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Abstract

Visual saliency is the perceptual quality that makes some items in visual scenes stand out from their immediate contexts.
Visual saliency plays important roles in natural vision in that saliency can direct eye movements, deploy attention, and
facilitate tasks like object detection and scene understanding. A central unsolved issue is: What features should be encoded
in the early visual cortex for detecting salient features in natural scenes? To explore this important issue, we propose a
hypothesis that visual saliency is based on efficient encoding of the probability distributions (PDs) of visual variables in
specific contexts in natural scenes, referred to as context-mediated PDs in natural scenes. In this concept, computational
units in the model of the early visual system do not act as feature detectors but rather as estimators of the context-
mediated PDs of a full range of visual variables in natural scenes, which directly give rise to a measure of visual saliency of
any input stimulus. To test this hypothesis, we developed a model of the context-mediated PDs in natural scenes using a
modified algorithm for independent component analysis (ICA) and derived a measure of visual saliency based on these PDs
estimated from a set of natural scenes. We demonstrated that visual saliency based on the context-mediated PDs in natural
scenes effectively predicts human gaze in free-viewing of both static and dynamic natural scenes. This study suggests that
the computation based on the context-mediated PDs of visual variables in natural scenes may underlie the neural
mechanism in the early visual cortex for detecting salient features in natural scenes.
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Introduction

Detecting salient features and objects in complex natural scenes

is indispensible to any visual system. Visual saliency plays

important roles in natural vision in that saliency can direct eye

movement, deploy attention, facilitate tasks like object detection

and scene understanding, and help determine internal neural

representation. Not surprisingly, human vision has an amazing

ability to detect salient objects in complex natural scenes in real

time despite the limited resources of the human visual system.

Visual saliency is closely related to several areas of vision research

performed during the last 30 years, including: non-classical receptive

fields and contextual effects on neuronal responses [1,2], texture

perception (e.g., the texton theory [3]), pop-out and visual search

(e.g., the feature integration theory [4] and the guided search theory

[5]), saliency-based attention [6], and neuronal responses to natural

scenes [7]. At the center of these areas of research are two issues:

what visual features should be encoded in the visual cortex and how

they give rise to visual saliency. The conventional view that neurons

in the early visual cortex encode individual visual features cannot

account for a range of observations in these research areas. This

quandary has led to a burgeoning interest in the statistics of natural

environments and their relationship to vision [8,9]. The underlying

assumption is that the visual system must inevitably adapt, by

evolution and individual development, to the statistical character-

istics of the environments that their possessors inhabit [10,11]. In

particular, the efficient coding hypothesis holds that the purpose of

early visual processing is to generate efficient representations of

visual stimuli [12–14]. Similarly, the receptive fields of simple and

complex cells can be derived based on this hypothesis [15–20] and

the responses of V1 neurons in awake, behaving macaques suggest

that classical and non-classical RFs form a sparse representation of

the visual world [21]. Despite these efforts, it remains unclear what

visual features in natural visual scenes should be encoded and how

they give rise to visual saliency [2,22].

Several computational models of visual saliency have been

developed [23–35]. In Itti et al’s model [23,24], a measure of saliency

is computed based on the relative difference between a target and its

surround along a set of feature dimensions (i.e., color, intensity,

orientation, and motion) obtained by filtering. Zhaoping developed

a neural dynamic model in which visual saliency is computed as an

index of local neuronal population responses [25,26], suggesting

that a separate saliency map in the brain suggested by Koch &

Ullman [27] may not be necessary. Several statistical models of

visual saliency have also been developed [30–35]. In these models, a

set of statistics or PDs are computed from either the scene the

subject is viewing or a set of natural scenes, and a variety of

measures of visual saliency are defined on these statistics or PDs,

including self-information [30,31], discriminant power [32,33],

Bayesian surprise [34], and inverse of likelihood [35]. These models
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predict aspects of human gaze in free-viewing natural scenes.

However, none of these models provides probabilistic descriptions

of a full range of visual variables in natural scenes, so they shed little

light on what and how visual variables in natural scenes should be

encoded in the early visual cortex.

Here, we took a different approach. Since natural visual scenes

entail a variety of structured statistics, occurring over the full range

of natural variations in the world, a given visual feature could

appear in many different ways and in a variety of contexts in

natural scenes (Fig. 1). It is conceivable that dealing efficiently with

these variations is vital for performing natural tasks. In fact, for

visual saliency to have any biological utility for natural vision, it

must be tied to the statistics of natural variations of visual features

and their contexts. Therefore, we proposed to test a novel

hypothesis that visual saliency is based on efficient encoding of the

probability of observing visual variables with respect to specific

scene contexts. In other words, saliency should be high when a

visual variable appears with an unlikely context; but saliency should

be low when a visual variable appears with a likely context.

To test this hypothesis, we developed a model of context-

mediated PDs in natural scenes. In this model, we used a set of

conditional PDs based on the independent components (ICs) of

natural scenes in a target-context configuration (described later).

This target-context configuration was studied in both spatial and

temporal domains. We then estimated these PDs from a set of

natural scenes and derived a measure of visual saliency. Finally, we

conducted an extensive evaluation of this model of visual saliency

and found that it is a good predictor of human gaze during the

free-viewing of both static and dynamic natural scenes.

Results

Context-mediated PDs in natural scenes and visual
saliency

The context-mediated PDs in natural scenes are the conditional

PDs of a target for a given context in natural scenes. Here, a

context refers to the natural scene patch that co-occurs with a

visual target in question in a space and/or time domain. We

propose that the context-mediated PDs in natural scenes are

represented by ICs of natural scenes. There are several reasons for

this hypothesis. First, it has been argued extensively that the early

visual cortex represents incoming stimuli in an efficient manner

[14]. The distributions of the amplitudes of ICs of natural scenes

are highly non-Gaussian with high peaks at zero and long tails,

meaning that only a small number of ICs are needed to represent

any stimulus [14–16]. Second, ICs are statistically independent of

each other, allowing easy handling of PDs of natural scenes [30].

Third, the filters of the ICs of natural scenes are very much like the

receptive fields of simple cells in V1, covering the parameter space

of position, size, orientations, and spatial frequency [16,17].

Finally, ICs of natural chromatic images, stereoscopic images, and

movies have revealed many aspects of early visual processing [36–

39].To model the context-mediated PDs in static natural scenes,

we used a center-surround configuration in which the scene patch

within the circular center serves as the target and the scene patch

in the annular surround as the context. We sampled a large

number of scene patches using this configuration from the

Netherland grey image database [17] and McGill calibrated color

image database [40] of natural scenes. Thus, each sample is a pair

of a patch in center (Xc) and a patch in the surrounding area (Xs)

(Fig. 2A and Fig. 3A). We developed a model of natural scenes in a

center-surround configure (Eq. (1)). In Eq. (1), As, Ac, and Asc are

ICs. This model allows us to calculate the ICs for the context (Xs)

first and the other ICs of natural scenes in a center-surround

configuration. It will be become clear that this model will lead to

an explicit formula for the context-mediated PDs in natural scenes,

i.e., the conditional PDs, P XcjXsð Þ.

Xs

Xc

� �
~

As 0

Asc Ac

� �
Us

Usc

� �
ð1Þ

ICA filters (i.e., Ws,Wsc,Wc) can be obtained as follows:

Us

Usc

� �
~

Ws 0

Wsc Wc

� �
Xs

Xc

� �
ð2Þ

We then calculated the ICs for Xs and Xc according to Eq. (1). For

this purpose, we modified the FastICA algorithm [41] to achieve

statistical independence within and between the components of Us

and Usc. Therefore, we obtained three sets of ICs. First, the columns

of As are the ICs forXs. Second, the columns of Asc are the ICs for

Xc that are paired with the ICs for Xs. Finally, the columns of Ac are

the ICs for Xc that are not paired with any ICs for Xs.

Fig. 2B shows the paired ICs for Xs and Xc (i.e., the columns of

As and Asc) for grey images of natural scenes. The ICs for Xs are

oriented bars. The paired ICs for Xc are extensions of the ICs in

the surround into the circular center. For example, the paired ICs

in the seventh row and the ninth column form a vertical bar across

the center. The paired ICs for Xc and Xs can be fitted to Gabor

functions which cover the parameter space of orientation, position,

size, and spatial frequency. Fig. 2C shows the ICs for Xc (i.e., the

columns of Ac) that are not paired with any ICs for Xs. These ICs

are also Gabor functions covering the parameter space of

orientation, position, size, and spatial frequency. For comparison,

we also obtained the ICs for Xc alone (Fig. 2D). Most of the ICs

shown in Fig. 2C are similar to 2D, but there are some exceptions.

For example, the ICs indicated by stars in Fig. 2C do not appear in

Fig. 2D.

Figure 1. Variations of visual features and co-occurring
contexts in natural scenes. (A) Similar targets occur in a variety of
contexts. (B) Various targets occur in similar contexts.
doi:10.1371/journal.pone.0015796.g001
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For color images of natural scenes, we applied the same

procedure to the McGill calibrated color image database of

natural scenes [40] to obtain three sets of ICs. Each of these three

sets has chromatic and achromatic ICs. Fig. 3B shows paired

chromatic ICs for Xc and Xs. Fig. 3C shows paired achromatic

ICs for Xc and Xs. The chromatic ICs for the surround have red-

green (L–M) or blue-yellow [S-(LM)] opponency. The chromatic

paired ICs for the center are extensions of the ICs for the

surround. The achromatic ICs are Gabor functions covering the

parameter space of orientation, position, size, and spatial

frequency. These results are similar to the findings obtained

before [37–39]. Fig. 3D shows the ICs for Xc, including chromatic

and achromatic ICs, that are not paired with any ICs for Xs.

These ICs contain three channels, red/green, blue/yellow, and

bright/dark. For comparison, we also obtained the ICs for center

alone (Fig. 3E). Most of these ICs are similar to those shown in

Figure 2. Patches of luminance images of natural scenes and ICs. (A) Examples of image patches in a center-surround configuration. (B)
Examples of paired center and surround ICs. (C) Examples of unpaired center ICs. (D) Examples of the ICs for the center computed alone.
doi:10.1371/journal.pone.0015796.g002

Emergence of Visual Saliency from Natural Scenes
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Figure 3. Patches of color images of natural scenes and ICs. (A) Examples of color image patches in a center-surround configuration. (B)
Examples of paired chromatic center and surround ICs. (C) Examples of paired achromatic center and surround ICs. (D) Examples of unpaired center
ICs. (E) Examples of the ICs for the center computed alone.
doi:10.1371/journal.pone.0015796.g003
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Fig. 3D. There are, however, some exceptions, for example, the

green and yellow ICs in Fig. 3E do not appear in the Fig. 3D.

The context-mediated PDs of natural scenes, i.e., the condi-

tional PDs, P XcjXsð Þ, can be derived using the Bayesian formula

as follows

P XcjXsð Þ~ P Xc,Xsð Þ
P Xsð Þ

!
P Usð ÞP Uscð Þ

P Usð Þ
~P

i
P ui

sc

� �
ð3Þ

where ui
sc is the amplitude of the ith unpaired IC for Xc. Therefore,

the context-mediated PDs depend only on the unpaired ICs for

Xc, a result that is predicted by the model of natural scenes in a

center-surround configuration (Eq. (1)) and will greatly simplify the

computing of visual saliency of natural scenes. We modeled P(ui
sc)

as generalized Gaussian PDs. As shown in Fig. 4, there are high

peaks near zero and long tails in these PDs, indicating that only a

small number of ICs are needed to encode any natural stimulus

[14–16].

To derive the context-mediated PDs in dynamic natural scenes,

we used sequences of image patches in which the current frame

severed as the target and the preceding frames as the context. We

sampled a large number of sequences of image patches (,490,000)

from Itti’s video database [34] and performed the ICA according

to Eq. (1). To our knowledge, this is the first work that obtained

the ICs of chromatic moving natural scenes. These ICs have three

separate channels, red/green, blue/yellow, and bright/dark.

Fig. 5A shows the paired chromatic spatiotemporal ICs. Fig. 5B

shows the paired achromatic spatiotemporal ICs, which are

consistent with the results obtained elsewhere [36]. These ICs in

Fig. 5A and Fig. 5B are similar to the spatial temporal receptive

fields of simple cells in primary visual cortex, which are selective

for the direction and velocity of movement [42,43]. Fig. 5C shows

the unpaired ICs for the current frame, which are oriented bars

and have red-green or blue-yellow opponency.

Thus, we have developed a model of the context-mediated PDs

in natural scenes. This model applies equally to stereoscopic and

3D natural scenes and we can obtain the context-mediated PDs of

a full range of visual variables in natural scenes. These PDs

represent the most fundamental statistics of natural scenes (i.e., the

statistics of natural variations of visual features and the statistics of

co-occurrences of natural contexts) that any visual animal needs to

deal with. If, as proposed here, these PDs have been instantiated

into the visual circuitry by successful behavior in the world over

evolutionary and developmental time, these PDs naturally give rise

to a measure of visual saliency:

S~ ln Pmax XcjXsð Þ{ ln P XcjXsð Þ ð4Þ

Substituting Eq. (3) into Eq. (4), we have

S~
X

i

ln Pmax ui
sc

� �
{
X

i

ln P ui
sc

� �
ð5Þ

where Pmax XcjXsð Þis the maximum probability of a target,Xc, that

co-occurs with a context, Xs, in natural scenes. Thus, if the

probability of the occurrence of a target is low relative to that of

the most likely occurrence in the context in natural scenes, the

target is salient within the context. This fact is made clear in

Fig. 6A and 6B. For a salient target in Fig. 6A, the probability of

the target within the context is relatively low, and the saliency

measure will be high. For a non-salient target in Fig. 6B, the

probability of the target within the context is relatively high, and

the saliency measure will be low.

Our model of visual saliency differs from all other models in two

major ways. First, this saliency measure is based on the context-

mediated PDs of a full range of visual variables in natural scenes.

Most of other models are based on complex image-based feature

extraction and computing [23,24], and the context-mediated PDs

in natural scenes are not used for a few models that are based on

PDs in natural scenes [31]. Second, since the context-mediated

PDs are related to all possible stimuli in natural scenes experienced

by the visual animal over evolutionary and developmental time

rather than in the current stimulus the subject is viewing, visual

saliency derived here does not involve any of the image-based

processing as many other models [23–25,30,32]. Next, we test

whether this model of visual saliency predicts human gaze in free-

viewing static and dynamic natural scenes.

Visual saliency and human gaze in free-viewing static
natural scenes

Human gaze in free-viewing natural scenes is probably driven

by visual saliency in natural scenes. To test this hypothesis, we

used the procedure shown in Fig. 7 to compute saliency maps of a

set of natural scenes and compared the predictions based on the

saliency maps to human gaze in free-viewing these scenes. To

obtain the saliency map for any scene, we computed the

amplitudes of unpaired ICs for the center (i.e., Usc) according to

Eq. (2) and then the saliency measure at each location according to

Eq. (5). Note that no other computation is needed to compute

saliency maps in natural scenes. To compare the predictions based

on saliency maps to human performance, we used the dataset of

human gaze in free-viewing static natural scenes collected from 20

human subjects in free-viewing 120 images by Bruce and Tsotsos

[30]. Fig. 8 shows the saliency maps based on the context-

mediated PDs in natural scenes and the density maps of human

gaze for six scenes. The saliency maps of Attention based on

Information Maximization (AIM) model in [30] were also shown

in Fig. 8. Evidently, the salient features and objects in these scenes

predicted by the saliency maps accord with human observations

and the saliency maps predicted by our model qualitatively

matched the density maps of human gaze.

To quantitatively access how well our model of visual saliency

predicts human performance, we used the receiver operating

characteristic (ROC) and the Kullback–Leibler (KL) divergence

Figure 4. Probability distributions of three selected unpaired
ICs.
doi:10.1371/journal.pone.0015796.g004
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measure. The ROC metric measures the area under the ROC

curve. To calculate this measure, we used the saliency map as a

binary classifier on every location in an input scene. We classified

the locations with saliency measures greater than a threshold as

fixations and the rest of the locations in the scene as nonfixated

locations. By varying the threshold, we obtained an ROC curve

and calculated the area under the curve which indicates how well

the saliency maps predict human gaze. The KL divergence

between the histogram of visual saliency sampled at fixations and

the histogram of visual saliency sampled at random locations is

another measure for evaluating models of visual saliency. If a

model of visual saliency predicts human gaze significantly better

than chance, the saliency measure computed at human fixations

should be higher than that computed at random locations, leading

to a high KL divergence between the two histograms.

To avoid a central tendency in human gaze [31], we used the

ROC measure described in [44]. Rather than comparing the

saliency measures at attended locations in the current scene to

the saliency measures at unattended locations in the same scene,

we compared the saliency measures at the attended locations to

the saliency measures in that scene at the locations that are

attended in different scenes in the dataset, called shuffled fixations.

The ROC curve obtained in this way is shown in Fig. 9. The

average area under the ROC curve is 0.6803, which means the

saliency measures at fixations are significantly higher than the

saliency measures at shuffled fixations.

Similarly, we measured the KL divergence between two

histograms of saliency measures: the histogram of saliency measures

at the fixated locations in a test scene and the histogram of saliency

measures at the same locations in a different scene randomly

selected from the dataset [31]. The two histograms are shown in

Fig. 10. The histogram of visual saliency at the fixated locations

shifts to the right and thus humans tend to fixate on visual features

and objects that appear salient according to our model.

Our model of visual saliency is a good predictor of human gaze

during the free-viewing of static natural scenes, outperforming all

Figure 5. ICs of natural moving scenes. Selected paired context ICs (the left three columns of each panel) and center ICs (the right column of
each panel) of 1161164 color patches sampled from a video database. These ICs are divided into separate red/green, blue/yellow, and bright/dark
channels. (A) Selected 28 red/green or blue/yellow ICs. (B) Selected 78 bright/dark ICs. (C) Examples of unpaired center ICs.
doi:10.1371/journal.pone.0015796.g005
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other models that we tested. As shown in Table 1, our model has

an average KL divergence of 0.3016 and its average ROC

measure is 0.6803. The average KL divergence and ROC

measure for the AIM model in [30] are 0.2879 and 0.6799

respectively, which were calculated using the code provided by the

authors. The results for other models in Table 1 were given in

[31]. For example, the average KL divergence and ROC measure

for SUN model (ICA) are 0.2097 and 0.6682 respectively [31].

These results are surprising in two aspects. First, our model has a

very simple basis (context-mediated PDs), yet it outperforms other

models that are based on complex image-based feature extraction

and computing [23]. Second, our model does not leverage the

global statistics of a given scene, yet it outperforms other models

that do [30]. Next, we examine the model’s performance for

moving scenes.

Visual saliency and human gaze in free-viewing natural
movies

We used Itti’s database of human gaze in free-viewing

videos[34]. The dataset contains human gaze data collected from

eight human subjects in free-viewing 50 videos that included

indoor scenes, outdoor scenes, television clips, and video games.

We calculated visual saliency at each location in the video clips

using the context-mediated PDs obtained from natural moving

scenes. Fig. 11 shows the saliency maps we obtained for selected

frames in 6 videos. The 3 contextual video frames and the target

frame are shown to the left and the saliency maps to the right. As

predicted by the saliency maps, the moving objects in these videos

appear to be salient (e.g., the character in the game video, the

falling water drop, the soccer player and the ball, the moving car

and the walking policeman, and the jogger and the football

player). These predictions accord well with human observations.

Our model is a good predictor of human gaze in natural moving

scenes. We calculated the KL-divergence between the histogram

of saliency measures at the fixated locations in a test image and the

histogram of saliency measures at the same locations in a different

scene randomly selected from the dataset. As shown in Fig. 12,

humans tend to gaze at visual features that have high saliency, as

shown by the KL divergence measures in Table 2. The KL-

divergence measure for our model is 0.3153, which is higher than

the saliency metric (0.205) [23] and the surprise metric 0.241 [34],

but slightly lower than the AIM model [30] (0.328). This difference

may not be significant since moving natural scenes are enormously

complex and a much larger dataset of human gaze is needed for

evaluating models of visual saliency. The PDs in AIM model are

calculated from the current video frames for which the visual

saliency is computed. Therefore, for each frame, the needed PDs

are recalculated, which is very time consuming. In our model, the

PDs are calculated from natural scenes in advance and no other

processing on the current video frames is performed.

Discussion

Contributions of this paper
First, we developed a model of the context-mediated PDs of a

full range of visual variables in natural scenes. These PDs

represent the most fundamental statistics of natural scenes (i.e.,

the statistics of natural variations of visual features and the statistics

of co-occurrences of natural contexts). In this model, the context-

mediated PDs in natural scenes depend only on the ICs for the

target visual features that are not paired with the ICs for the

Figure 6. Visual saliency based on the context-mediated PDs in natural scenes. (A) An image patch with an salient feature at the center
(left), the probabilities of all ICs (middle), and the PD of the IC that has the smallest probability (right). The red circle is the probability of the central
feature. (B) An image patch with an non-salient feature at the center (left), and the probabilities of all ICs (middle) and the PD of the IC that has the
smallest probability (right). The red circle is the probability of the central feature.
doi:10.1371/journal.pone.0015796.g006
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contextual visual features. Using this model, we examined the

context-mediated PDs of a range of visual variables in natural

scenes. Second, we proposed a measure of visual saliency based on

the context-mediated PDs in natural scenes. This measure of visual

saliency depends on an ensemble of natural scenes that

approximate the statistics experienced by humans during evolution

and development. Thus, neither image-based processing (e.g.,

filtering, feature extraction, and normalization) nor image-based

statistics (e.g., histograms of features and mutual information) is

needed in this model. Finally, we conducted an extensive

evaluation of our model using several datasets and found that

our model is a good predictor of human gaze in free-viewing

natural scenes. This is especially noteworthy since our model uses

far less computational power compared to the other models we

considered.

Distinctions from other models of visual saliency
Our model of visual saliency is different from all other models.

There are four classes of models of visual saliency. The first class of

models do not use PDs but involve complex image-based

computing that includes feature extraction, feature pooling, and

normalization [23,24]. The second class of models make use of

PDs computed from the scene the subject is seeing [30]. The third

class of models are based on PDs in natural scenes that are not

dependent on specific contexts [31]. Finally, there is a biologically

inspired neural network model [25,26]. Our model is unique in

that: 1) the PDs are not computed from any scene the subject is

viewing but from an ensemble of natural scenes that presumably

approximate the statistics human experienced during evolution

and development, and 2) the PDs are dependent on specific

contexts in natural scenes. As a result, no image-based processing

is needed in our model and the computing of visual saliency is very

simple.

Neurons as estimators of the context-mediated PDs in
natural scenes

These results support the notion that neurons in the early visual

cortex may act as estimators of the context-mediated PDs in

natural scenes. Since humans and other visual animals must

respond successfully to visual stimuli whose generative sources

cannot be determined in any direct way due to the inverse optics

problem, the visual system can only generate perception according

to the PDs of visual variables underlying the stimuli. The

information pertinent to the generation of these PDs, namely,

the statistics of natural visual environments, must have been

incorporated into visual circuitry by successful behavior in the

world over evolutionary and developmental time. Thus, an

occurrence of any visual feature, is not a feature per se, but

rather a sample from the PD of that visual feature in specific

context in natural scenes. The goal of visual encoding is then to

encode the context-mediated PDs in natural scenes. This way, any

single neuron relates an occurrence of any visual variable to the

underlying PD in natural scenes. These PDs are related to all

possible stimuli in natural scenes experienced by the visual animals

over evolutionary and developmental time.

This hypothesis is conceptually distinct from the conventional

view of neurons as feature detectors, the efficient coding

hypothesis [10,11], predictive coding [45], the proposal that

neurons encode logarithmic likelihood functions [46], and several

recent V1 neuronal models that involve complex spatial-tempo

Figure 7. Computing visual saliency in natural scenes. Panels illustrate the steps for computing saliency at each location in any input scene.
The unpaired center ICs and the context-mediated PDs are computed beforehand from a set of natural scenes. The first step is to compute the
amplitudes of the unpaired ICs for the target at each location in an input scene. The second step is to compute the saliency measure based on the
context-mediated PDs in natural scenes.
doi:10.1371/journal.pone.0015796.g007
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structures [43,47] but they don’t act as estimators of PDs in

natural scenes. Since the response of any single neuron encode and

decode the PD of the visual variable in natural scenes, this concept

is also different from probabilistic population codes [48] where

populations of neurons automatically encode PDs due to a variety

of noises while single neurons can have nothing to do with the

PDs.

A saliency map in the brain?
An ongoing debate in current studies on visual saliency is

whether or not there should be a saliency map in the brain.

Several researchers argued that there is a saliency map in the brain

[23,27]. Zhaoping argued that there is no need to have a separate

saliency map since saliency can be calculated from neuronal

activities within a small population [25,26]. Other models, due to

the complex computation involved, effectively assert that there is a

saliency map in the brain [30–35]. In our model, computational

units in the visual system encode the context-mediated PDs in

natural scenes and thus convey saliency information explicitly.

Therefore, no further complicated operations are needed to

calculate visual saliency and there is no need to have a separate

saliency map in the brain. To test this prediction, one can record

activities of neurons in the early visual cortex in response to

natural scenes and examine what additional computations are

needed to derive saliency maps from the recorded neuronal

responses.

Figure 8. Examples of saliency maps of natural scenes. First column: input scenes. Second column, saliency maps produced by our model.
Third column: saliency maps given by the AIM model. Fourth column: density maps of human fixation. Saliency is coded in color-scale (red–high
saliency, blue–low saliency). According to the saliency maps, the traffic lights and the cars on the road in the first scene, the red detergent box in the
second scene, the pen and the stapler in the third scene, the bicycle in the fourth scene, the two men in front of the building in the fifth scene, and
the stop sign in the sixth scene appear salient.
doi:10.1371/journal.pone.0015796.g008
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Future directions
It would be very useful to further examine whether this model of

visual saliency can be applied to 3D natural scenes and to include

dynamic adaptation. It would be also very useful to collect a large

dataset of human gaze in free-viewing and searching dynamic, 3D

natural scenes to evaluate models of visual saliency and search.

Materials and Methods

Natural scene statistics
To model the context-mediated PDs in natural scenes, we used

the Netherland database of calibrated images of natural scenes

[17] and the McGill calibrated color image database [40]. The

Netherland database contains 4212 images of natural scenes

obtained with a Kodak DCS420 digital camera (with a 28 mm

camera lens). The images were taken in various environments

(woods, open landscapes, and urban areas). The images have a

resolution of 153661024 pixels with a pixel size of 1 minute of arc.

For our purpose, we removed 344 city scenes. To reduce the

computational cost, we used block averaging to reduce the image

resolution to 768x512. Finally, we converted the linear scale of the

luminance to the logarithmic scale, as did by several authors [17].

We sampled ,137,000 center-surround patches from the database

for ICA. The diameters of the center and the surround in Fig. 2

were 15 and 45 pixels respectively. We reduced the dimensionality

of the center from 149 to 50 and the dimensionality of the context

from 1368 to 200 by selecting the most significant principal

components during ICA.

The McGill calibrated color image database contains 1,122

images from nine scene categories, which are flowers, animals,

fruits, foliages, textures, landscapes, shadows, man-made scenes,

and snow scenes. The images were taken with two Nikon Coolpix

5700 digital cameras. The images have a resolution of 7866576

pixels with each pixel having three channels (red, green, and blue).

We sampled ,110,000 center-surround patches from the images

for ICA. The diameters of the center and the surround in Fig. 3

were 17 and 51 pixels respectively. We reduced the dimensionality

of the center from 723 to 50 and the dimensionality of the context

from 5556 to 200 by selecting the most significant principal

components during ICA.

Natural video statistics
To model the context-mediated PDs in moving natural scenes,

we used the video database collected by Itti and Baldi [34]. The

dataset includes 46,489 video frames in 50 video clips, each of

which lasts 5.5–93.9 s and had 164 to 2814 video frames sampled

at a rate of 60.27 frames per second. These video clips (with a

spatial resolution of 6406480 pixels) included outdoors daytime

and nighttime scenes of crowded environments, video games, and

television broadcasts including news, sports, and commercials. We

sampled ,490,000 spatiotemporal volumes of size of 1161164

from the videos at a rate of 30.13 frames per second.

Independent component analysis
We modified the FastICA algorithm developed by Hyvärinen

[41] to perform the ICA in Eq. (1). This algorithm implements

ICA by finding filters that produce extrema of the kurtosis [17].

For static color natural scenes, we whitened the input data

(,137,000 image patches) before running ICA but did not

perform dimensionality reduction. The diameters of the center

and the surround of the image patches were 7 and 23 pixels

respectively, and the dimensionalities of the center and the

surround were 87 and 1044 respectively. For natural moving

scenes, before running ICA, we whitened the input data

(,490,000) and reduced the dimensionality of the center from

1161163 = 363 to 50 and the dimensionality of the context from

Figure 9. ROC curve of our saliency model.
doi:10.1371/journal.pone.0015796.g009

Figure 10. Histograms of saliency measures at the random
locations (green) and fixated locations in static natural scenes
(blue).
doi:10.1371/journal.pone.0015796.g010

Table 1. ROC metric and KL-divergence for saliency maps of
static natural scenes.

model KL (SE) ROC (SE)

Bruce et al (2009)[30] 0.2879(0.0048) 0.6799(0.0024)

Itti et al (1998)[23] 0.1130(0.0011) 0.6146(0.0008)

Bruce et al (2006)[49] 0.2029(0.0017) 0.6727(0.0008)

Gao et al (2007)[50] 0.1535(0.0016) 0.6395(0.0007)

Zhang: DOG (2008)[31] 0.1723(0.0012) 0.6570(0.0007)

Zhang: ICA (2008)[31] 0.2097(0.0016) 0.6682(0.0008)

Our model 0.3016(0.0051) 0.6803(0.0027)

doi:10.1371/journal.pone.0015796.t001
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116116363 = 1089 to 200 by selecting the most significant

principal components.

Human gaze data in free-viewing static natural scenes
We used the gaze data in free-viewing static color natural scenes

collected by Bruce and Tsotsos [30] to evaluate our model of visual

saliency. This dataset contains human gaze collected from 20

participants in free-viewing 120 color images of indoor and

outdoor natural scenes. In this free-viewing experiment, partici-

pants were instructed to free-view images of natural scenes

presented on a 21-inch CRT monitor at a viewing distance of

0.75 m while their eye movements were recorded by an eye

tracking apparatus.

Human gaze data in free-viewing moving natural scenes
We used the gaze data in free-viewing moving natural scenes

collected by Itti & Baldi [34]. The data were collected from 8

subjects aged 23–32 with normal or corrected-to-normal vision.

Each subject watched a subset of 50 video clips and the traces of

eye movement from four distinct subjects were obtained for each

clip. Subjects were instructed to follow the main actors and actions

in the clips and thus their gaze shifts reflected an active search for

Figure 11. Saliency maps of dynamic natural scenes. Examples of contextual frames (the 3 left columns) and target frame (the 4th column)
frames in 6 video clips and saliency maps (rightmost column). The character in the first game video, the falling water drop in the second clip, the
soccer player and the ball in the third clip, the moving car and the walking policeman in the fourth clip, and the jogger in the fifth clip and the
football player in the sixth clip appear salient.
doi:10.1371/journal.pone.0015796.g011
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nonspecific information of subjective interest. We used two

hundred calibrated traces of eye movement with a total of

10,192 saccades.
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