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Simple Summary: Genes whose expression levels rise and fall similarly in a large set of samples,
may be considered coexpressed. Gene coexpression analysis refers to the en masse discovery of coex-
pressed genes from a large variety of transcriptomic experiments. The type of biological networks that
studies gene coexpression, known as Gene Coexpression Networks, consist of an undirected graph
depicting genes and their coexpression relationships. Coexpressed genes are clustered in smaller
subnetworks, the predominant biological roles of which can be determined through enrichment
analysis. By studying well-annotated gene partners, the attribution of new roles to genes of unknown
function or assumption for participation in common metabolic pathways can be achieved, through a
guilt-by-association approach. In this review, we present key issues in gene coexpression analysis, as
well as the most popular tools that perform it.

Abstract: Gene coexpression analysis constitutes a widely used practice for gene partner identification
and gene function prediction, consisting of many intricate procedures. The analysis begins with the
collection of primary transcriptomic data and their preprocessing, continues with the calculation
of the similarity between genes based on their expression values in the selected sample dataset
and results in the construction and visualisation of a gene coexpression network (GCN) and its
evaluation using biological term enrichment analysis. As gene coexpression analysis has been studied
extensively, we present most parts of the methodology in a clear manner and the reasoning behind
the selection of some of the techniques. In this review, we offer a comprehensive and comprehensible
account of the steps required for performing a complete gene coexpression analysis in eukaryotic
organisms. We comment on the use of RNA-Seq vs. microarrays, as well as the best practices for
GCN construction. Furthermore, we recount the most popular webtools and standalone applications
performing gene coexpression analysis, with details on their methods, features and outputs.

Keywords: gene coexpression networks; transcriptomics; RNA-Seq; microarrays; systems
biology; webtool

1. Introduction

The development of high-throughput technologies [1] aided the discovery of biological
networks which provide insights into the understanding of system properties [2–4]. An
earlier classification [5] divided biological networks into four groups:

• Protein–protein interaction (PPI) networks [6] describe the associations, either through
physical contact or common pathway participation, between two or more proteins;
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• Gene regulatory networks (GRNs) [7] depict the causal interactions between regulators
and their target genes;

• Signal transduction networks [8] contain information on the interactions between
biochemical signalling molecules and cell receptors;

• Metabolic and biochemical networks [9] display all metabolic reactions and molecules
involved in biological pathways.

Due to the recent accumulation of large amounts of transcriptomic data through
microarray and RNA-Seq technologies, an additional group of biological networks has
emerged [10,11]: Gene coexpression networks (GCNs) [12] allow the study of the coexpres-
sion patterns of multiple genes in different biological conditions.

Gene coexpression networks depict the degree of similarity between the expression
profiles of all genes, in a particular set of biological samples that may derive from different
tissues, developmental stages, or environmental conditions, to reach conclusions far beyond
the scopes of the individual studies the samples have come from. The underlying basis of
gene coexpression analysis is that coexpressed genes tend to participate in similar biological
processes [13,14]. Furthermore, expression levels of correlated genes may be controlled by
similar regulatory mechanisms. As such, GCNs can replicate known functional roles and
regulatory interactions between genes. The construction of GCNs can additionally function
as a prediction method, identifying novel functional interactions between genes, as well as
assigning new roles to existing genes or genes of yet unknown function [15,16].

Currently, there are several gene coexpression webtools and standalone applications
focusing on a variety of model species of animals [13,17–21], plants [22–29] and fungi [30,31].

Many methods have been developed for the construction of a gene coexpression
network [12,32]. However, most of the methodologies include the following steps:

1. Collection and integration of expression data
2. Processing and filtering of gene expression data and construction of expression

matrices [12,24]
3. Selection of coexpression measure and construction of similarity matrices [15,32]
4. Selection of significance threshold and network construction [24,33].
5. Identification of modules using clustering techniques [32].

We review key issues in the analysis of gene coexpression and the basic features for
the construction of a GCN. In addition, the most popular gene coexpression applications
for various model organisms, are presented.

2. Collection and Processing of Transcriptomic Data and Construction of Gene
Expression Matrices

The two main transcriptomic technologies used to obtain expression data for coexpres-
sion analysis are microarrays [34] and RNA-Seq [35]. The samples used for a coexpression
analysis can be procured from public databases, produced through in-house experiments
by research groups, or a combination of both. Using publicly available experiments is
usually preferred, as many public transcriptomic data repositories provide an abundance
of expression profiling studies. The most popular ones include Gene Expression Omnibus
(GEO) [36], ArrayExpress [37], and Expression Atlas [38] which contain both microarray
and RNA-Seq data, as well as Sequence Read Archive (SRA) [39], Gene-Tissue Expression
(GTEx) [40], The Cancer Genome Atlas (TCGA) [41] and European Nucleotide Archive
(ENA) [42], which are RNA-Seq specific.

The source data must originate from the same organism and the same transcriptomic
platform for the coexpression results to be comparable. Subsequently, there are two major
approaches to coexpression analysis, depending on the experimental conditions of the
primary sample data sets used [3]:

(A) ‘Condition independent’ approach uses a set of samples of a multitude of different
conditions and source tissues. This method is suitable for studying the global coex-
pression landscape of an organism and demonstrates gene relationships regardless of
experimental conditions [12].
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(B) ‘Condition dependent’ [12,43] approach uses a set of samples that derive from a
specific tissue or a specific experimental condition. In this case, the coexpression
analysis aims to discover the gene coexpression profile under the selected condition.

The biological question at hand defines which one of the two approaches should be
adopted. Since all aforementioned transcriptomic data repositories describe in detail each
of their available samples and can be queried using integrated advanced search functions,
samples of the same species from the same platform can be easily retrieved. This sample
filtering strategy can be expanded to identify samples of a specific tissue or condition.

Another important point lies in the total number of samples used for the coexpression
analysis. Although using a small number of samples results in stronger gene correlations, it
also increases the chance for spurious correlations to appear [3]. Consequently, a minimum
amount of 20 samples is recommended to perform a coexpression analysis [44].

2.1. Microarray Data Analysis

There are several microarray manufacturers, such as Affymetrix [45], Agilent [46],
Illumina [47], etc. Among them, Affymetrix GeneChip is the most popular platform to
quantify gene expression. For each Affymetrix microarray hybridisation, a CEL file that
contains the intensity values per probe is produced. Those primary files are then pre-
processed with the assistance of a Chip Description File (CDF) which describes probe
locations and probe set groupings on the chip, to calculate the expression values per
probe set. These values are combined with an annotation file that contains gene-probe set
correspondences, to obtain the gene expression values (Figure 1). Microarray pre-processing
algorithms, usually referred to as normalisation algorithms, include the following steps:

1. background correction
2. normalisation
3. probe summarisation
4. log2 transformation (optional)

1 

 

 

Figure 1. Pre-processing procedure for transcriptomic data. Primary microarray data are procured in
a CEL format which is transformed to gene expression values by using a normalisation algorithm
which is guided by a Chip Description File (CDF). In RNA-Seq primary data pre-processing, the
FASTQ-formatted sequence read data are trimmed, then aligned to a reference genome. Gene counts
are produced with the help of a General Feature Format (GFF) file. GFF file may also be used during
alignment. Expression values are produced through normalisation. Both technologies eventually
converge to the production of the same output, an expression matrix which contains the expressions
of each gene in all samples.
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The most popular normalisation methods that lead to one expression value per probe
set are MAS5 [48], RMA [49], GCRMA [50], PLIER [51] and SCAN [52]. The oldest of
these algorithms, MAS5, is the only one that does not perform logarithm transformation
to the expression values. SCAN and MAS5 algorithms normalise each microarray sample
independently of the others of the same series and are preferred when combining microar-
ray samples from different series or laboratories, as other pre-processing algorithms, such
as RMA or GCRMA, derive information from all samples together during normalisation
and thus potentially introduce erroneous calculations, known as correlation artifacts. To
eliminate low-quality samples [53], a great effort has been made to develop methods to
assess and visualise the quality of GeneChip data. Specific algorithms for quality control
(QC) have been developed and many of these have been implemented in R statistical
scripting language [54] and are available in Bioconductor suite [55].

2.2. RNA-Seq Data Analysis

Since its introduction, RNA-Seq has been steadily increasing as the method of choice to
measure gene expressions accurately. The RNA-Seq technology that studies the aggregated
mRNA of cell populations or tissue parts is also referred as bulk RNA-Seq. RNA-Seq is
based on next-generation sequencing (NGS) where the length of the reads does not exceed
700 bps [56] and third-generation sequencing where the read length can be more than
150,000 bps [57]. Next-generation sequencing technologies include Illumina [58], 454 Life
Science [59], etc, while third-generation sequencers include PacBio [60], Nanopore [61], etc.
The raw data produced by RNA-Seq experiments are FASTQ [62] files, containing the
sequence reads, as well as a quality value for each base. The pre-processing of RNA-Seq
data [63] consists of:

1. quality control and trimming of sequence reads
2. mapping reads to a reference genome or transcriptome
3. producing gene read counts
4. normalisation

The first step of the pre-processing pipeline includes the quality assessment of the se-
quence reads and subsequent trimming of the adapter sequences and low-quality reads [64].
Software for quality control includes FastQC [65] which produces per-sample reports and
MultiQC [66] which aggregates these reports, producing a single summary report and
LongQC [67] which is specific for third-generation sequencing data. Software for trimming
includes Cutadapt [68], fastp [69] and Trimmomatic [70]. Complete removal, also known as
hard-clipping, is usually performed exclusively on the adapter sequences to save up storage
space and facilitate downstream analysis. Soft-clipping refers to tagging low-quality reads
or adapter sequences, so that they can be ignored in later steps of the analysis. Soft-clipping
is preferrable to hard-clipping, as important information regarding the reads is not com-
pletely lost. Next, the trimmed reads are aligned to FASTA-formatted sequences of their
corresponding reference genome. This step is performed using specific alignment software
depending on the sequence read length: Aligners such as TopHat2 [71] and HISAT2 [72]
are used for short reads, Magic-Blast [73], Graphmap2 [74], DART [75] LAMSA [75] and
deSALT [76] for long reads and Bowtie 2 [77], minimap2 [78], STAR [79] GMAP [80] and
BWA-MEM [81] for both types of reads. Some aligners can also perform soft-clipping of
bases from the left or right end of the read sequence [79] and unmapped reads will always
be soft-clipped during the alignment step. This process produces a BAM-formatted [82]
file which contains the mapping of the reads to the reference genome. This output is then
combined with a General Feature Format 3 (GFF3) file [83] which contains the genomic
feature coordinates, to count the gene reads, using programs such as Cufflinks [84], feature-
Counts [85] and HTSeq [86]. Aligners may also use GFF3 annotations upfront. The exon
joints provided by GFF files, accelerate the mapping process and increase the quality of the
spliced alignments. Finally, to calculate the gene expression values, the resulting gene read
count data are normalised. Algorithms such as Total Count [87], Quantile [88] and Upper
Quartile [89], are purely based on arithmetic calculations concerning the read counts and
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their distributions in the samples, while TPM [90] and RPKM [91] take transcript length
into account. TMM [92] and DESeq [93] use a mathematical and biological combination
and qsmooth [94] normalises read counts based on the assumption that the distribution
of samples should differ on a global scale, but not in each biological group/tissue. After
normalisation, log2 transformation of expression data is applied (Figure 1). Other software,
such as Kallisto [95] and Salmon [96], use a different approach, pseudoaligning reads to a
reference transcriptome, producing gene expression data two orders of magnitude faster
than other pipelines. The selection of the normalisation algorithm impacts the quality
of the resulting GCNs [97], thus, different normalisation procedures might be chosen for
condition-independent or condition-dependent analyses.

2.3. Single-Cell RNA-Seq in Coexpression Analysis

Single-cell RNA-Seq (scRNA-Seq) is a recently emerging RNA-Seq-based technology
which studies the transcriptome of single cells [98]. The pre-processing pipeline of scRNA-
Seq data is similar to that of bulk RNA-Seq data. However there are certain additional steps
that need to be performed, to account for the high heterogeneity of single-cell data [99].
A common phenomenon in scRNA-Seq data, is the appearance of a large amount of
zero counts of genes that are truly expressed in other cells of the same type, known as
dropout events [100]. In order to fill in the missing values, imputation methods, such
as scImpute [101], SAVER [102] and MAGIC [103], have been developed. The produced
expression matrix includes the expression values of genes per sample which in this case
refers to a single cell.

2.4. Microarrays vs. RNA-Seq in Coexpression Analysis

The end result of both microarray and RNA-Seq data pre-processing is a file containing
gene expression values per sample. Affymetrix-based chips use an outdated default CDF, so
several probe sets either do not correspond to any known gene or correspond to more than
one genes, and some genes are recognised by no probe set or by more than one probe sets.
Thus, a custom CDF that better reflects current genomic and transcriptomic knowledge is
recommended. One such example is the frequently updated BrainArray CDF [104] which
ensures that each probe set corresponds to a single gene and vice versa.

RNA-Seq is a rapidly evolving technology with a larger, ever-increasing amount of
publicly available data. As opposed to microarrays, RNA-Seq can accurately measure
all known genes of an organism and has higher sensitivity. However, the expression
estimations of RNA-Seq and microarrays are comparable, especially in genes with average
expression [105]. Thus, the resulting gene coexpression landscapes which derive from RNA-
Seq and microarrays are close [106] and biological pathway enrichments are similar [22].
The drawbacks of RNA-Seq include the significantly longer execution time of data pre-
processing and higher computational resource requirements, as well as the use of pipelines
of not yet fully optimised algorithms. On the contrary, all steps in microarray pre-processing
are performed by a single, quick, light and optimised algorithm (Figure 1).

Irrespective of the transcriptomic technology, pre-processing of existing raw transcrip-
tomic data from public repositories is imperative, as it ensures data uniformity which is
essential for subsequent coexpression analysis. Reanalysis of the original primary data
with modern normalisation algorithms and genomic annotations, can highly improve
the estimation of gene expressions and thus, the coexpression landscape. This is crucial,
especially in the case of microarray data analysis, as it was reported that up to 50% of the
genes that were identified as differentially expressed in Affymetrix-based studies where
default CDF was used, might be artifacts [104].

2.5. Batch Correction

There are many conditions which may vary during the course of an experiment (such
as reagents, equipment, personnel, etc.) and may introduce batch effects, which is a com-
mon source of variation in both microarray and RNA-Seq data [107]. In the case of condition
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dependent (tissue-specific) coexpression analysis where data from multiple studies are
combined, another layer of batch effects is introduced: experiments from different laborato-
ries. Thus, batch effect identification and subsequent correction is an important step after
expression data pre-processing. Usually, the studies that each sample belongs to, are used
to define the batches, although the date and time of each experiment may be used as batch
surrogates. Existence of batch effects is confirmed through visual inspection via principal
component analysis (PCA) [108] and hierarchical clustering [109]. Batch effects are present
if samples from the same study which derive from different biological conditions are clus-
tered together, whereas the clusters should have been made up of the samples of the same
conditions, regardless of study source. Batch-corrected microarray-based coexpression
analysis using ComBat [110], produces combined correlations which are more consistent
with each single study’s correlations [106], while a larger number of high quality GCNs
are produced when ComBat batch correction is applied to normalised RNA-Seq data [97].
While ComBat requires manual denoting of the sources of the batch effects, SVA [111] can
automatically estimate them, and subsequently applies ComBat correction. SVA is useful
in cases where there are indications of technical variations (e.g., observed by PCA) but their
source is not evident. scRNA-Seq samples are much more prone to technical variations, due
to the low amount of genetic material isolated from each cell [99]. In this case, batch effect
correction is perfomed by scRNA-Seq specific methods, such as f-scLVM [112], MNN [113]
and kBET [114].

3. Selection of Coexpression Measure and Construction of Similarity Matrices

After the acquisition of gene expression data, the correlation of expression between each
gene pair needs to be calculated. This is performed through a vast variety of approaches:

Distance-based measures calculate the dissimilarity between the expression of a pair
of genes. Traditional distance measures are based on Minkowski distances [115]:

dmin =
(
∑n

i=1|xi−yi|m
) 1

m

where m is a positive integer and xi and yi are the expression values of x and y genes
in the ith sample. Euclidean and Manhattan distances are cases of Minkowski distance,
depending on the value of m. In Manhattan distance, m = 1:

d = ∑n
i=1|xi−yi|

In one of the most used distance measures, Euclidean distance, m = 2:

d =
√

∑n
i=1(xi−yi)

2

Correlation metrics describe the tendency of the expression levels of a pair of genes,
to increase or decrease simultaneously across different samples [3,4]. They produce coef-
ficients ranging from −1 (perfect anti-correlation) to +1 (perfect correlation), with values
near 0 indicating no correlation.

The Pearson correlation coefficient (PCC or r) [116] is a measure that depicts the linear
correlation between two genes, x and y, and is calculated as follows:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2

where n is the number of samples and xi and yi are the expression values of x and y genes
in the ith sample. PCC is useful for detecting correlation between genes that may have
different average expression levels, however in some cases it is sensitive to outliers [3,12]
resulting in false-positive results when the number of samples is small and pre-processing
is based on quantile normalisation [117].
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Uncentred correlation (Cosine similarity) [118] depicts the similarity between the
expression of two gene pairs and, in contrast to centred PCC, it does not take into account
the mean expression of each gene. It is given by:

cossim(x, y) =
∑n

i=1 xiyi√
∑n

i=1(xi)
2
√

∑n
i=1(yi)

2

Spearman’s rank correlation coefficient (ρ) [119] is calculated as the PCC of the rank-
ings of the expression values. In cases where there are no ranking ties, ρ can be calculated
as follows [120]:

ρ(x, y) = 1−
6 ∑n

j=1 D2
j

n(n2 − 1)

where Dj is the difference between the ranks of the corresponding values of genes x and y.
As a parametric measure, PCC is used if gene expression values follow normal dis-

tributions across samples, otherwise a nonparametric method, such as Spearman’s rank
correlation coefficient, should be used. The selection of the algorithm can be based on
a normality test. As Spearman’s correlation coefficient uses expression ranks instead of
expression values, ρ is less sensitive to extreme data values.

Kendall’s rank correlation coefficient (τ) [121] is a measure of nonlinear dependence
between two random variables. It is suitable for identifying key genes that increase or
decline in monotonic fashions in expression data collected during a biological process or
developmental stage [122]. For any pair of observations

{(
xi, xj

)
,
(
yi, yj

)}
of expressions

of genes x and y in samples i and j, where i < j, if (xi > xj AND yi > yj) OR (xi < xj AND
yi < yj), the pair is concordant, if (xi > xj AND yi < yj) OR (x i< xj AND yi > yj) the pair is
discordant, or if xi = xj OR yi = yj, the pair is neither concordant nor discordant. Kendall’s
correlation coefficient is given by [122]:

τ =
nc − nd√[

n(n−1)
2 −∑k

tk(tk−1)
2

] ∣∣∣ n(n−1)
2 −∑l

ul(ul−1)
2

∣∣∣
where n is the number of samples, nc is the number of concordant observation pairs, nd the
number of discordant pairs, tk is the number of observations tied at k rank of x and ul is the
number of observations tied at l rank of y. In cases where there are no tied observations,
the following formula is used:

τ =
nc − nd
n(n−1)

2

Since Kendall’s rank correlation coefficient is used to identify monotonic relationships,
it is used as an alternative to Spearman’s.

The aforementioned correlation coefficient values are used to compute the Mutual
Rank (MR) [123] score as follows:

Mxy =
√

RxyRyx

where Rxy is the rank of the correlation of genes x and y in the descending list of all gene
correlations of x. Since MR is a distance measure, with smaller values meaning higher
correlation, a Logit Score (LS) transformation [124] is applied:

Lxy = log2
(

N −Mxy
)
− log2

(
Mxy

)
where N is the total number of genes studied. Higher values of LS indicate stronger correlations.

Finally, Mutual Information (MI) is a method that detects the amount of information
obtained about the expression of one gene by observing the expression of another gene [125].
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MI is based on Shannon’s theory of communication [126] and is calculated by subtracting
the joint entropy of two genes X and Y from the sum of their entropies [127]:

I(X, Y) = H(X) + H(Y)− H(X, Y)

A MI value which is close to 0 surmises no correlation between a gene pair, while a
high value shows a correlation relationship. In contrast to PCC, Mutual information can
detect non-linear statistical relationships [128].

4. Selection of Significance Thresholds for Network Construction

Once a correlation measure has been chosen, a correlation matrix which contains all
pairwise gene correlation coefficients cor(x, y) for any x and y genes, is constructed. The
correlation matrix is a square matrix with M × M dimensions, where M is the number
of studied genes. The diagonal values of the matrix are 1, as they correspond to the
correlation of any gene to itself and the matrix is symmetric to the main diagonal, thus it
can also be portrayed as an upper or lower triangular matrix, displaying each gene pair
correlation once.

There are several ways to portray the correlation landscape of a large number of
genes (Figure 2). The simplest and commonest way to study gene coexpression, is by
producing a list of most coexpressed genes to a “driver gene” i.e., the gene of interest. In
this coexpressed gene list [129], the correlations of the driver gene with all other genes are
ranked according to their correlation coefficient, either in descending order to highlight
the top positively correlated genes, or in ascending order to highlight the top negatively
correlated genes. In effect, a coexpression list contains the ordered values of the correlation
matrix row (or column) of the driver gene, thus it demonstrates singular gene coexpression
relationships, without accounting for any interconnections among the coexpressed genes of
the list.

Figure 2. Flowchart depicting the steps for performing gene coexpression analysis using gene
expression data. Gene pairwise correlations are calculated and regardless of the chosen correlation
measure, correlation values need to be transformed to similarity values and then to adjacency values.
Gene coexpression can be depicted as lists, dendrograms or networks. Eventually, the results of the
coexpression analysis need to be evaluated through enrichment analysis.

To overcome the aforementioned limitation, a more sophisticated way to study gene
coexpression is the construction of a GCN, based on an M ×M similarity matrix which
scales all correlation values between 0 and 1. If the absolute correlation values are used
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for the construction of the matrix (sxy = |cor(x, y)|, where sxy is the similarity between x
and y genes), then the similarity matrix is considered “unsigned”. In unsigned similarity
matrices, positively and negatively correlated gene pairs cannot be distinguished. To tackle
this, “signed” similarity matrices are produced as follows:

sxy =
1 + cor(x, y)

2

with negative correlations getting sxy < 0.5 and positive correlations getting sxy ≥ 0.5 [130].
An adjacency value axy between genes x and y is produced by applying an adjacency

function to the similarity values (sxy). Depending on the function used, a certain type of
significance threshold is applied to reveal significant biological relationships. Threshold
selection can be divided into hard and soft threshold approaches. Hard thresholds exclude
gene pairs with similarity values below the predetermined threshold τ [131] by mapping all
similarity values to 0 or 1 adjacency values, to show the absence or presence of coexpression
between a pair of genes:

axy =

{
1 i f sxy ≥ τ
0 i f sxy < τ

Another hard threshold approach is to set the adjacency values of only a certain top
percent of the similarity values, to 1 [132]:

axy =

{
1 i f sxy ≥ Pr
0 i f sxy < Pr

where Pr is the rth percentile of all s values (i.e., r% of s values are less than or equal to Pr).
In graph theory, GCNs are depicted as a set of vertices (nodes) which correspond

to genes and undirected edges (lines connecting node pairs) which represent gene pair
correlations [3,12,133,134]. Unweighted networks can be produced only if gene pairs of
adjacency values equal to 1 are drawn as edges. To avoid self-loops, the values of the main
diagonal of the binary adjacency matrix are set to 0. The most popular program to visualise
GCNs is Cytoscape [135] which is also available as a web plugin [136].

When adjacency values are produced using soft thresholds, similarity values are
transformed through specific functions resulting in adjacency values which range between
0 and 1 [130]. If the power function is selected, the adjacency value is calculated as follows:

axy =
∣∣sxy

∣∣β
where β is a parameter chosen by the user. Soft thresholds result in weighted networks,
where each weight is used to appraise the strength of the coexpression relationship.
Weighted networks depict all available coexpression relationships between each gene
pair with each edge being coupled with a corresponding weight value. To avoid accidental
noise and incorrect correlations, the transformation of adjacency matrix into Topological
Overlap Measure (TOM) matrix is proposed [130]. A TOM matrix displays the strength of
connection between two genes x and y (Farber & Mesner, 2016) and is calculated as follows:

ωxy =
∑u 6=x,y axuauy + axy

min
(

∑u 6=x axu, ∑u 6=y ayu

)
+ 1− axy

where ωxy is the TOM similarity value, u is a gene other than x and y and axy is the adjacency
value of x and y.

A distance or dissimilarity matrix contains the distance values between each gene pair.
A distance matrix from a correlation matrix can be produced by applying a d = 1− cor(x, y)
transformation [137] to all correlation values. As such, a distance matrix has the same
M×M dimensions, is symmetric to its main diagonal and can be displayed as an upper
or lower triangular matrix. The values range from 0 (complete correlation) to 2 (complete
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anti-correlation), with values around 1 showing no correlation. The diagonal values of the
distance matrix are 0, as they correspond to the distance of a gene to itself. The TOM matrix
can also be transformed into a distance matrix by subtracting its values from 1 [130]:

dω
xy = 1−ωxy

Even though both hard and soft thresholds result in GCNs, it is not easy to select a
cut-off value to achieve the optimal connections in a network. An extremely high cut-off
may fail to reveal important relationships, missing crucial biological information, while a
generous one will result in spurious relationships [138].

5. Identification of Modules Using Clustering Techniques

Modules in a GCN can be defined as a group of genes that are densely linked [139–141].
Highly connected genes within a network are called hub genes. These genes have been
shown to be functionally significant [142,143]. There are two types of hub genes named
intra-modular and inter-modular hubs that are central to specific modules in the network
or central to the entire network, respectively [32].

Clustering is a method to group and visualise coexpressed genes, using a distance
matrix as input. Genes that have similar expression patterns across multiple samples
are grouped to produce sets of coexpressed genes [32,125]. The most common clustering
method is hierarchical clustering whose most popular implementation in gene coexpression
is the unweighted pair group method with arithmetic mean (UPGMA) [109]. Hierarchical
clustering starts by connecting genes that are closest to each other and continues to connect
resulting clusters based on their pairwise distances, eventually forming a tree (in this case,
a gene coexpression tree). The leaves of the tree represent the genes and the lengths of
the branches reflect the distance between genes, thus tree clades represent coexpression
modules [32,125,137]. The tree output file is usually in Newick format [144].

Biclustering generates clusters of rows and columns simultaneously [145]. In the
case of gene expression, rows are genes and columns are samples. Biclustering is usually
depicted in the form of a coexpression heatmap. Based on their expression level, genes
are mapped into clusters with the main objective to find homogeneous submatrices called
biclusters which may overlap, or discover local expression patterns according to certain
experimental conditions [146]. Due to this process, biological information about these
clusters can be extracted. This information refers not only to the correlated genes but also
to the identification of genes that do not act the same way in all conditions [147].

A popular non-hierarchical clustering method is k-means, a partitioning method that
subdivides the genes into a predefined k number of clusters [137,148]. The k-means method
initially sets k points that function as cluster centre points (centroids). Each gene is then
assigned to the cluster with the closest centroid. New positions for the cluster centroids
are set as the average of the genes of the cluster, and gene assignment begins anew. The
previous two steps continue until no more genes change cluster [137,149]. However, it is
difficult to determine the optimal number of k points and multiple runs of the algorithm
may result in different components for each cluster.

The self-organizing map (SOM) method is closely related to k-means, also starting with
a predetermined number of cluster centroids. In the case of SOMs though, the centroids are
linked in a prespecified geometrical configuration [149]. Each iteration involves randomly
selecting a gene and moving the closest centroid in the direction of this gene, as well as
its neighbouring centroids on the grid [137]. In this fashion, neighbouring centroids in
the initial geometry tend to be mapped to nearby centroids in k-dimensional space [150].
Clusters that are closest to each other in the initial arrangement, tend to be more similar
to each other than those that are further apart [149]. The end result is a grid of clusters, in
which neighbouring clusters show related expression patterns [137].

Gene coexpression trees produced through clustering cannot portray anti-coexpressed
genes and are limited to classifying a gene into a single functional cluster, although genes
may possess multiple functions and participate in different metabolic pathways [23].
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The cophenetic correlation coefficient (CPCC or c) is used to measure the quality of
hierarchical clustering [151]. Cophenetic pairwise distances are calculated as the pairwise
distances between genes as these are portrayed by the gene coexpression tree. CPCC
is the PCC between the initial pairwise distance of genes and their cophenetic pairwise
distance [152]:

c =
∑n

x

(
dxy − d

)(
txy − t

)√
∑n

x

(
dxy − d

)2
∑n

x
(
txy − t

)2

where dxy is the distance of genes x and y from the original distance matrix and txy is their
cophenetic distance. CPCC shows how faithfully the coexpression tree has retained the
initial pairwise distances and ranges from −1 to 1, with 0 surmising no relation at all and
1 showing that the dendrogram has perfectly replicated the distances between genes.

6. Gene List Functional Enrichment Analysis

The purpose of a gene coexpression analysis is to discover functional gene partners to
a gene of interest. Biological functions can be attributed to genes of unknown role, based on
the verified functions of their coexpressed gene partners [12], an approach known as “guilt
by association”. By identifying the most coexpressed genes to a gene of interest or the sub-
network or subtree that the gene of interest belongs to, from a GCN or a gene coexpression
tree, respectively, lists of highly coexpressed genes are created. The predominant biological
functions, metabolic pathways, regulating transcription factors, disease associations, etc,
for such a gene list can be determined through functional enrichment analysis.

In over-representation analysis (ORA), statistically significant biological terms which
describe members of a list of coexpressed genes, are discovered by comparing the observed
number of genes of the list which are related to a certain biological term, against the
expected number of genes which would be related to the same term. Thus, a reference list
containing all the studied genes, as well as sufficient biological annotations, is required.
The statistical significance of enriched terms is usually assessed by calculating p-values
through Fisher’s exact test or the hypergeometric distribution test [153].

In gene set enrichment analysis (GSEA) [154], all genes are ordered according to their
correlation values with the gene of interest, with the top and bottom extremes being the
top most coexpressed and top anti-coexpressed genes, respectively. Already compiled gene
sets of several biological categories are used as background gene libraries. The enrichment
score (ES) for a biological term is calculated as follows: A running-sum value of the ranked
list of coexpressed genes is computed, increasing every time a gene that appears in the
gene library is found, and decreasing otherwise. Its maximum observed value becomes
the ES of that specific biological term. By generating a null distribution for the ES through
permutation, the statistical significance is estimated by calculating a p-value.

Enrichment analysis p-values need to be adjusted for multiple comparisons. This is
done by calculating the false discovery rate (FDR) [155]. In the case of GSEA, a normalised
enrichment score (NES) is first calculated before producing the FDR adjusted p-value.
Statistically significant terms have an adjusted p-value below a predetermined cut-off. The
lower the adjusted p-value of the biological term, the more confident we are of the term
truly being enriched.

Biological term enrichment categories include: gene ontologies [156], biological and
metabolic pathways [157], protein structures [158], gene-disease associations [159], regula-
tory motifs [160], experimentally verified transcription factor binding sites [161], etc. Public
online tools performing enrichment analysis of coexpressed gene lists that result from coex-
pression analyses include g:Profiler [162], Enrichr [163], WebGestalt [164], FLAME [165],
DAVID [166] and GOnet [167]. More specifically, g:Profiler offers enrichment analyses for
more than 700 organisms. FLAME can perform many visualisations on the input gene list
but its enrichment analysis is based on g:Profiler calculations. Enrichr offers an immense
list of available biological term compilations, but is available only for six model species.
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Compared to the other tools, DAVID and WebGestalt can be used with or without a ref-
erence gene list, with WebGestalt allowing for detailed parameter customisation before
analysis. Most of the tools also offer integrated functions for gene ID conversions. Finally,
GOnet can perform gene ontology enrichment analysis only for human and mouse, but is
unique in visualising the input genes and their corresponding enriched gene ontologies as
well as the ontology hierarchy and relationships between ontologies as a graph.

7. Coexpression Tools

Several coexpression tools studying global or tissue-specific coexpression analysis, are
available at the time of writing, as online websites (Table S1), or as stand-alone applications.
We are presenting a brief description of the main functionalities of each tool as well as
emphasising their distinguishing features.

7.1. Global Coexpression Web Tools

COXPRESdb [168] provides gene coexpression relationships, for nine animal and two
fungal species: Homo sapiens, Mus musculus, Rattus norvegicus, Gallus gallus, Macaca mulatta,
Canis lupus familiaris, Danio rerio, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces
cerevisiae and Schizosaccharomyces pombe. ATTED-II [124] is the sister database to COX-
PRESdb, providing coexpression data for nine plant species: Arabidopsis thaliana, Brassica
rapa, Glycine max, Medicago truncatula, Oryza sativa, Populus trichocarpa, Solanum lycopersicum,
Vitis vinifera and Zea mays. COXPRESdb and ATTED-II contain both microarray and RNA-
Seq data and are constantly evolving with new features and increasing numbers of samples.
The databases use the Logit Score transformed mutual ranks as a gene coexpression measure
and RNA-Seq data are processed with their own Matataki [169] quantification software,
an algorithm optimised for execution speed. The coexpression results are portrayed as
coexpressed gene lists, sorted in descending LS order of coexpressed genes with the gene
of interest, based on representative gene expression data combining both RNA-Seq and
microarrays. Adjacent lists display results from all other available transcriptomic subsets,
such as microarray samples from specific conditions, etc. Furthermore, to increase the ro-
bustness of the analysis, coexpression results of orthologous genes of closely related species
are also displayed. Finally, the top coexpressed partners to a gene of interest are portrayed
as coexpression networks in the gene’s information page (Figure 3).

Figure 3. Cont.
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Figure 3. Coexpression results of ATTED-II and COXPRESdb: (a) GCN of the top coexpressed
partners to CTL2, found in the gene’s information page; (b) GCN of the top coexpressed gene partners
to NRP1, found in the gene’s information page. Coloured circles refer to different KEGG pathways.

Arabidopsis Coexpression Tool (ACT) [23,140,141] studies gene coexpression in
21,273 Arabidopsis thaliana genes using high-quality healthy microarray samples. The latest
version of ACT is based on 3500 Affymetrix Arabidopsis ATH1 Genome Array GeneChip
samples from ArrayExpress, GEO and NASCArrays. Expression data were produced using
the SCAN algorithm along with Brainarray CDF. Genes were clustered using UPGMA
hierarchical clustering to create a gene coexpression tree. Using a single gene as input, a
subclade containing the driver gene and its coexpressed genes is produced (Figure 4a). The
subtree size can be increased or decreased. Multiple biological term enrichment analyses
are offered and the coexpression subtree and its corresponding gene list can be exported
to various external tools for further downstream analysis. ACT’s sister web tool for Homo
sapiens is Human Gene Correlation Analysis (HGCA) [13]. HGCA1.0 is based on 1959
Affymetrix Human Genome U133 Plus 2.0 samples of various cells and tissues. Gene
expression data were produced using the MAS5.0 algorithm with default CDF. Pairwise
PCCs were measured for all probe sets and were grouped using neighbour joining [170].
Similar to ACT, users select a driver probe set which corresponds to the gene of interest.
Users can choose between two outputs: a coexpressed gene list or a gene coexpression tree.
Over-representation analysis for multiple biological categories is also available. HGCA1.5
is based on the same samples as HGCA1.0. Nevertheless, primary data are processed in
a manner identical to that of ACT. HGCA2.0 is a major upgrade as expression data from
55,431 genes were produced from GTEx RNA-Seq gene count data of 3500 samples, using
qsmooth normalisation. The downstream data processing is similar to that of HGCA1.5.
HGCA1.5 and HGCA2.0 output gene coexpression trees (Figure 4b).



Biology 2022, 11, 1019 14 of 31

Figure 4. Coexpression results of ACT and HGCA2.0: (a) Default coexpression subtree in ACT using
CTL2 as driver gene. The subtree contains nine genes (including the driver gene) and possesses
five ancestral nodes; (b) Default coexpression subtree in HGCA2.0 using NRP1 as driver gene. The
subtree contains 34 genes (including the driver gene) and possesses five ancestral nodes.

EXPath 2.0 [171] allows the user to perform various transcriptomic-based analyses for
six plant species: Arabidopsis thaliana, Oryza sativa, Zea mays, Solanum lycopersicum, Glycine
max, and Medicago truncatula. EXPath 2.0 contains both microarray and RNA-Seq data from
various conditions. Single gene analysis in EXPath 2.0 has multiple outputs: EXPath offers
information for a gene of interest, including its biological terms, sample-specific expression
and top correlated or anti-correlated genes. A multiple gene query results in a weighted
GCN that includes both positively and negatively coexpressed genes. Finally, GO and
pathway enrichment, as well as differential expression gene analyses are available.

PLANt coEXpression (PLANEX) [28] is a coexpression database for eight plant species:
Arabidopsis thaliana, Glycine max, Hordeum vulgare, Oryza sativa, Solanum lycopersicum,
Triticum aestivum, Vitis vinifera and Zea mays. This database presents a list of coexpressed
genes ranked by their PCCs. Positive and negative cut-offs were determined by finding the
top 1% of the positive and the top 1% of the negatively correlated gene pairs. Furthermore,
a GCN can also be presented. Another functionality is the comparison of the coexpression
between any user-selected gene pair. Compared with other similar databases, in PLANEX’s
case the probes were mapped against representative genes by string match instead of
BLAST [172], thus producing positive results if each base in a probe sequence matched
perfectly with the representative gene sequence without any gap. In addition, the PCC
was subjected to PCA, for the identification of a gene set with changing expression over
different experiments.
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Co-expressed biological Processes (CoP) [173] is a microarray-based database for
eight model or popular plant species: Arabidopsis thaliana, Glycine max, Hordeum vulgare,
Oryza sativa, Populus trichocarpa, Triticum aestivum, Vitis vinifera and Zea mays. For a gene
and species of interest, CoP outputs the following: Gene details, coexpressed gene list of
the driver gene’s coexpression module, homologous genes in the same species, orthologous
genes in the other seven plant species included in CoP, as well as the microarray experi-
ments where it is explicitly expressed. Gene correlations are calculated using uncentred
correlation coefficients and coexpressed gene modules are determined through the confeito
algorithm [174]. Each coexpression module is associated with biological processes and
metabolic pathways.

Correlation Networks (CorNet) [175] is an online tool for network construction in
Arabidopsis thaliana. CorNet is based on microarray and RNA-Seq samples and can perform
coexpression, protein–protein or regulatory interaction analyses. Using pre-defined or
user-uploaded primary datasets, CorNet displays the coexpressed genes to a single gene or
a list of genes. Various customisation options are available: selecting between Pearson or
Spearman correlation coefficients and setting a correlation threshold, p-value cut-off, the
number of resulting coexpressed genes and whether the GCN will contain relationships
between the coexpressed genes. The output is either a GCN which is visualised through
Cytoscape (Figure 5) or a coexpressed gene list.

1 

Figure 5. GCN of ten coexpressed partners to CTL2 in CorNet, visualised through Cytoscape. The
GCN includes the coexpression inter-relationships.

Mouse Gene Prediction Database [176] is one of the first databases studying gene
coexpression in Mus musculus. It is based on custom-made Agilent microarray samples,
using custom-mapped probes. The user can input a mouse gene of interest and the web
tool outputs a coexpression intensity heatmap which contains the top 100 probe sets (as
well as their corresponding genes) which are coexpressed with the gene of interest on one
axis and the available tissues on the other axis. It is also possible to search for groups of
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coexpressed genes associated with a GO term or to search for genes via their genomic
location or sequence similarity through BLAST.

ARCHS4 [21] is based on RNA-Seq gene count data for Homo sapiens and Mus musculus,
derived from GEO and SRA samples. The web tool displays a scatter cloud 3d-visualisation
of all genes based on their coexpression similarity. Single gene search outputs the predicted
biological functions of the gene of interest, specific tissue/cell-line gene expression, as
well as a list of the top coexpressed genes (Figure 6). Enrichment analysis on the list of
coexpressed genes can be performed through Enrichr.

Figure 6. Coexpression gene list in ARCHS4. The full list corresponds to the top 100 coexpressed
genes to NRP1, with only the top ten being presented.

Search-based Exploration of Expression Kompendia (SEEK) [177] includes thou-
sands of microarray and RNA-Seq samples which are used for gene coexpression analysis
in Homo sapiens. Both single and multiple gene searches are available: in the single gene
search, coexpressed genes to the gene of interest are displayed, starting from the top
coexpressed ones. The coexpression score of each gene is calculated across the selected
datasets. By using the “expression” option, each gene’s specific expression in each sample
is displayed as a heatmap. Each dataset produces a different expression heatmap and sam-
ples belonging to the same dataset are grouped through hierarchical clustering. By using
the “co-expression” option, a single heatmap containing the summarized coexpression
scores across 50 datasets at a time, is displayed. The sample datasets can be filtered to
include specific tissues or cell-lines. Multiple gene query has a similar output, with the
addition of an extra heatmap showing the sample-specific expression among the query
genes. Enrichment analysis, including metabolic pathways, gene ontology categories, etc.,
is available.

Multi Experiment Matrix (MEM) [178] allows analysis of multiple transcriptomic
datasets derived from ArrayExpress and GEO for Homo sapiens, Mus musculus, Arabidopsis
thaliana, Rattus norvegicus, Saccharomyces cerevisiae, Drosophila melanogaster, Sus scrofa, Oryza
sativa, Escherichia coli, Danio rerio, Caenorhabditis elegans, Gallus gallus, Bos taurus, Pseudomonas
aeruginosa, Medicago truncatula, Triticum aestivum, Macaca mulatta, Canis familiaris, Populus
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trichocarpa, Hordeum vulgare, Zea mays, Glycine max, Staphylococcus aureus, Xenopus laevis,
Solanum lycopersicum, Vitis vinifera, Anopheles gambiae and Xenopus tropicalis. Users can
perform coexpression analysis for one or multiple genes in the experiments of each available
platform. Using a single gene as query, results in a gene expression heatmap, with the top
coexpressed genes on one axis and the selected experiments grouped through hierarchical
clustering on the other axis. Gene ontology enrichment analysis can be performed with
the results also being portrayed as a word cloud (Figure 7). MEM allows for a lot of
customisations, such as using multiple different correlation measures and filtering the
resulting coexpressed genes.

Figure 7. Enrichment analysis results depicted as a word cloud produced by MEM. The resulting
biological terms are derived using the top 50 coexpressed genes to NRP1 in MEM. Some terms and
names may be clipped. Nevertheless, full term names can be found in an accompanying table below
the word cloud in the MEM webpage.

Gemma [179] performs differential gene expression or coexpression analysis for single
or multiple genes in a user-selected sample dataset. The following species are included:
Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Saccharomyces cere-
visiae, Danio rerio and Escherichia coli. By selecting a single gene, a list of the top coexpressed
genes is produced. A heatmap of the expression of each coexpressed gene pair can be
displayed in each available series of samples. Other gene details, such as sample datasets
where the gene is differentially expressed, or the disease phenotypes associated with the
gene of interest, are also included. A multiple gene coexpression analysis can be performed,
either by inputting a custom gene list or selecting from already compiled gene lists. The
transcriptomic samples to be used in the analysis can also be selected from Gemma’s
database. A multiple gene coexpression analysis produces a list of positively or negatively
coexpressed genes that can also be visualised as a GCN. Selected nodes in the resulting
GCN can be expanded with additional correlated genes.

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) [180] is a
popular web tool performing PPI network construction for 12,025 Bacteria, 1597 Eukaryotes
and 472 Archaea. STRING accepts a gene or a gene list as input and outputs an expanded
PPI network, containing the input genes’ corresponding proteins as well as additional
predicted protein interactors. A GCN can be constructed by only selecting “Co-expression”
from all interaction sources available. An important feature of STRING is “Analysis” which
includes multiple enrichment analyses calculated in-house, as well as important network
statistics, such as average local clustering coefficient and PPI enrichment p-value.

Gene Multiple Association Network Integration Algorithm (GeneMANIA) [31] is
a web tool for gene network construction and function prediction for Homo sapiens, Mus
musculus, Rattus norvegicus, Drosophila melanogaster, Saccharomyces cerevisiae, Danio rerio,
Escherichia coli, Arabidopsis thaliana and Caenorhabditis elegans. GeneMANIA accepts either
a single gene or a list of genes as input and outputs a gene network depicting multiple
gene–gene relationships including coexpression and protein interactions [181,182]. By
selecting only coexpression-based evidence relationships, a GCN is effectively created.
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If a single gene is selected as input, GeneMANIA outputs a user preselected amount of
coexpressed gene partners (default 20) to the gene of interest (Figure 8). All data associated
with the generated GCN, such as the Cytoscape network file, the gene list of the GCN or
the list of publications supporting the relationships between the coexpressed genes can
be downloaded.

Figure 8. GeneMANIA-produced GCN using Homo sapiens NRP1 as driver gene. Only coexpression
relationships were used, with the rest of the settings being the default ones.

7.2. Condition-Specific Coexpression Web Tools

GeneFriends [183] offers tissue-specific gene coexpression networks for 20 human
and 21 mouse tissues as well as global gene coexpression networks for Homo sapiens, Mus
musculus, Bos taurus, Rattus norvegicus, Danio rerio, Drosophila melanogaster, Gallus gallus
and Saccharomyces cerevisiae. The latest version is based on RNA-Seq data from SRA, GTEx
and TCGA. GeneFriends can perform single or multiple gene searches. The outputs are
coexpressed gene lists which can be shown as GCNs. Additionally, biological term statistics
are included and enrichment analysis is performed through DAVID.

Correlation AnalyzeR [184] performs Homo sapiens gene coexpression analysis based
on reanalysed RNA-Seq read count data from ARCHS4. Available samples were re-
processed and characterised based on tissue or cell-type. The webtool offers tissue-specific
or global single gene, gene comparison and gene topology coexpression analyses. Single
gene output is a coexpressed gene list along with a histogram depicting the frequency
of correlation values of the coexpressed genes. A gene vs. gene scatterplot displays the
correlation values of an input gene pair and the rest of the gene pool. In both cases,
MSigDB-based [185] enrichment analysis results are also displayed below. A multiple gene
coexpression analysis has similar output to the single gene search, highlighting only the
correlations of the driver gene with the rest of the input genes. Finally, the gene list topology
function clusters the input genes and subsequently performs the following analyses: PCA,
variant gene heatmap creation and pathway enrichment analysis. Correlation AnalyzeR is
available both as a webtool and a stand-alone R package.

ImmuCo [186] is the first web tool to perform coexpression analysis between any two
genes in multiple immune cells in Homo sapiens or Mus musculus. ImmuCO outputs a scatter
plot of the correlation values for each gene pair to illustrate the extent of correlation. A list
of positively coexpressed genes can also be downloaded for each one of the query genes.

Immuno-Navigator [187] contains gene expression and coexpression data for immune
system cells, from 4639 Homo sapiens and 3434 Mus musculus samples, covering 19 and
24 hematopoietic cell types, respectively. Immuno-Navigator was novel in addressing
batch effect correction, thus improving the quality of both expression and correlation data.
Immuno-Navigator offers a variety of coexpression results: coexpressed gene lists to a
driver gene in different cell types, gene–gene correlation comparison scatterplots in all
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available samples, GCN construction with a gene list of interest as input, as well as multiple
enrichment analyses.

MyoMiner [106] performs condition-specific coexpression analysis in Homo sapiens
and Mus musculus normal and pathological muscle samples. Microarray data were collected
from ArrayExpress and GEO and were meticulously quality controlled and batch-corrected.
MyoMiner was the first webtool to perform microarray sample normalisation with SCAN
and Brainarray custom CDF. On the website, samples can be filtered by organism (human
or mouse) and cell-line strain, gender, age, anatomical part, or condition. By selecting a
gene as a driver, the top coexpressed genes to the gene of interest are displayed, taking
into account only the filtered samples. A GCN can be constructed by using the list of
coexpressed genes as input. Finally, a comparison of the coexpression analyses of two
different sample subsets can be performed.

7.3. Stand-Alone Gene Coexpression Applications

Genevestigator [18] is a software tool for curated gene expression data. Genevesti-
gator integrates thousands of microarray and RNA-Seq experiments (>320,000 datasets),
offering a multitude of analyses such as differential expression, gene set enrichment and
gene coexpression. In the latter, Genevestigator enables the user to choose the samples of
interest through an internal search function and can discover positively or negatively coex-
pressed genes. Genevestigator not only outputs a coexpressed gene list to the driver gene
but can also display possible coexpression interconnections of the resulting coexpressed
genes (Figure 9). The resulting coexpressed gene list can be used as input for internal
enrichment analysis.

Figure 9. Output of positive coexpression analysis in Genevestigator with CTL2 as driver gene. The
“anatomy” sample dataset is used and the cut-offs of the inter-relationships of coexpressed genes are
set to the default values.
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Weighted Gene Co-expression Network Analysis (WGCNA) [130] is a widely used
software package for weighted gene coexpression network construction implemented
in R. A gene expression matrix of a set of samples, is required as input [188]. Initially,
sample selection is performed as follows: hierarchical clustering of samples produces
a dendrogram where samples are represented as leaves and leaves above a specified
cut height and subclades with leaves less than a defined cutoff, are pruned. Using the
expressions of the remaining samples, WGCNA constructs a coexpression network with
weighted edges. To identify gene modules of the GCN, a TOM-based distance matrix
is created from the GCN’s adjacency matrix, which is visualised as a dendrogram and
subsequently separated into modules through dynamic tree cutting. Depending on the
shape of the dendrogram, WGCNA’s parameters can be modified to produce an optimal
number of modules [189]. Each gene module is represented as an eigengene. WGCNA may
also visualise module-trait associations as a heatmap, by calculating PCCs between module
eigengenes and quantitative traits. Values of such traits do not influence the constructed
network of genes, but their addition can elucidate how each gene module influences
each trait. Generally, WGCNA can be used in combination with other R packages which
perform network analysis or functional biological term enrichment analysis of GCNs [139].
WGCNA facilitates finding hub genes of modules and the way modules associate with each
other [190] and can predict the role of a gene of unknown function, based on the module it
belongs to [188], as each module may be associated with certain biological pathways [139].

QUalitative BIClustering 2 (QUBIC2) [191] is a tool for performing biclustering in gene
expression data. QUBIC2’s input is a gene expression matrix, which is converted into discrete
values, using a left-truncated mixture gaussian (LTMG) model. After discretisation, the
biclustering procedure is performed: A weighted graph is first constructed from the qualitative
matrix, with the weights of the edges calculated as the amount of samples for which two genes
have the same nonzero integer values. Then, through core biclustering identification and
expansion, biclusters are produced. Finally, the biclusters are visualised as a heatmap and their
statistical significance is evaluated through enrichment analysis. QUBIC2 has demonstrated
robust results across data from microarrays and bulk and single-cell RNA-Seq.

Factor Analysis for Bicluster Acquisition (FABIA) [192] is an R-based bioconductor
package performing biclustering. FABIA constitutes a multiplicative model with improved
performance on heavy-tailed distribution data, as in the case of gene expressions. Depending
on the input gene expression matrix, the appropriate Bayesian model is selected and applied.
To discover the true biclusters, FABIA evaluates the produced biclusters by their information
content. The tool’s output consists of a variety of plots for each bicluster, including heatmaps.

Iterative Signature Algorithm (ISA) [193] presents a characterisation of biclusters as
transcription modules to be extracted from the expression data. A transcription module
refers to a set of genes and a set of samples. A set of random gene and sample components
is refined in an iterative procedure until it constitutes a transcription module, by applying a
linear map without violating a threshold function. The algorithm outputs biclusters, while
providing the ability to produce a heatmap. Subsequently, each bicluster can be plotted
separately. Some biclusters may consist of overlapping genes and/or conditions [194].

NCBI GEO [195] includes a visualisation tool for displaying cluster heat maps for
each manually curated DataSet, essentially performing biclustering (Figure 10), using a
variety of distance metrics (Euclidean distance, PCC or uncentred correlation coefficient)
and clustering algorithms (single, complete or average linkage). To accelerate loading times,
all clustering–distance metric combinations are pre-computed.
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Figure 10. NCBI GEO Biclustering of samples and genes of GDS4562. Multiple biclusters of genes
and samples of interest may be exported, plotted or linked to the corresponding entries of GEO
Profiles. UPGMA clustering is performed using: (a) Euclidean distance; (b) Pearson correlation.
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CEMiTool [196] is an R package for performing gene coexpression analysis and GCN
construction. CEMiTool’s input is a gene expression matrix and performs the rest of the
steps automatically: First, genes are filtered and using the remaining ones, a β-value is
automatically selected for soft-thresholding. The resulting adjacency values are used to de-
termine functional gene modules through DynamicTreeCut, as well as for the construction
of a GCN. Users can optionally provide gene interaction data for additional interaction rela-
tionships in the resulting GCN. Various kinds of enrichment analysis can also be performed
internally. Finally, the tool’s website version, webCEMiTool [197], has been successful in
performing coexpression analysis using expression data derived from scRNA-Seq data.

scLink [198] is a pipeline for perfoming coexpression analysis on scRNA-Seq data,
implemented in R. scLink uses a gene read count matrix deriving from scRNA-Seq as input
and initially performs normalisation to produce gene expressions. Then, scImpute [101]
is used to address the high amount of zero expressions. scLink uses a novel correlation
measure which is based on an adaptation of the Gaussian graphical model in order to
produce a coexpression matrix, which is ultimately used for the construction of a GCN.
scLink has been successfully tested on mouse scRNA-Seq data.

8. Limitations and Perspectives in Coexpression Analysis

Gene coexpression analysis can be performed on the condition that an accurate es-
timation of gene expression is carried out, in a sufficient amount of samples of the same
platform of a transcriptomic technology. Thus, coexpression analysis for non-model species
may be limited by data availability.

A primary limitation of microarrays is that an organism can only be studied by
using chips specifically designed for its own transcriptome. As microarray chip design is
complicated and mass-production is costly, this technology is only available for a limited
number of model species. Another intrinsic limitation of microarrays is their inability to
produce expression values for genes for which there are no probes on the surface of the
chip. Futhermore, probe cross-hybridisation may distort the estimation of the expression of
genes of the same family and eventually their correlations with other genes.

Standard RNA-Seq pre-processing workflow requires a known genome and tran-
scriptome, thus, the study of gene expression in non-model species, is possible as long
as their genome and transcriptome are published. Gene expression analysis may also be
performed in non-model species with no genome available if assembly and annotation of a
de novo transcriptome, is performed prior to transcript count: based on RNA-Seq reads,
de novo transcriptome assembly may be performed, e.g., using Trinity [199]. Then, the
transcripts are characterised by matching their sequences to homologous genes of related
organisms, and functionally annotated, using their corresponding biological terms, through
an annotation pipeline, e.g., Trinotate [200]. Ultimately, transcript abundance is estimated
by pseudoaligning RNA-Seq reads on the de novo transcriptome, using Salmon or Kallisto.
These additional steps in the RNA-Seq workflow introduce extra assumptions which may
reduce the overall quality of subsequent coexpression analysis and, to our knowledge, no
coexpression tool based on it has yet been developed.

Bulk RNA-Seq estimates an “average” expression for each gene in the multitude of
cells which comprises a biological sample. This might reduce the ability to detect the “fine-
tuning” of corregulation of genes, a limitation which may be overcome using the singular
high-resolution heterogeneous expression data derived from scRNA-Seq [201]. Any steps
performed after the production of expression values in scRNA-Seq, like dimensionality
reduction, should be ignored as they are irrelevant in coexpression analysis.

A strand-specific short-read sequencing technology that ensures one read per tran-
script, thus facilitating accurate gene expression estimation, is QuantSeq 3′ mRNA se-
quencing [202]. This technology can be efficiently integrated with current pipelines, such
as Salmon [203]. As the probes of the most popular Affymetrix microarray chips target
the 3′-end of the transcripts, the output of QuantSeq may be most comparable to that
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of microarrays, making it ideal for the comparison of microarray-based data of model
organisms with RNA-Seq-based data of non-model organisms.

RNA-Seq feature count is normally performed at the gene level, thus ignoring dif-
ferences in the expression level of alternative transcripts. Alternative transcripts may
derive from alternative transcription start sites (TSSs), Transcription end sites (TESs) or
splicing donor–splicing acceptor combinations. Isoforms of the same gene may possess
different biological functions, e.g., TP73 isoforms whose coding sequence (CDS) includes a
transactivation domain are considered apoptotic, while TP73 isoforms whose CDS lacks
this transactivation domain, are considered anti-apoptotic [204]. Quantification of the
expression of individual isoforms may be achieved by using methods for profiling the
sequence of initiation of transcription [205] through STRIPE-seq [206] or Tn5Prime [207] or
by using certain scRNA-Seq methods with increased read mapping across all transcripts
and the ability to detect splice variants, such as Smart-seq2 [208]. Integrating the results of
the aforementioned methods into coexpression analysis would facilitate the study of the
specific functions of protein isoforms and their coexpressed partners. Nevertheless, most
biological terms are assigned to genes and are not isoform-specific. A notable exception is
the transcription factors that control each alternative promoter. Isoform-specific biological
term enrichments could provide more insight on the coexpression landscape.

The most commonly used measures for deducing gene similarity are Euclidean dis-
tance and Pearson and Spearman correlation coefficients and there are many R packages
which can be used to calculate them. While Euclidean distance is sensitive to scaling and
differences in average expression levels [137], resulting in imbalanced correlation trees with
a characteristic “ladder” effect (Figure 10a), correlation coefficients result in more balanced
trees (Figure 10b). Pearson correlation is mostly preferred to Spearman, showing slightly
better results in coexpression network creation (Spearman only performs better in small
sample number datasets) [97]. Most of the other measures, such as TOM similarity or LS
are intricate transformations of PCC. However, correlation coefficients may not be effective
in studying gene coexpression based on scRNA-Seq data, due to the high heterogeneity
and noise in scRNA-Seq expression values [198]. Thus, new correlation methods may need
to be invented and extensively tested, before they become mainstream.

9. General Guidelines for Coexpression Tool Selection

Coexpression tools are used to produce verifiable biological hypotheses, through
which the users can create their experiments for the identification of gene partners or
novel gene functions. A simpler use is the provision of an additional line of evidence in
an already completed experimental analysis. Although gene coexpression tools produce
comparable results, there are notable discrepancies among them, since they are based on
different transcriptomic data and coexpression analysis workflows.

At first, the user should decide whether the tool for the species of interest should
be global or tissue/cell-type specific. Then, a collection of global or tissue-specific tools,
depending on the previous selection, might be run for analysis and the user could form
a consensus list of coexpressed genes that are present in the results of the majority of
the tools. Alternatively, the user might assess the performance of each tool, based on
various indications for an efficient depiction of the coexpression landscape. First of all, the
number of samples used by each tool is an important factor, with higher sample numbers
resulting in more reliable coexpression relationships, as a small sample number might
introduce sparse correlations [3]. Sample variability is equally important to ensure that
the dataset is not skewed towards a certain tissue, when global coexpression is studied. In
addition, high-quality samples and the application of batch correction increases the quality
of coexpression [97,122,209–211].

Tools that are based on up-to-date genome/transcriptome data or biological terms are
preferable, e.g., microarray-based tools using a custom CDF are innately better than those
using the default one. The mathematical rigor of the underlying statistics of a coexpression
tool may also improve its performance. This might be assessed by the complexity of
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the correlation calculation method, as well as by the resulting depiction of coexpression.
The latter can be evaluated by the ability of the tool to reproduce known biology: The
output of each tool could be cross-checked with the existing bibliography by searching for
validated gene partners in the coexpression lists or validated biological processes in the
statistically significant enriched biological terms. Enrichment analysis can be performed
either internally, by some coexpression tools, or by exporting the coexpressed gene list to
external webtools such as WebGestalt, where either pre-set or user-defined reference gene
lists may also be used.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11071019/s1, Table S1: Detailed information on available
coexpression webtools.

Author Contributions: Conceptualization, I.M.; methodology, V.L.Z., G.S., K.P. and I.T.; investigation,
V.L.Z., G.S. and A.M.; writing—original draft preparation, V.L.Z., G.S., A.M. and I.M.; writing—review
and editing, V.L.Z., A.M., K.P., I.T., V.A.I. and I.M.; visualization, V.L.Z. and I.M.; supervision, I.M.;
project administration, I.M.; funding acquisition, I.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the project “ELIXIR-GR: Managing and Analysing Life
Sciences Data” (MIS: 5002780) which is implemented under the Action “Reinforcement of the Re-
search and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness,
Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European
Union (European Regional Development Fund).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors are thankful to the reviewers for their useful suggestions and comments.
We also thank Konstantinos Kyriakidis of Aristotle University of Thessaloniki, for his valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schneider, M.V.; Orchard, S. Omics Technologies, Data and Bioinformatics Principles. In Bioinformatics for Omics Data: Methods

and Protocols; Mayer, B., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 3–30.
2. Barabasi, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113.

[CrossRef] [PubMed]
3. Usadel, B.; Obayashi, T.; Mutwil, M.; Giorgi, F.M.; Bassel, G.W.; Tanimoto, M.; Chow, A.; Steinhauser, D.; Persson, S.; Provart, N.J.

Co-expression tools for plant biology: Opportunities for hypothesis generation and caveats. Plant Cell Environ. 2009, 32, 1633–1651.
[CrossRef] [PubMed]

4. Emamjomeh, A.; Saboori Robat, E.; Zahiri, J.; Solouki, M.; Khosravi, P. Gene co-expression network reconstruction: A review
on computational methods for inferring functional information from plant-based expression data. Plant Biotechnol. Rep. 2017,
11, 71–86. [CrossRef]

5. Pavlopoulos, G.A.; Secrier, M.; Moschopoulos, C.N.; Soldatos, T.G.; Kossida, S.; Aerts, J.; Schneider, R.; Bagos, P.G. Using graph
theory to analyze biological networks. BioData Min. 2011, 4, 10. [CrossRef]

6. Pellegrini, M.; Haynor, D.; Johnson, J.M. Protein interaction networks. Expert Rev. Proteom. 2004, 1, 239–249. [CrossRef]
7. Emmert-Streib, F.; Dehmer, M.; Haibe-Kains, B. Gene regulatory networks and their applications: Understanding biological and

medical problems in terms of networks. Front. Cell Dev. Biol. 2014, 2, 38. [CrossRef]
8. Albert, R.; DasGupta, B.; Dondi, R.; Kachalo, S.; Sontag, E.; Zelikovsky, A.; Westbrooks, K. A novel method for signal transduction

network inference from indirect experimental evidence. J. Comput. Biol. 2007, 14, 927–949. [CrossRef]
9. Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabasi, A.L. The large-scale organization of metabolic networks. Nature 2000,

407, 651–654. [CrossRef]
10. Tieri, P.; Farina, L.; Petti, M.; Astolfi, L.; Paci, P.; Castiglione, F. Network Inference and Reconstruction in Bioinformatics. In

Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C., Eds.; Academic
Press: Oxford, UK, 2019; pp. 805–813.

11. Fionda, V. Networks in Biology. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M.,
Nakai, K., Schönbach, C., Eds.; Academic Press: Oxford, UK, 2019; pp. 915–921.

https://www.mdpi.com/article/10.3390/biology11071019/s1
https://www.mdpi.com/article/10.3390/biology11071019/s1
http://doi.org/10.1038/nrg1272
http://www.ncbi.nlm.nih.gov/pubmed/14735121
http://doi.org/10.1111/j.1365-3040.2009.02040.x
http://www.ncbi.nlm.nih.gov/pubmed/19712066
http://doi.org/10.1007/s11816-017-0433-z
http://doi.org/10.1186/1756-0381-4-10
http://doi.org/10.1586/14789450.1.2.239
http://doi.org/10.3389/fcell.2014.00038
http://doi.org/10.1089/cmb.2007.0015
http://doi.org/10.1038/35036627


Biology 2022, 11, 1019 25 of 31

12. Serin, E.A.R.; Nijveen, H.; Hilhorst, H.W.M.; Ligterink, W. Learning from Co-expression Networks: Possibilities and Challenges.
Front. Plant Sci. 2016, 7, 444. [CrossRef]

13. Michalopoulos, I.; Pavlopoulos, G.A.; Malatras, A.; Karelas, A.; Kostadima, M.A.; Schneider, R.; Kossida, S. Human gene
correlation analysis (HGCA): A tool for the identification of transcriptionally co-expressed genes. BMC Res. Notes 2012, 5, 265.
[CrossRef]

14. Petereit, J.; Smith, S.; Harris, F.C., Jr.; Schlauch, K.A. Petal: Co-expression network modelling in R. BMC Syst. Biol. 2016, 10, 51.
[CrossRef]

15. He, F.; Maslov, S. Pan- and core- network analysis of co-expression genes in a model plant. Sci. Rep. 2016, 6, 38956. [CrossRef]
16. Liseron-Monfils, C.; Ware, D. Revealing gene regulation and associations through biological networks. Curr. Plant Biol. 2015,

3–4, 30–39. [CrossRef]
17. Obayashi, T.; Kagaya, Y.; Aoki, Y.; Tadaka, S.; Kinoshita, K. COXPRESdb v7: A gene coexpression database for 11 animal species

supported by 23 coexpression platforms for technical evaluation and evolutionary inference. Nucleic Acids Res. 2019, 47, D55–D62.
[CrossRef]

18. Hruz, T.; Laule, O.; Szabo, G.; Wessendorp, F.; Bleuler, S.; Oertle, L.; Widmayer, P.; Gruissem, W.; Zimmermann, P. Genevestigator
v3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008, 2008, 420747. [CrossRef]

19. Jupiter, D.; Chen, H.; VanBuren, V. STARNET 2: A web-based tool for accelerating discovery of gene regulatory networks using
microarray co-expression data. BMC Bioinform. 2009, 10, 332. [CrossRef]

20. Yang, S.; Kim, C.Y.; Hwang, S.; Kim, E.; Kim, H.; Shim, H.; Lee, I. COEXPEDIA: Exploring biomedical hypotheses via co-
expressions associated with medical subject headings (MeSH). Nucleic Acids Res. 2017, 45, D389–D396. [CrossRef]

21. Lachmann, A.; Torre, D.; Keenan, A.B.; Jagodnik, K.M.; Lee, H.J.; Wang, L.; Silverstein, M.C.; Ma’ayan, A. Massive mining of
publicly available RNA-seq data from human and mouse. Nat. Commun. 2018, 9, 1366. [CrossRef]

22. Obayashi, T.; Aoki, Y.; Tadaka, S.; Kagaya, Y.; Kinoshita, K. ATTED-II in 2018: A Plant Coexpression Database Based on
Investigation of the Statistical Property of the Mutual Rank Index. Plant Cell Physiol. 2018, 59, e3. [CrossRef]

23. Zogopoulos, V.L.; Saxami, G.; Malatras, A.; Angelopoulou, A.; Jen, C.H.; Duddy, W.J.; Daras, G.; Hatzopoulos, P.; Westhead, D.R.;
Michalopoulos, I. Arabidopsis Coexpression Tool: A tool for gene coexpression analysis in Arabidopsis thaliana. iScience 2021,
24, 102848. [CrossRef]

24. Leal, L.G.; Lopez, C.; Lopez-Kleine, L. Construction and comparison of gene co-expression networks shows complex plant
immune responses. PeerJ 2014, 2, e610. [CrossRef] [PubMed]

25. Narise, T.; Sakurai, N.; Obayashi, T.; Ohta, H.; Shibata, D. Co-expressed Pathways DataBase for Tomato: A database to predict
pathways relevant to a query gene. BMC Genom. 2017, 18, 437. [CrossRef] [PubMed]

26. Kawahara, Y.; Oono, Y.; Wakimoto, H.; Ogata, J.; Kanamori, H.; Sasaki, H.; Mori, S.; Matsumoto, T.; Itoh, T. TENOR: Database for
Comprehensive mRNA-Seq Experiments in Rice. Plant Cell Physiol. 2016, 57, e7. [CrossRef] [PubMed]

27. Xia, L.; Zou, D.; Sang, J.; Xu, X.; Yin, H.; Li, M.; Wu, S.; Hu, S.; Hao, L.; Zhang, Z. Rice Expression Database (RED): An integrated
RNA-Seq-derived gene expression database for rice. J. Genet. Genom. 2017, 44, 235–241. [CrossRef]

28. Yim, W.C.; Yu, Y.; Song, K.; Jang, C.S.; Lee, B.M. PLANEX: The plant co-expression database. BMC Plant Biol. 2013, 13, 83.
[CrossRef]

29. Proost, S.; Mutwil, M. PlaNet: Comparative Co-Expression Network Analyses for Plants. Methods Mol. Biol. 2017, 1533, 213–227.
[CrossRef]

30. Van Dam, S.; Craig, T.; de Magalhaes, J.P. GeneFriends: A human RNA-seq-based gene and transcript co-expression database.
Nucleic Acids Res. 2015, 43, D1124–D1132. [CrossRef]

31. Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res.
2018, 46, W60–W64. [CrossRef]

32. van Dam, S.; Vosa, U.; van der Graaf, A.; Franke, L.; de Magalhaes, J.P. Gene co-expression analysis for functional classification
and gene-disease predictions. Brief. Bioinform. 2018, 19, 575–592. [CrossRef]

33. Peng, J.; Wang, T.; Huc, J.; Wang, Y.; Chen, J. Constructing Networks of Organelle Functional Modules in Arabidopsis. Curr.
Genom. 2016, 17, 427–438. [CrossRef]

34. Schena, M.; Shalon, D.; Davis, R.W.; Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary
DNA microarray. Science 1995, 270, 467–470. [CrossRef]

35. Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [CrossRef]
36. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman,

P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013, 41, D991–D995.
[CrossRef]

37. Parkinson, H.; Kapushesky, M.; Shojatalab, M.; Abeygunawardena, N.; Coulson, R.; Farne, A.; Holloway, E.; Kolesnykov, N.;
Lilja, P.; Lukk, M.; et al. ArrayExpress–A public database of microarray experiments and gene expression profiles. Nucleic Acids
Res. 2007, 35, D747–D750. [CrossRef]

38. Papatheodorou, I.; Moreno, P.; Manning, J.; Fuentes, A.M.; George, N.; Fexova, S.; Fonseca, N.A.; Fullgrabe, A.; Green, M.;
Huang, N.; et al. Expression Atlas update: From tissues to single cells. Nucleic Acids Res. 2020, 48, D77–D83. [CrossRef]

39. Kodama, Y.; Shumway, M.; Leinonen, R.; International Nucleotide Sequence Database, C. The Sequence Read Archive: Explosive
growth of sequencing data. Nucleic Acids Res. 2012, 40, D54–D56. [CrossRef]

http://doi.org/10.3389/fpls.2016.00444
http://doi.org/10.1186/1756-0500-5-265
http://doi.org/10.1186/s12918-016-0298-8
http://doi.org/10.1038/srep38956
http://doi.org/10.1016/j.cpb.2015.11.001
http://doi.org/10.1093/nar/gky1155
http://doi.org/10.1155/2008/420747
http://doi.org/10.1186/1471-2105-10-332
http://doi.org/10.1093/nar/gkw868
http://doi.org/10.1038/s41467-018-03751-6
http://doi.org/10.1093/pcp/pcx191
http://doi.org/10.1016/j.isci.2021.102848
http://doi.org/10.7717/peerj.610
http://www.ncbi.nlm.nih.gov/pubmed/25320678
http://doi.org/10.1186/s12864-017-3786-3
http://www.ncbi.nlm.nih.gov/pubmed/28583129
http://doi.org/10.1093/pcp/pcv179
http://www.ncbi.nlm.nih.gov/pubmed/26578693
http://doi.org/10.1016/j.jgg.2017.05.003
http://doi.org/10.1186/1471-2229-13-83
http://doi.org/10.1007/978-1-4939-6658-5_12
http://doi.org/10.1093/nar/gku1042
http://doi.org/10.1093/nar/gky311
http://doi.org/10.1093/bib/bbw139
http://doi.org/10.2174/1389202917666160726151048
http://doi.org/10.1126/science.270.5235.467
http://doi.org/10.1038/nrg2484
http://doi.org/10.1093/nar/gks1193
http://doi.org/10.1093/nar/gkl995
http://doi.org/10.1093/nar/gkz947
http://doi.org/10.1093/nar/gkr854


Biology 2022, 11, 1019 26 of 31

40. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [CrossRef]
41. Hutter, C.; Zenklusen, J.C. The Cancer Genome Atlas: Creating Lasting Value beyond Its Data. Cell 2018, 173, 283–285. [CrossRef]
42. Amid, C.; Alako, B.T.F.; Balavenkataraman Kadhirvelu, V.; Burdett, T.; Burgin, J.; Fan, J.; Harrison, P.W.; Holt, S.; Hussein, A.;

Ivanov, E.; et al. The European Nucleotide Archive in 2019. Nucleic Acids Res. 2020, 48, D70–D76. [CrossRef]
43. Aoki, K.; Ogata, Y.; Shibata, D. Approaches for extracting practical information from gene co-expression networks in plant biology.

Plant Cell Physiol. 2007, 48, 381–390. [CrossRef]
44. Langfelder, P.; Horvath, S. WGCNA Package FAQ. Available online: https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/

Rpackages/WGCNA/faq.html (accessed on 5 June 2022).
45. Lockhart, D.J.; Dong, H.; Byrne, M.C.; Follettie, M.T.; Gallo, M.V.; Chee, M.S.; Mittmann, M.; Wang, C.; Kobayashi, M.;

Horton, H.; et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 1996,
14, 1675–1680. [CrossRef]

46. Wolber, P.K.; Collins, P.J.; Lucas, A.B.; De Witte, A.; Shannon, K.W. The Agilent in situ-synthesized microarray platform. Methods
Enzymol. 2006, 410, 28–57. [CrossRef]

47. Kuhn, K.; Baker, S.C.; Chudin, E.; Lieu, M.H.; Oeser, S.; Bennett, H.; Rigault, P.; Barker, D.; McDaniel, T.K.; Chee, M.S. A novel,
high-performance random array platform for quantitative gene expression profiling. Genome Res. 2004, 14, 2347–2356. [CrossRef]

48. Hubbell, E.; Liu, W.M.; Mei, R. Robust estimators for expression analysis. Bioinformatics 2002, 18, 1585–1592. [CrossRef]
49. Irizarry, R.A.; Bolstad, B.M.; Collin, F.; Cope, L.M.; Hobbs, B.; Speed, T.P. Summaries of Affymetrix GeneChip probe level data.

Nucleic Acids Res. 2003, 31, e15. [CrossRef]
50. Wu, Z.; Irizarry, R.A.; Gentleman, R.; Martinez-Murillo, F.; Spencer, F. A Model-Based Background Adjustment for Oligonucleotide

Expression Arrays. J. Am. Stat. Assoc. 2004, 99, 909–917. [CrossRef]
51. Hubbell, E. Affymetrix Technical Notes: Guide to Probe Logarithmic Intensity Error (PLIER) Estimation. Available online:

http://tools.thermofisher.com/content/sfs/brochures/plier_technote.pdf (accessed on 5 June 2022).
52. Piccolo, S.R.; Sun, Y.; Campbell, J.D.; Lenburg, M.E.; Bild, A.H.; Johnson, W.E. A single-sample microarray normalization method

to facilitate personalized-medicine workflows. Genomics 2012, 100, 337–344. [CrossRef]
53. Zogopoulos, V.L.; Malatras, A.; Michalopoulos, I. Gene coexpression analysis in Arabidopsis thaliana based on public microarray

data. STAR Protoc. 2022, 3, 101208. [CrossRef]
54. R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://cran.r-project.org/doc/

manuals/r-release/fullrefman.pdf (accessed on 5 June 2022).
55. Eijssen, L.M.; Jaillard, M.; Adriaens, M.E.; Gaj, S.; de Groot, P.J.; Muller, M.; Evelo, C.T. User-friendly solutions for microarray

quality control and pre-processing on ArrayAnalysis.org. Nucleic Acids Res. 2013, 41, W71–W76. [CrossRef]
56. Applied Biosystems. Applied Biosystems 3730 and 3730xl DNA Analyzers. Available online: http://tools.thermofisher.com/

content/sfs/brochures/cms_042636.pdf (accessed on 5 June 2022).
57. Jain, M.; Olsen, H.E.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics

community. Genome Biol. 2016, 17, 239. [CrossRef]
58. Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.;

Bignell, H.R.; et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456, 53–59.
[CrossRef] [PubMed]

59. Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.J.; Chen, Z.; et al.
Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437, 376–380. [CrossRef] [PubMed]

60. Schadt, E.E.; Turner, S.; Kasarskis, A. A window into third-generation sequencing. Hum. Mol. Genet. 2010, 19, R227–R240.
[CrossRef] [PubMed]

61. Branton, D.; Deamer, D.W.; Marziali, A.; Bayley, H.; Benner, S.A.; Butler, T.; Di Ventra, M.; Garaj, S.; Hibbs, A.; Huang, X.; et al.
The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008, 26, 1146–1153. [CrossRef]

62. Cock, P.J.; Fields, C.J.; Goto, N.; Heuer, M.L.; Rice, P.M. The Sanger FASTQ file format for sequences with quality scores, and the
Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010, 38, 1767–1771. [CrossRef]

63. Hong, M.; Tao, S.; Zhang, L.; Diao, L.T.; Huang, X.; Huang, S.; Xie, S.J.; Xiao, Z.D.; Zhang, H. RNA sequencing: New technologies
and applications in cancer research. J. Hematol. Oncol. 2020, 13, 166. [CrossRef]

64. Macmanes, M.D. On the optimal trimming of high-throughput mRNA sequence data. Front. Genet. 2014, 5, 13. [CrossRef]
65. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/ (accessed on 5 June 2022).
66. Ewels, P.; Magnusson, M.; Lundin, S.; Kaller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single

report. Bioinformatics 2016, 32, 3047–3048. [CrossRef]
67. Fukasawa, Y.; Ermini, L.; Wang, H.; Carty, K.; Cheung, M.S. LongQC: A Quality Control Tool for Third Generation Sequencing

Long Read Data. G3 Genes Genomes Genet. 2020, 10, 1193–1196. [CrossRef]
68. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 3. [CrossRef]
69. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
70. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.

[CrossRef]

http://doi.org/10.1038/ng.2653
http://doi.org/10.1016/j.cell.2018.03.042
http://doi.org/10.1093/nar/gkz1063
http://doi.org/10.1093/pcp/pcm013
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/faq.html
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/faq.html
http://doi.org/10.1038/nbt1296-1675
http://doi.org/10.1016/S0076-6879(06)10002-6
http://doi.org/10.1101/gr.2739104
http://doi.org/10.1093/bioinformatics/18.12.1585
http://doi.org/10.1093/nar/gng015
http://doi.org/10.1198/016214504000000683
http://tools.thermofisher.com/content/sfs/brochures/plier_technote.pdf
http://doi.org/10.1016/j.ygeno.2012.08.003
http://doi.org/10.1016/j.xpro.2022.101208
https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf
https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf
http://doi.org/10.1093/nar/gkt293
http://tools.thermofisher.com/content/sfs/brochures/cms_042636.pdf
http://tools.thermofisher.com/content/sfs/brochures/cms_042636.pdf
http://doi.org/10.1186/s13059-016-1103-0
http://doi.org/10.1038/nature07517
http://www.ncbi.nlm.nih.gov/pubmed/18987734
http://doi.org/10.1038/nature03959
http://www.ncbi.nlm.nih.gov/pubmed/16056220
http://doi.org/10.1093/hmg/ddq416
http://www.ncbi.nlm.nih.gov/pubmed/20858600
http://doi.org/10.1038/nbt.1495
http://doi.org/10.1093/nar/gkp1137
http://doi.org/10.1186/s13045-020-01005-x
http://doi.org/10.3389/fgene.2014.00013
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://doi.org/10.1093/bioinformatics/btw354
http://doi.org/10.1534/g3.119.400864
http://doi.org/10.14806/ej.17.1.200
http://doi.org/10.1093/bioinformatics/bty560
http://doi.org/10.1093/bioinformatics/btu170


Biology 2022, 11, 1019 27 of 31

71. Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the
presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [CrossRef]

72. Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and
HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [CrossRef]

73. Boratyn, G.M.; Thierry-Mieg, J.; Thierry-Mieg, D.; Busby, B.; Madden, T.L. Magic-BLAST, an accurate RNA-seq aligner for long
and short reads. BMC Bioinform. 2019, 20, 405. [CrossRef]
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