycle regulating genes in colon mucosal cells (7). 
Intense research has highlighted the importance of three 
major molecular pathways as the main cause of these genetic 
alterations that in turn result in carcinogenesis: Chromosomal 
instability (CIN), microsatellite instability (MSI), and the 
CpG island methylation phenotype (CIMP) (5,8). All these 
pathways attribute to the transformation of an adenoma to 
carcinoma, a multistep carcinogenic process known as the 
adenoma-carcinoma sequence (9), which is thought to be a 
common site for all CRCs. An illustrated form of this process 
is presented in fig. 1. However, the period between those 
two hallmarks provides a diagnostic window for the early 
detection of CRC. As a result, the current research trend aims 
to describe new markers for diagnosis (these markers are 
meant to be used for risk stratification and early detection of 
colorectal polyps), prognosis (these markers will give an indi-
cation of the likely progression of the disease) and prediction 
of the biological behavior of a certain therapeutic regimen, 
making the clinician able to transform the knowledge of the 
tumor biology into a personalized decision-making process 
for each patient (8,10,11). Therefore, the information coming 
from CRC biology combined with the assessment of serum 
and tissue markers with prognostic and predictive value, 
currently constitutes, the pillars in the treatment of early-stage 
cases as well in the clinical management of advanced disease 
offering new methods to estimate the therapeutic efficacy and 
the overall outcome. An overview of the current and potential 
biomarkers used in CRC is shown in fig. 2. In addition to CRC 
biomarkers, novel molecular imaging techniques using hybrid 
positron emission tomography (PET)/computed tomography 
(CT) systems enable accurate initial staging, efficient assess-
ment of treatment response, and follow-up, facilitating 

individualized treatment strategies in CRC patients (12). 
furthermore, novel positron emitting radiopharmaceuticals 
together with hybrid PET/magnetic resonance (MR) systems, 
which provide enhanced soft tissue resolution and incremental 
diagnostic information from functional MR methods such as 
diffusion-weighted imaging, hold promise for increased accu-
racy in CRC staging, restaging, early detection of recurrence, 
and accurate treatment planning for radiotherapy (13).

2. Diagnostic markers

General. Concerning the detection of CRC in the general 
population, the screening methods most commonly offered 
until now have included faecal occult blood testing (fOBT), 
flexible sigmoidoscopy and colonoscopy while CT colo-
nography is a more recent addition to the CRC screening 
modalities (14). Even though screening has clearly proved 
to decrease the risk of CRC-associated mortality, screening 
effectiveness is restricted by limitations of test performance, 
inadequate access to CRC screening tests and loose screening 
compliance. Consequently, a great number of patients at the 
time of diagnosis present with locally advanced or metastatic 
disease, a phenomenon that is observed even among pros-
perous nations, including the United States (15). In accordance 
to that, CRC researchers focus their research on innovative 
ideas to identify molecular markers for the development of 
highly accurate, non-invasive screening tests for CRC in the 
hope of increasing the compliance of the population and to 
decrease potential unwanted side-effects which accompany 
the more invasive techniques. Several molecular classes 
have been tested for their potential use in CRC screening: 
DNA (16-18), proteins (19), messenger RNA (mRNA) (20) and 
microRNA (miRNA) (21-24), and have all proven to be quite 
promising in early phase biomarker studies (25). However, 
until now, only two tests (faecal haemoglobin and DNA-based 
markers) meet the pre-clinical and clinical criteria required for 
their efficient transduction from the laboratory to the clinical 
setting. In fact, recently, a multi-target stool DNA (MT-sDNA) 
test has proven better sensitivity, although with lower speci-
ficity, to faecal haemoglobin by immunochemical testing for 

figure 1. Steps of CRC progression and a summarized rendering of the pathogenetic model. CRC, colorectal cancer; APC, adenomatous polyposis coli.
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the detection of curable-stage CRC and advanced adenomas 
while exhibiting overall cancer detection similar to colonos-
copy (26). As a result, stool DNA testing was approved in the 
United States by fDA for general population screening of 
average risk, asymptomatic individuals in 2014.

Invasive techniques and diagnostic tissue markers
The most commonly invasive technique used, colonoscopy, 
provides the clinician a great advantage, to evaluate in real 
time the presence/absence of a polyp and to resect it at the 
same time, if possible, thus representing the standard tool of 
practice for CRC evaluation (10). Resecting a polyp gives the 
clinician an opportunity to use immunohistochemical (IHC) 
staining, typically used in the diagnosis of gastrointestinal 
neoplasms, in order to facilitate accurate tumor classifica-
tion. By doing that, two main goals are set: The first one is 
to exclude morphologic mimickers or to identify the closest 
morphologically tissue or organ of origin in cases of meta-
static carcinoma of unknown origin and thus confirm the 
diagnosis. The second one is to help estimate the most likely 
prognosis and even predict response to a given chemotherapy 
or novel molecular-targeted therapy (15,26). Diagnostic tissue 
biomarkers therefore provide additional and fundamental 
information that complement clinical colonoscopy findings.

Cytokeratins (CKs). CKs, proteins expressed by epithelial 
cells, are members of the intermediate filaments family along 
with vimentin, desmin, neuro-filament, and glial-filamen. 
Numerous studies have attempted to identify a possible 
expression pattern of CKs and connect it with either the 
organ of origin (in order to determine whether it is a primary 
CRC) or with tumor progression. However, as more and 
more studies are conducted it is becoming clear that such a 
connection is not likely to be identified in the near future. 
To begin with, CK7 and CK20 are helpful when the clini-
cian needs to differentiate metastases from CRC, which are 
usually CK7-/CK20+, from other tumors (27). CK20 almost 
selectively stains the normal gland cells of the colonic mucosa 
and Merkel cells while its expression is rarely may be seen 
in the urothelium or other mucosas (28,29). By contrast, CK7 
is usually expressed in urinary bladder and female genital 
tract epithelia, mesothelium, normal lung, and, rarely, it may 
be observed in gastric and intestinal normal glands. However, 
the majority of researchers agree that it is not found in 
normal colonic mucosa (28,30). Based on these findings, the 
immunophenotype CK7/CK20 is used as a routine in order to 
differentiate CK20-expressing metastasis of colorectal adeno-
carcinomas from lung, ovarian or bladder carcinomas, which 
are usually stained with CK7 (31). However, it is reported that 

figure 2. A graphic overview of the current and potential biomarkers used in CRC. CRC, colorectal cancer; CDx2, caudal type homeobox 2; CEA, carcinoem-
bryonic antigen; CIN, chromosomal instability; MSI, microsatellite instability; CIMP, CpG island methylation phenotype; APC, adenomatous polyposis coli; 
ctDNA, circulating tumor DNA; miRNA, microRNA; SATB2, special AT-rich sequence binding protein 2; CK, cytokeratin; VEGf, vascular endothelial growth 
factor; IMP3, insulin‑like growth factor‑II mRNA‑binding protein 3; TNIK, Traf2‑ and Nck‑interacting kinase; BRAF, B‑rapidly accelerated fibro‑sarcoma 
(proto-oncogene); MSI, microsatellite instability; CA 19-9, cancer antigen 19-9; CTCs, circulating tumor cells; PI3K, phosphoinositide 3-kinase; MN, micronuclei.
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non-neoplastic colonic mucosa proximal to the rectum exhibits 
a CK7-/CK20+ phenotype, as is the case for 90% of CRCs (32). 
When CK17 is included in the diagnostic panel, the efficacy of 
the test is improved as less than 10% of CRCs express CK17 
in contrast to other carcinomas that are more often positive for 
CK17 (including stomach, endometrium and urine bladder). In 
addition, pancreatic ductal carcinomas are consistently posi-
tive and a number of carcinomas from other sites, may exhibit 
CK17 expression (33). furthermore, when CRC progression is 
studied, CK20 and CK7 can be useful. Results indicate that 
advanced CRCs were more often CK20+/CK7+ compared to 
early-stage cancers, which were predominantly CK20+/CK7-. 
Thus, CK7 expression may be a differentiating marker for the 
progression of CRC (34).

Caudal type homeobox 2 (CDX2). CDx2 is a transcrip-
tion factor encoded by CDX2 gene, a member of the caudal 
subgroup of homeobox genes. Its main role is to ensure main-
tenance of a cellular intestinal phenotype during the in utero 
and ex utero life (35). CDx2 presents strong expression 
patterns in epithelia of the normal small intestine, appendix, 
colon, and rectum as well as in the pancreatic centroacinar and 
interacinar ductal cells (36). It is revealed that loss of CDx2 
may give birth to human CRC. CRCs, beside those exhibiting 
MSI, are consistently CDx2-positive (37). In fact, a quite 
interesting research recently investigated the effect of restora-
tion of CDx2 expression on colon cancer cell viability, colony 
formation, cell cycle distribution, apoptosis, invasion ability 
and xenograft tumor growth in nude mice (38). According 
to the researchers, CDX2 upregulation significantly reduced 
the life span and inhibited colony formation, and the invasion 
and migration ability of LoVo cells. Moreover, it was able 
to induce cell cycle arrest and apoptosis in vitro, especially 
under hypoxic culture conditions (38). According to data from 
histological studies, expression patterns of CDx2 are found in 
a variety of neoplastic tissues such as adenocarcinomas that 
exhibit intestinal-type differentiation, including adenocar-
cinomas of the gastroesophageal junction, bladder, urachus, 
small bowel, pancreas, appendix, and ovary (37).

Villin. Villin is a cytoskeletal actin-binding protein that is 
associated with the microfilament family. It is normally found 
in cells that exhibit highly specialized, brush border-type 
microvilli, similar to enterocytes (39). Villin is associated 
with elimination of polarity that the epithelium exhibits, thus 
altering tissue architecture (40). Thus, in CRCs containing 
a micropapillary pattern, villin IHC has been effective for 
tracking the polarity in this type of CRC (41). The specificity 
of villin as a marker of intestinal origin is limited, similar to 
CDx2, as positivity may also be marked in adenocarcinomas 
with intestinal differentiation arising from a wide variety of 
organs including stomach, lung, and ovary as well as in malig-
nancies of other sites such as the endocervix and liver (the 
latter more rarely, though) (42).

β‑catenin. β-catenin is a multifunctional protein that is 
involved both in cell adhesion and intracellular signaling, 
with the latter being accomplished through β-catenin's actions 
through the Wnt signaling pathway (43). Activation of the Wnt 
signaling pathway (fig. 3) increases the cytoplasmic pool 
of free β-catenin and, to a smaller extent, the nuclear pool 
where it induces proliferation. The Wnt signaling pathway in 
its normal form is highly activated in the majority of CRCs 

as a result of mutant adenomatous polyposis coli (APC) or 
β-catenin. Moreover, upregulated Wnt signaling has a key role 
in the pathogenesis of CRC (44). In the absence of functional 
APC, as it often happens in CRC, nuclear β-catenin can be 
identified immunohistochemically (44,45). Although nuclear 
expression of β-catenin is not unique to CRC, it can be proven 
useful as part of a diagnostic panel.

Carcinoembryonic antigen (CEA). CEA are membrane- 
associated glycoproteins playing a number of roles in cell adhe-
sion or signal transduction (46). Monoclonal CEA (mCEA) 
may be expressed in a wide variety of adenocarcinomas, 
including those arising from the colon (47). Although this 
lack of specificity limits its value as a diagnostic marker of 
CRC, it remains a useful component of a broad diagnostic 
panel. In a meta-analysis study by Tan et al (48) based on 
20 different studies, serum CEA has been demonstrated to 
comprise an exam of elevated specificity, although sensitivity 
was inadequate when tracing CRC recurrent conditions. The 
cut-off range varied among these studies from 3 to 15 ng/ml, 
suggesting that a measure of 2.2 ng/ml would be the optimal 
regarding sensitivity and specificity (48). Evidently, at this point 
circulating CEA may constitute a primary means of recording 
progress in patients' surgical follow-up, in accordance with the 
complementary tools including clinical picture, radiological 
response and histological results.

Mucins. Mucins are high molecular-weighted, heavily 
glycosylated proteins (49). Within the polypeptide of these 
glycoprotein molecules tandemly repeated sequences of 
amino acids rich in threonine and serine moieties lead to 
various combinations of these repeats making each mucin 
type unique. In colon, a mixture of neutral, sialomucin, and 
sulphomucin are normally met, with MUC2 being the most 
prominent, primarily in goblet cells. MUC4 is also abun-
dant in the colon and its expression is found both in goblet 
and columnar cells, whereas MUC3 appears to be expressed 
primarily within enterocytes (50). MUC1, MUC5AC, and 
MUC6 under normal conditions are not expressed in the 
colonic mucosa (50). MUC2 is frequently expressed in muci-
nous CRC as well as mucinous carcinomas of the ovary, breast, 
and pancreas (50). Gastric mucins may also be expressed in 
CRC (51). MUC5AC expression is associated with mucinous 
differentiation and MSI, while most mucinous carcinomas 
exhibit a MUC2+/MUC5AC+ phenotype (52). Additionally, 
MUC21 has recently proven to be expressed in CRCs (53). 
Notably, although a correlation between mucin expression 
and clinical characteristics was observed by Wang et al (54) 
an increased expression of MUC5 was found to be associated 
with poor cellular differentiation, lymph node metastasis, 
advanced tumor stage and a poor overall prognosis in CRC. 
By contrast, a decreased expression of MUC2 was reported in 
cases with lymph node metastasis, poor cellular differentiation 
and an advanced tumor stage in CRC. These results suggest 
that MUC2 and MUC5 levels could be associated with tumor 
progression and even be used in order to facilitate the early 
diagnosis and clinical characterization of CRC (54).

Cadherin 17 (CDH17). CDH17 was first described in the 
liver and intestine of rats (55). Later on, the research in humans 
revealed that its expression is limited to the intestine (both small 
and large) and in a part of the pancreatic duct. As for its function, 
it serves as an intestinal peptide transporter (56). However, its 
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clinical applicability in GI tumors diagnosis was only recently 
recognized (57). Recent data indicate that positive CDH17 
immuno-reactivity is frequently seen in colorectal adenocar-
cinomas up to 96% and to a significant portion of gastric (58), 
pancreatic, and biliary adenocarcinomas (25-50%) (59). By 
contrast, it is rarely found in adenocarcinomas arising from 
extra-GI tract (1-10%). Notably, even though CDH17 is tran-
scriptionally regulated by CDx2, it is more sensitive and 
specific than CDX2 for the identification of primary and meta-
static colorectal adenocarcinoma (57-59). CDH17 also seems 
to be useful in diagnosing CRC variant with poorly differenti-
ated or even undifferentiated morphology, such as medullary 
carcinoma, which characteristically lacks the expression of 
conventional intestinal differential markers, such as CK20 and 
CDx2 (57). In a study where the effect of the downregulation 
of CDH17 upon human colon cancer cells was examined, the 
researchers found that the downregulation of extrinsic CDH17 
gene can conspicuously promote apoptosis-inducing effects of 
noscapine on specific human colon cancer cell lines, which 
may indicate a novel strategy to improve the chemotherapeutic 
effects on colon cancer (60).

Special AT‑rich sequence binding protein 2 (SATB2). 
SATB2 is a member of the nuclear matrix-associated 

transcription factors family whose role is to serve as epigenetic 
regulators of gene expression with high tissue selectivity (61). 
Research has shown that SATB2 has a variety of biologic 
functions. However, the exact role of SATB2 in the GI tract 
is still unknown. Recently, Magnusson et al (61) suggested 
that SATB2 immunoreactivity was mainly encountered in the 
glandular lining cells of the lower GI tract, including appendix, 
colon, and rectum. In fact, SATB2 is a highly sensitive and 
specific marker for adenocarcinomas of the colon and rectum, 
with a diagnostic sensitivity of 97% (121 of 125 cases) in CRCs 
and of 81% in CRC metastases (61). Moreover, Bian et al (59) 
found that the combination of CDH17 and SATB2 serves as 
potential optimal markers for the differential diagnosis of 
pulmonary enteric adenocarcinoma, a rare type of non-small 
cell lung cancer exhibiting similar histological and immuno-
histochemical morphology to colorectal adenocarcinoma, and 
metastatic colorectal adenocarcinoma (59).

Non‑invasive techniques and diagnostic blood‑derived and 
faecal markers
Faecal heamoglobin detection tests. Until recently, non-inva-
sive techniques used for diagnostic purposes were represented 
mainly by the guaiac faecal occult blood test (gfOBT) and 

figure 3. Wnt/β-catenin signaling pathway. When Wnt is present, it binds to fzR and LRP5 receptor. Dsh enables the phosphorylation of GSK-3β and CK1, 
resulting in the binding of axin. following to accumulation of β-catenin and translocation to the nucleus, it binds to various factors in order to modulate the 
transcription of target-genes. These processes lead to antiapoptotic results and promote cellular proliferation. fzR, frizzled receptor; LRP5, low-density 
lipoprotein receptor-related protein 5; GCSK3-β, glycogen-synthase kinase 3β; CK1, casein kinase 1; ZNRF3, zinc and ring finger 3; APC, adenomatosis 
polyposis coli; Pygo, pygopus; Bcl9, B-cell CLL/lymphoma 9; Ep300, E1A binding protein p300; Tcf, T-cell factor; Lef, lymphoid enhancer-binding factor 1.
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faecal immunochemical test (fIT). The gfOBT detects blood 
loss from peptic ulcer and gastrointestinal cancer. However, 
its validity in terms of CRC diagnosis, is rather restricted as 
gfOBT is, not only unable to distinguish bleeding between 
the upper and the lower GI tract, but also lacks the ability to 
specifically distinguish human from non‑human haeme (8,10). 
Moreover, gfOBTs are not sensitive to small bleedings, while 
specificity can be affected by diet or drugs and they have a fixed 
hemoglobin concentration cut-off determining positivity. As a 
result, gfOBT exhibits low sensitivity in terms of the detection 
of cancerous and preneoplastic lesions (30-40%) (62), whereas 
the sensitivity to detect an advanced adenoma (polyp, >9 mm; 
villous features or high grade dysplasia) is only 18% (63). On 
the other hand, fIT is able to detect human globin by means of 
an antibody-based assay providing a qualitative or quantitative 
result (depending on the kit used) expressed as faecal haemo-
globin concentration per gram of faeces. fITs are analytically 
more specific, capable of quantitation and hence provide flex-
ibility to adjust cut-off concentration for positivity and the 
balance between sensitivity and specificity. FITs are clinically 
more sensitive for cancers and advanced adenomas, and because 
they are easier to use, acceptance rates are higher (64). However, 
fIT can only detect bleeding from colonic pre-neoplastic 
lesions. Thus, when used for CRC screening, the sensitivity 
fITs demonstrates in detecting adenomas >1 cm in diameter is 
only 20-30%, while for advanced neoplasia or large adenomas 
sensitivity ranges between 20 and 67%, which is comparable 
or superior to the sensitivity of gfBOT (64,65). Another very 
important aspect that limits occult blood testing is the fact 
that it detects significantly more in the left‑ than right‑sited 
lesions in the colon (66), which is a significant issue given the 
increased incidence of right-sided CRCs that has developed 
over the last two decades (67). In other words, it is evident that 
those two non-invasive diagnostic techniques are limited by 
their intrinsic lack of sensitivity and specificity (with the latter 
being the case for gfBOT) making them unable to stand on 
their own as diagnostic tools. Table I presents a summarization 
of bibliographical references regarding fOBT sensitivity and 
specificity.
Blood‑derived and faecal molecular cancer cell markers. 
Our improved knowledge of the molecular pathogenesis 
that conditions the polyp→adenocarcinoma progression 
sequence has made clear that the molecular changes found 
in polyps and adenocarcinomas have the potential to serve as 
neoplasm‑specific molecular markers for these lesions. The 
concept of using these molecular markers for CRC screening is 
indeed the next step for a well-established non-invasive detec-
tion method for CRC. In contrast to heme detecting tests, tests 
focusing on molecular markers derived from neoplastic cells 
of the colon can prove to be more accurate. CRCs are known 
to bear distinguishable genetic and epigenetic changes as they 
develop and progress, which forms the rational of stool-based 
DNA and RNA testing.

DNA impairment. Approximately 90% of CRCs develop 
sporadically, and only a few cases (<10%) are hereditary, with 
familial adenomatous polyposis, hereditary non-polyposis 
colorectal cancer (HNPCC), MUTYH-associated polyposis, 
Peutz-Jeghers syndrome (PJS) and serrated polyposis syndrome 
being the main representatives of hereditary causes of CRC. 
Currently, three major paths for CRC development have been 

described, with CIN being the most common accounting for 
70-80% of CRCs, the MSI pathway positioned in the second 
place accounting for 5-20% of tumors and in the third place 
the CIMP, which represents approximately 15% of CRCs (68). 
These pathogenetic pathways can be examined either in serum 
samples (CIN, MSI, CIMP, APC) using immunohistochemical 
techniques or in faeces (CIMP, APC).

a) CIN. CIN is the hallmark characteristic of most CRC 
cases (80-85%), and its main characteristic is the extensive 
abnormality in chromosome number (aneuploidy) and loss 
of heterozygosity. CIN can be observed in several forms, 
including chromosomal numerical abnormalities, small 
sequence modifications such as base deletions or insertions, 
chromosomal rearrangements and gene amplification (5).

b) MSI. Microsatellites (MSs) are short tandem-repeated 
base pairs of 1-6 scattered all over the genome. for the normal 
human genome the number of MSs is approximately half a 
million. Genome studies revealed that MSs are prone to 
duplication errors. However these errors are usually corrected 
by the MMR system (5,69,70). Consequently it is logical to 
assume that a defective MMR system would result in the accu-
mulation of DNA mistakes and thus MSI. Indeed, MSI arises 
by the inhibition of MMR system either via defective methyla-
tion of MLH1 in CpG island or point mutation of any MMR 
genes (hMLH1, hMSH2, hMSH6, PMS1 and PMS2) especially 
hypermethylation of hMLH1 promoter (5). It is estimated 
that about 15-20% of CRC patients present MSI with a small 
fraction of which 2-4% are related to HNPCC (71). In order 
to estimate MS status, Bethesda panel was agreed in which 
five MS loci were included (BAT25, BAT26, D5S346, D2S123, 
and D17S250) (72). However, some researchers suggested an 
expanded Bethesda panel include 10 loci. Based on this panel, 
MSI can be divided into three groups: MSI-high (MSI-H), 
defined as having ≥30% unstable loci using mononucleotide or 
dinucleotide markers (8,73); MSI-low (MSI-L), with 10-30% 
unstable loci; and microsatellite stable (MSS), with <10% 
unstable loci (73). MSI status varies according to a given CRC 
stage: Stage II CRC exhibits high prevalence of MSI (20%) 
while in stage IV CRC MSI is approximately 4% (74,75). 
Moreover, differences based on the MSI status are found when 
prognosis is examined. for example, cases with MSI-H CRC 
share a better prognosis than that with MSS CRC (5,76).

c) CIMP. It is well accepted that DNA methylation is a 
key process for the normal growth of eukaryotes. If occurs 
in cytosine number 5 within CpG island which is present in 
50% of tumor suppressor gene promoters (77). CpG island 
accounts for >70% of CG sequences that extend to 0.4 kB on 
the genome (78). Even though hypermethylation of CpG island 
cytosine represents a hallmark for cancer progression, both 
hypomethylation and hypermethylation may lead to the trans-
formation of normal mucosa to adenoma and subsequently 
to the development of CRC (79). Disturbance of epigenetic 
programming (epigenetic modification including DNA meth-
ylation, histone modification and post‑transcriptional gene 
regulation) is closely related to the development of CRC (80). It 
is reported that a wide spectrum of aberrant methylated genes 
in CRC, regulates crucial functions in the normal cell regarding 
proliferation and maintenance of genome stability (77). In the 
clinical setting, abnormal DNA methylation patterns can be 
detected in patient's blood or faeces samples from which CRC 
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cells are examined. A number of abnormal methylated genes 
with variable level of specificity and sensitivity can serve as 
diagnostic biomarkers in CRC patients. These genes include 
WiF‑1, AIX4, PGR, FBNI, P53, TIMP3, SEPT9, MGMT, 
Vimentin and GATA4 (77,80). A number of studies have 

indicated that instead of looking for a single gene methylation 
pattern, using a panel of several methylated genes is better 
in terms of specificity and sensitivity. Lind et al (81) tested a 
panel of epigenetic biomarkers for use as CRC and adenoma 
screening. In this study, approximately 523 human samples 

Table I. A summarization of bibliographical references to FOBT sensitivity and specificity.

Author/(Refs.) faecal occult blood testing

Kronborg et al (185),  Reduction in CRC mortality with gfOBT biannually [relative risk reductions of 13% (UK trial) 
Scholefield et al (186) and 16% (Danish trial)]
 No significant reduction in overall mortality
 gfOBT: Low sensitivity for CRC detection (UK trial, 45%; Danish trial, 54%)
 True-positive rate: 50% (UK and Danish trials)
 false-positive rate: 5-10% (UK and Danish trials)
 True-negative rate: 90-95% (UK and Danish trials)
 false-negative rate 50% (UK and Danish trials)
Medical Advisory ifOBT sensitivity superior to those of gfOBT for CRC detection: Two studies showed sensitivity
Secretariat (187), for gfOBT, 13 and 25%, respectively; pooled ifOBT sensitivity, 81%
Dancourt et al (188), ifOBT and gfOBT: Lower sensitivities for adenoma detection than for CRC detection: Rehydrated
faivre et al (189) gfOBT, 22%; pooled ifOBT, 28%
Lin et al (190) fIT sensitivity, 73.8% (95% CI, 62.3 to 83.3) for quantitative (n=9,989) test categories; 
 78.6% (95% CI, 61.0 to 90.5) for qualitative (n=18,296) test categories
Koo et al (191), Positive predictive value of fIT > positive predictive value gfOBT for advanced adenoma
Moss et al (192) (1.73 vs. 0.35%) and all neoplasias (3.74 vs. 0.76%) 
 fIT detects twice more CRCs and advanced adenomas
Gonzalez-Pons and gfOBT: ↓ ability to define bleeding  between upper/lower GI tract
Cruz-Correa (8)
Kuipers et al (10) gfOBT: ↓ ability to distinguish human haeme
Valori et al (62) gFOBT: Νot sensitive in small bleedings
 gfOBT ↓ sensitivity in detecting cancerous/preneoplastic lesions
 gFOBT: Specificity affected by diet/drugs
Lieberman et al (63) gfOBT: 18% sensitivity in detecting advanced adenomas
Whitlock et al (65), fITs sensitivity for advanced adenomas: ~20-67% (↑ than fOBT)
Young et al (64) 
Dancourt et al (188) fIT detects more CRC and advanced neoplasia than gfBOT (similar positive predictive value)
Imperiale et al (25) 
Rozen et al (193) Comparative performance of gfOBT and fIT depends on the number of samples and threshold 
 chosen for the quantitative fIT
Hoffman et al (194) Screening adherence with fIT was higher than with gfOBT (61.4 vs. 50.5%)
Brenner and Tao (195) Sensitivity of fITs for detecting CRC/any advanced neoplasm/any neoplasm: 2-3 times higher 
 than gfBOT 
 Ιncreased levels of FITs specificity vs. gFOBT 
fitzpatrick-Lewis ifOBT vs. gfOBT on mortality outcomes: ifOBT has higher sensitivity and comparable 
et al (196) specificity (insufficient evidence from RCTs)
Murphy et al (197) Total financial burden: Lower for FIT at any threshold (expressed in µg Hb/g faeces) than for 
 gfOBT, and this difference increases as the fIT threshold is decreased (Cohort-based Markov
 state transition model)
Lee et al (198) FIT sensitivity, 79%; FIT specificity, 94%
Morikawa et al (66) gfOBT detect notably more lesions in the left (compared to the right colon)

fOBT, faecal occult blood test; CRC, colorectal cancer; gfOBT, guaiac faecal occult blood test; fIT, faecal immunochemical test; RCT, 
randomized controlled trials.
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were examined using a gene panel consisting of: CNRIP1, 
FBN1, INA, MAL, SNCA and SPG20. According to their study, 
high level of sensitivity and specificity was achieved. Hence, 
those authors suggested that a combination of the six genes 
may serve as a non‑invasive biomarker with high specificity 
and sensitivity for early diagnosis of CRC (81).

d) APC mutations. APC gene regulates the Wnt signaling 
pathway via encoding a multifunctional protein. Specifically, 
APC regulates Wnt pathway through the destruction of the 
transcription factor β-catenin, which enhances the activity 
of Wnt pathway. Hence, APC conversely organizes Wnt 
signaling (82). In addition, APC gene is involved in cell cycle 
regulation, cytoskeleton stabilization, intracellular adhesion, 
as well as apoptosis. In an attempt to determine the exact role 
of APC gene in CRC, Dow et al (83) investigated whether 
APC mutation is essential for CRC protection. for their study 
a CRC mouse model with inhibited APC was used. According 
to their findings, inhibiting APC gives rise to adenomas in 
colon and small intestine (83). In general, about 90% of CRC 
patients demonstrate APC gene mutation, which highlights its 
applicability as a molecular biomarker for CRC diagnosis (8). 
Liang et al (84) conducted a meta-analysis study to correlate 
APC polymorphism (D1822V, E1317Q, I1307K) and CRC 
risk. They concluded that E1317Q significantly increased 
adenoma risk. However, I1307K is associated with high risk of 
CRC (84). CRC-related tumor suppressor genes are thought to 
be altered in the early phase of cancer development, and APC 
mutation is the first step in the translation of normal mucosa to 
neoplastic tissue, leading to the activation of the WNT pathway. 
Subsequent mutations that occur in genes, such as KRAS, 
TP53, SMAD4 and type II TGf-β receptor (TGFBR2), lead 
to the progression from polyp to cancer similar to the process 
that takes place in other gastrointestinal carcinomas (85).

e) Circulating tumor DNA (ctDNA). Circulating free 
DNA (cfDNA) is thought to be a natural phenomenon, existing 
as a result of cellular apoptosis and necrosis of both normal 
and cancer cells, with secretion from cancer cells being an 
additional source that remains to be elucidated (86). ctDNA, a 
subclass of a patient's cfDNA, is the material used for testing 
in order to identify potential DNA impairments that have been 
associated with CRC. Owing to the circulating DNAases, the 
half life ctDNA is restricted to a few hours allowing clinicians 
to have a more accurate look at a patient's cfDNA profile. 
findings have shown that the cfDNA quantity is quite higher in 
patients with cancer than that in healthy individuals. Moreover, 
cfDNA quantity seems to be positively correlated with the 
cancer stage (87). Of note, benign tumors or non-neoplastic 
lesions in general do not lead to ctDNA avoiding, therefore, a 
potential pitfall of false positives (88). To date, the main DNA 
defect that is studied is the hypermethylated SEPT9 gene in 
the plasma. However, following the initial attempts to set a 
diagnostic tool based solely on SEPT9, researchers realized 
that combining multiple gene loci in a single panel in order to 
achieve better sensitivity and specificity is optimal. For example, 
Tänzer et al (89) showed that the combination of SEPT9 with 
ALX4 achieved a sensitivity of 71% and a specificity of 95% 
for advanced adenomas, thus supporting SEPT9/ALX4 as a 
biomarker for precancerous lesions (89). In parallel to that, 
apart from SEPT9, a number of genes have been investigated 
including HJC1, CYCD2, PAX5, RB1, SRBC, NPY, PENK, 

WIF1, ALX4, HLFT, HPP1, MLH1, APC, CDKN2A/P16h, 
TMEFF2, NGFR, FRP2, NEUROG1 and RUNX3 (90).

f) Faecal DNA. As with circulating DNA, stool DNA is 
examined for the presence of abnormalities in specific genes. 
Stool‑based assays have proven to be the most efficient assay 
type for a number of reasons. Direct histologic observations 
show that CRCs and polyps exfoliate neoplastic cells and their 
debris into the mucocellular layer of the colonic lumen at a 
steady continuous rate (91). However, at first sight, one would 
wonder how exfoliated cells arising from a right-sided polyp 
or CRC could survive in the intraluminal environment in order 
to be detected. Indeed, most of these cells go through lysis, 
preserving however to a certain extent their DNA content thus 
allowing a DNA analysis to be conducted. To date, along with 
mutant KRAS a variety of hypermethylated genes including 
APC, ATM, BMP3, CDKN2A, SFRP2, GATA4, GSTP1, HLTF, 
MLH1, MGMT, NDRG4, RASSF2A, SFRP2, TFPI2, VIM and 
WIF1 have been analyzed in faecal DNA for the early detec-
tion of CRC, with SFRP2 and VIM proving to be the most 
promising ones (92,93). When these tests for both mutant 
and methylated DNA markers and fIT, collectively known as 
MT-sDNA, are combined, it is proven that they demonstrate 
the best clinical performance of CRC molecular marker 
screening assays to date.

Blood and faecal miRNA prof ile. miRNAs are 
single-stranded small non-coding RNAs that are 18-25 nucleo-
tides in length. Their role remained unknown until 1993 when 
it was recognized that they act as negative post-transcriptional 
regulators in Caenorhabditis elegans (94,95). Until 1993, 
miRNA (as any other member of the non-coding RNA 
family) was considered to be a useless RNA product of ‘junk 
DNA’. However, it was shown that this is not the case as it 
was proven that it is able to regulate gene expression at a 
post-transcriptional level, either by blocking mRNA transla-
tion or by inducing their degradation. By binding miRNA to 
its target mRNA, miRNA can trigger the degradation of its 
target or otherwise inhibit its translation into protein, with the 
degree of sequence complementarity between the miRNA and 
mRNA determining which mechanism is employed (96-98). 
Over the last few years, research in human cancer focusing on 
the potential of miRNA to serve as a biomarker has increased 
dramatically mainly due to their unique properties. first of all, 
miRNAs are very stable under a variety of conditions both in the 
experimental and laboratory setting. Moreover, RNases cannot 
degrade them owing to their small size and the hairpin-loop 
structure (99). In addition to that, cell-free miRNAs occur in 
large numbers as they are packed in high density lipoprotein 
particles, apoptotic bodies, microvesicles, exosomes or by their 
binding to argonaute-2, properties that synergistically result 
in an increased stability (100,101). Thus, it is easy to isolate 
them from different forms of clinical specimens (99). Lastly, 
miRNAs are actively secreted by cancer cells into the circula-
tory system and digestive tract (102). Hence, in the clinical 
setting, circulating cell-free miRNAs and faecal miRNA are 
the main forms of RNA used as diagnostic biomarkers.

a) Blood‑derived (circulating) cell‑free miRNA. Various 
studies have shown that a series of miRNAs are pathologically 
excreted in CRC plasma or serum samples. However, due to 
the fact that standardized techniques for miRNA extraction, 
normalization and quantification are yet to be found, one needs 
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to bear in mind that most of the available results in literature 
are not easily reproducible thus making sometimes controver-
sial. Circulating cell‑free miRNA was first evaluated in a more 
comprehensive and systematic way in patients with CRC by 
Ng et al (103) in 2009 who found an altered miRNA expres-
sion profile in tissue and plasma samples from CRC patients 
and healthy subjects. However, a very important observation 
was that two miRNAs, miR-92a and miR-17-3p, were able 
to indicate patients with CRC, differentiating from healthy 
subjects, based on their high expression profile (sensitivity: 64 
89%, specificity: 70, 70% for each miRNA, respectively) (103). 
Since then, numerous miRNAs have been identified as indica-
tors of CRC. However, even though a few single miRNAs have 
proven to be enough to make the distinction with increased 
sensitivity and specificity, the addition of even more dysregu-
lated miRNAs into a single panel usually achieved better 
diagnostic results. Indicatively, some of the dysregulated 
miRNAs and their testing samples are described: miR-17-3p 
plasma, miR-18 plasma, miR-21 plasma, miR-21 serum, miR-21 
serum (exosome), miR-29a plasma, miR-92a plasma, miR-92a 
serum, miR-155 serum, miR-200c plasma, miR-221 plasma, 
miR-21, miR-31, miR-92a, miR-181b, miR-203, let-7g (panel), 
miR-7, miR-93 and miR-409-3p (panel) (104). However, only 
three upregulated miRNAs, miR-19a-3p, miR-21 and miR-92, 
were identified as promising diagnostic biomarkers by more 
than one study (105,106).

b) Faecal miRNA. Identification of CRC‑specific miRNAs 
is also feasible in stools. Link et al (107), using RT-PCR and 
microarray analysis proved that faeces from patients with CRC 
and colorectal adenoma contained higher levels of miR-21 and 
miR-106a as opposed to that from healthy controls (107). A 
subsequent study that assessed faecal miR-21 and miR-92a 
levels revealed that faecal miR-92a expression was able to 
differentiate patients with CRC or adenoma from healthy 
subjects or even those with lower-risk polyps (22). More inter-
esting data came from the study of zhu et al (108) as they 
found that stool miR‑29 was significantly present in patients 
with rectal cancer than in those with cancer in the rest of the 
large intestine. Thus, the use of a panel of miRNA expression 
patterns can create a form of a cancer fingerprint (108). A sum 
of the useful stool-derived dysregulated miRNAs for diagnosis 
is miR-17-92 cluster, miR-20a, miR-21 up miR-135 miR-144 
miR-29a, miR-223, miR-221, miR-92a and miR-224 (109).

3. Prognostic markers

General. Once CRC is diagnosed, the clinician has to take 
the next step in the clinical management, that is to evaluate 
the prognosis for this patient or in other words to estimate the 
likely progression of the cancer and the aggressiveness that it 
may exhibit (recurrence likelihood, progression and/or chance 
for metastasis despite adjuvant therapy). The current practice 
for prognosis assessment is based on radiological (CT, MRI) 
and pathological (TNM, lymphovascular, perineural and 
venous invasion) criteria. In fact, TNM staging remains the 
strongest prognostic tool (110). However, not only do none of 
the prognostic tools mentioned above provide clear evidence 
on which of these CRC cases is more prone to relapse, give 
metastases or are proven to be resistant to chemotherapy, but 
they also are not suitable for the personalized treatment of 

each patient. Thus, much effort has been made for the evalua-
tion of the potential of several molecules and gene alterations 
to serve as prognostic biomarkers, taking us a step closer to a 
true personalized treatment.

Tissue‑derived prognostic biomarkers
Molecular prognostic biomarkers. Some of the tissue-derived 
molecular biomarkers meant for diagnostic purposes, have 
demonstrated a promising potential for also serving as 
prognostic markers. Such markers are mucins (MUC2), 
SATB2 protein, CK20/CDx2, VEGf, insulin-like growth 
factor-II mRNA-binding protein 3 (IMP3) and Traf2- and 
Nck-interacting kinase (TNIK) expression. Even though 
some MUC2 expression profile studies have yielded mixed 
results, it is evident that MUC2 loss of expression may be 
an indicator of poor prognosis in both mis-match repair 
protein (MMR)-proficient and MLH1-negative CRC (111). 
On the other hand, studies on the SATB2 expression profile 
showed that an upregulated SATB2 was connected with 
good prognosis in CRC and could even increase sensitivity to 
chemotherapy and radiation, whereas a downregulated SATB2 
in cases of colorectal adenocarcinomas was associated with 
poor prognosis, as tumor invasion, infiltrated lymph nodes 
and distant metastases were observed (112,113). Studies on 
CDx2 revealed that loss of CDx2 expression is associated 
with proximal origin, infiltrative characteristics and advanced 
TNM stage. Moreover, it was found to be an independent 
poor prognostic factor of progression-free survival (PfS) and 
overall survival (OS) (114). Vascular endothelial growth factor 
or VEGf is one of the main angiogenic factors in CRC as it is 
expressed in approximately 50% of the cases Thus, VEGf-1 
expression is correlated with a worse prognosis (115). fig. 4 
shows the connection between chronic inflammation and 
the development of CRC. Moreover, studies on IMP3 found 
an increased expression in colon cancer compared to normal 
colonic mucosa. Of note is the fact that its expression was found 
to be higher in cases with lymph node infiltration with cancer 
cells (93%) than in primary colon cancer (65%) or normal 
mucosa (3.9%) (116). Lastly, research on TNIK reported that 
high levels of TNIK protein in primary tumors could indicate 
distant metastasis after surgery of stage II and III CRC patients 
as well as invasive characteristics of CRC (117).
DNA alterations with prognostic value

KRAS and NRAS. The family of RAS proteins (H-, K-, 
and N-RAS) is located in the intracellular side of the cell 
membrane involved in G-protein mediated signal transduction. 
Activation of the epidermal growth factor receptor (EGfR) 
from its ligand (e.g., EGf, TGf-α, amphiregulin) results in 
a change from GDP- to GTP-form of the KRAS, leading to 
increased concentrations of B‑rapidly accelerated fibrosarcoma 
(proto-oncogene) (BRAf) to the plasma membrane (fig. 5). 
BRAf activates the mitogen-activated protein kinases (MAPK) 
signaling pathway that results in the expression of proteins 
involved in several pathways with a crucial role including 
cell proliferation, differentiation, survival, angiogenesis, and 
cell motility. Mutant KRAS proteins present as locked in the 
active form as a result of an impaired GTPase activity, leading 
to an increased proliferating rate that is unregulated and 
thus resulting in an overall malignant transformation of the 
cells. Therefore, it is logical to assume that mutation of these 
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oncogenes poses a great threat for carcinogenesis (118). Indeed, 
it is well documented that alterations of KRAS gene can act 

as the first step towards carcinogenesis in approximately 50% 
of the CRC cases (119). However, it is not that clear whether 

figure 5. Intracellular signals for CRC manifestation via EGfR. CRC, colorectal cancer; EGfR, epidermal growth factor receptor; BRAf, B-rapidly acceler-
ated fibrosarcoma (proto‑oncogene); MAPK, mitogen‑activated protein kinase; PI3K, phosphoinositide 3‑kinase; S6K1, ribosomal protein S6 kinase β-1; PKB, 
protein kinase B; mTOR, mechanistic target of rapamycin.

Figure 4. The connection between chronic inflammation and development of CRC. CRC, colorectal cancer; GFs, growth factors; Il‑1β, interleukin 1β; Nf-κΒ, 
nuclear factor κB; HIf-1α, hypoxia inducible factor-1α; VEGf, vascular endothelial growth factor.
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it could serve as a prognostic marker in the clinical setting. 
Recently, a meta-analysis of seven studies failed to associate 
KRAS mutation status with prognosis (however, a common 
limitation of such studies is the small pool of patients) (120). 
On the other hand, two large multicenter studies, demon-
strated that only one mutation of KRAS, of codon 12, could 
be linked with a more aggressive progression of cancer cells. 
However, according to their data, KRAS mutations failed to 
be associated with tumor location or stage and recurrence of 
disease (121,122). On the other hand, the possible prognostic 
value of NRAS mutations is less examined, even though they 
appear to act in a similar way with KRAS as for the degree of 
negative prognostic significance (123).

p53. p53 is a transcription factor that participates in a 
variety of cellular reactions to several stress situations such 
as mutagenic DNA damage, oncogene activation, hypoxia and 
telomere shortening. In contrast to other mutations, p53 muta-
tion seems to occur late in the development of CRC since few 
or even no cases of mutations are described in precancerous 
lesions from sporadic adenomas and polyps. Interestingly, data 
from one study showed that mutations of p53 in CRC exhibits 
a dependence on the primary tumor site thus suggesting a 
prognostic value of this marker. In more detail, patients with a 
primary tumor site in the proximal colon (caecum, ascending 
colon) and mutant p53 gene exhibited better survival when 
treated with a combination of chemotherapy and surgical 
removal compared to those treated by surgery alone (124).

BRAF. BRAf is serine-threonine protein kinase that is 
recognized downstream in the KRAS signaling cascade. 
BRAF mutations are linked with a poor outcome thus proving 
their clinical applicability as a prognostic marker in the adju-
vant setting. Another indication of a poor outcome is found 
in stage II and III CRC cases where BRAF mutations were 
associated with worse OS (125). A rather interesting finding is 
that BRAF V600E mutation is able to predict a poor prognosis 
in right-sided MSS CRC (126,127). further examination of the 
BRAF prognostic value was carried with a study investigating 
the correlation of BRAF mutation with MSI. The existence of 
BRAF wild-type and MSI-H exhibited favorable outcomes. 
furthermore, BRAF-wild/MSS and BRAF-mutated/MSI-H 
exhibited intermediate outcomes (128).
MSI. MSI status is a well-studied diagnostic marker for CRC 
as mentioned above. However, its clinical relevance does not 
stop in the diagnostic setting but continues in the prognostic as 
well. MSI-H is associated with better survival rates than both 
MSI-L and MSS, not only in HNPCC, but also in sporadic 
cases (129,130).
miRNA with prognostic value. During the last few years, a wide 
variety of miRNAs has been evaluated in order to identify 
their prognostic value in CRC. Indeed, numerous miRNAs, 
among which are miR-101, the let7 family, miR-133b, miR-126, 
miR-337, miR-944, miR-646, miR-497 and miR-142-3p have 
been identified to behave as tumor suppressors (tumor‑suppres-
sive miRNAs) (131-137) while others, including miR-7, 
miR-20a, miR-21, miR-29a, miR-92a, miR-130b, miR-155 
and miR-552, were characterized as key players in creating a 
favorable microenvironment for cancer cells. These miRNAs 
are known as oncomirs (oncogenic miRNAs) (138-141). 
miR-20a-5p was found to promote tumor invasion and metas-
tasis via downregulation of SMAD4 (142). Moreover, elevated 

miR-21 levels correlate with CRC cell proliferation, invasion, 
lymph node metastases, advanced clinical stage, poor overall 
and disease-free survival in the different Duke stages (143,144). 
Increased expression of miR-29a is found to strongly correlate 
with metastases and especially liver metastases as, if present, 
it can serve as an early detector of liver metastases (145,146). 
High preoperative miR-155 closely correlates with advanced 
stage and metastasis while persistent postoperative expression 
correlates with recurrence and metastasis. Thus, miR-155 could 
be considered a prognostic marker for overall and disease-free 
survival (147). In a recent study, zhao et al (148) presented that 
miR-411 functions as a tumor-suppressive miRNA directly 
targeting PIK3R3 and indirectly regulating the AKT/mTOR 
signaling pathway. In other words, an increase of miR-411 
would result in the downregulation of PIK3R3 directly and 
AKT/mTOR indirectly. Additionally, they observed that a 
decreased expression of miR-411 was correlated with worse 
findings such as lymph node metastasis, distant metastasis and 
worse TNM stage (148).

Blood‑derived prognostic biomarkers
Preoperative CEA levels. CEA may be tested in the preopera-
tive setting in patients with CRC in order to assist staging and 
surgical treatment planning. Previous findings showed that 
increased preoperative CEA (>5 ng/ml) correlates with poorer 
prognosis. In fact, a study with 2,230 patients proved that 
pre-operative CEA levels was an important independent prog-
nostic factor when outcome prediction was encountered (149). 
Similarly, another study with 1,146 patients with CRC found 
that, following use of a multivariate analysis, preoperative 
CEA levels proved a highly significant prognostic factor even 
when stage and grade were introduced in the model (150). 
In addition, elevated preoperative CEA in stage III and IV 
CRC are considered to be a potent independent risk factor 
as far as local relapse, short disease-free survival and OS are 
concerned (151).

Postoperative CEA levels. After surgical removal of the 
tumor, CEA levels should be checked as it is shown that persis-
tent by elevated CEA levels suggest further evaluation for 
metastatic disease. In addition, elevated CEA is very efficient 
for revealing recurrence in asymptomatic patients and is the 
most sensitive detector for liver metastases (152).

Cancer antigen 19‑9 (CA 19‑9) levels. CA 19-9, also 
termed sialyl Lewis a, is a documented marker with prognostic 
value for CRC. It is shown that cases with increased CA 19-9 
present more frequently metastases thus making it a marker of 
poor prognosis (152). Similarly, a recent study with stage IV 
CRC proved that the preoperative serum CA 19-9 level can 
be a promising marker of tumor recurrence and prognosis in 
cases submitted to curative resection. In detail, high levels 
of CA 19-9 were connected with worse 3-year relapse-free 
survival and 3-year overall than that in the normal CA 19-9 
group (153).

Circulating tumor cells (CTCs). Detection of CTC 
has demonstrated prognostic significance in predicting 
patient outcome in cases of metastatic CRC. Recently, two 
groups investigated the prognostic significance of CTCs in 
CRC (154,155). Both of them found that patients with high 
CTC count were more likely to experience worse PfS and OS 
in contrast to those patients with low CTC count.
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4. Predictive markers

General. The final step in the clinical management of a 
patient with cancer, is the determination of the most suitable 
therapeutic regimen. It is well known that patients with cancer, 
exhibit different responses to a certain therapy and some 
patients can benefit the most from the use of a biologic factor. 
Thus, it is of paramount importance for us to be able to know 
beforehand which patient will receive each therapy or in other 
words to predict the most likely response to a given therapy. 
for this reason, predictive markers are used.

Tissue‑derived predictive markers
DNA alterations

KRAS and NRAS. Mutations of KRAS gene have proven 
their clinical use as a predictive biomarker in response to the 
EGfR inhibitors clinically used, as various mutations of KRAS 
present resistance to therapy with EGfR receptor monoclonal 
antibody blockers such as cetuximab (156). In detail, anti-EGfR 
therapy on cases of metastatic CRC who display KRAS muta-
tions either of the codon 12 or 13, present no benefit (157). 
However, a mutant KRAS does not always mean that it is a 
sign of bad response. for example, De Roock et al (158) have 
found that patients with metastatic CRC with P.G13D KRAS 
mutation treated with cetuximab exhibited better results than 
other KRAS mutations (158). Under the light of these findings, 
evaluation of an extended panel of RAS mutations including 
mutations in KRAS exon 2, 3 and 4 and NRAS exons 2, 3, and 4 
can better discriminate which patients are not good candidates 
for treatment with anti-EGfR therapy (159).

BRAF. BRAF mutations and especially BRAF V600E 
is among the most common mutations found in CRC cases 
as it is present in approximately 8-10% of all cases (160). 
BRAF mutation is often used as a discrimination factor 
between familial and sporadic CRC as the existence of BRAF 
V600E mutation in MSI CRCs can virtually exclude Lynch 
syndrome (161). However, numerous studies have shown that 
tumors that exhibit BRAF mutation are resistant to anti-EGfR 
therapy (162).

Phosphoinositide 3‑kinase (PI3K). PI3K is a downstream 
mediator of the EGfR signaling cascade along with AKT 
and PTEN. An interesting finding regarding PI3K mutations 
lies on the use of cetuximab in patients with CRCs who 
display mutations of PI3K and especially at the PIK3CA 
exon 20 (which is the kinase domain) in contrast to patients 
with PIK3CA-wild-type CRCs. Patients with mutant PI3K 
exhibit much worse results (163). However, the mutation of a 
different exon, PIK3CA exon 9 (which is the helical domain), 
cannot serve as a predictive marker for anti-EGfR therapy, a 
fact that reflects the high complexity of the effects of specific 
mutations on different functions of the mutant kinases (163).
MSI status. Recent studies have investigated the application 
of level of MSI status as a potential predictive marker of adju-
vant therapy. While there is enough evidence supporting that 
MSI‑H may predict response to 5‑fluorouracil (5‑FU)‑based 
adjuvant therapy in stage III colon cancer, numerous recent 
studies demonstrated that there is no significant differ-
ence between patients with MSI-H and MSS tumors when 
5‑FU‑based adjuvant therapy is used (164‑166). This finding 
is very important for the group with stage II disease, in which 

adjuvant chemotherapy (5-fU alone) is reported to improve 
survival by approximately 3%, allowing some investigators to 
suggest that stage II colon tumors should be analyzed for MSI 
status as well in order to assist guide decisions on the use of 
adjuvant therapy (165).
CD133. CD133 is a surface protein that has been associated 
with tumor angiogenesis and recurrence and especially with 
VEGF cascade (167). Previous findings have shown that the 
expression of CD133 was associated with worse survival 
rates in patients treated with surgery as a monotherapy and in 
patients treated with 5-fU-based chemotherapy. By contrast, 
CD133 expression in patients with stage III tumors, was able 
to determine that the absence of CD133 could benefit more 
from 5-fU treatment as expressed by their survival rates but 
not those with present CD133 expression. Positive expression 
of CD133 was also associated with worse clinical response to 
chemotherapy in stage IV patients (168).

5. New insights in CRC monitoring

General. Going through the list of the markers used for 
diagnostic, prognostic and predictive purposes, it is evident 
that even though a plethora of markers are available, the clini-
cian still cannot achieve the best possible monitoring of his 
patient's disease, even when a wide panel of markers is used. 
for this reason, great effort is made by researchers worldwide 
in order to identify new markers that will be able to lead to a 
better, if not the best, disease monitoring. A number of these 
markers seem to be quite promising. We will discuss three of 
these markers [telomere length (TL), telomerase activity and 
micronuclei (MN) frequency].

TL and telomerase activity. Telomeres are DNA-protein 
complexes that are enrolled to guard the ends of eukary-
otic chromosomes and composed of a repetitive nucleotide 
sequence (5'-TTAGGG-3') which is added on by the telom-
erase. Telomerase is an enzyme complex that consists of two 
subunits, the reverse transcriptase protein human telomerase 
reverse transcriptase (hTERT), which is the catalytic subunit, 
and the telomerase RNA component (TERC), an RNA 
template-hTR (human telomere RNA), which serves as a 
template for directing the appropriate telomeric sequences 
onto the 3' end of a telomeric primer (169). When telomeres 
become too short, cells may be unable proliferate, a situ-
ation that has been linked to the development of a variety 
of age-related diseases, such as cancer, cardiovascular 
diseases, diabetes and psychiatric disorders (170-172). A 
number of studies have examined the role of telomeres and 
telomerase in CRC in generating CIN. In CRC telomere, 
shortening is an initial event that directly reflects pathologic 
cell proliferation because of telomere's shortening in CRCs 
and in well-differentiated tumors (173,174). Telomeres and 
telomerase have been proposed as potential prognostic and 
diagnostic biomarkers in CRC. Telomeres and telomerase 
activity have universal changes along the CRC process (175). 
fernández-Marcelo et al (176) examined the ratio of TL in 
cancer to non-cancer tissue, telomerase activity and TERT 
levels and their role as prognostic markers. In tumors, TL was 
shorter than that in non-tumor tissues and more than 80% 
of CRCs displayed telomerase activity and thus the use of 
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telomere status as a prognostic factor has been suggested (176). 
Gertler et al (177) analyzed TL and hTERT expression in 
matched cancer and adjacent non-cancer mucosa samples and 
found that telomeres in CRC tissues were significantly shorter 
compared with adjacent normal mucosa samples. Another 
study comparing peripheral blood cell TL in CRC patients 
and healthy subjects, TL has an anomalous behavior. We can 
conclude that telomeres and telomerase emerge as useful 
diagnostic and prognostic markers in the clinical manage-
ment of CRC (5).

MN frequency. MN are extra-nuclear bodies recognized in 
dividing cells, that contain chromosome fragments and/or 
whole chromosomes that failed to incorporate into the nucleus 
after cell division. It is well established that MN formation can 
be induced by defects in the DNA repairing system, leading 
to the accumulation of DNA damages and chromosomal 
aberrations (178). As MN formation is a result of CIN and 
indicative of a malfunctioning cell, it is reasonable to assume 
that MN could, under certain circumstances, be linked with 
cancer development (179). Indeed, high MN frequency is 
recognized in a number of cancer types. Specifically, in lung 
cancer MN frequency has become a useful marker for the 
identification of small and non‑small cell lung cancer using 
peripheral blood samples (180). As far as CRC is concerned, 
data from various studies using peripheral blood samples 
indicate that MN frequency is a promising biomarker for 
the early detection of CRC while it could also be used as a 
prognostic biomarker (181-184). However, more studies are 
needed in order to describe with certainty the true potential 
of this biomarker.
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