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According to the traditional Chinese medicine (TCM) system, Chinese herbal medicines
(HMs) can be divided into four categories: hot, warm, cold, and cool. A cool nature
usually is categorized as a cold nature, and a warm nature is classified as a hot nature.
However, the detectable characteristics of the gene expression profile associated with
the cold and hot properties have not been studied. To address this question, a strategy
for the cross-species annotation of conserved genes was established in the present
study by using transcriptome data of 20 HMs with cold and hot properties. Functional
enrichment analysis was performed on group-specific expressed genes inferred from
the functional genome of the reference species (i.e., Arabidopsis). Results showed that
metabolic pathways relevant to chrysoeriol, luteolin, paniculatin, and wogonin were
enriched for cold-specific genes, and pathways of inositol, heptadecane, lauric acid,
octanoic acid, hexadecanoic acid, and pentadecanoic acid were enriched for hot-
specific genes. Six functional modules were identified in the HMs with the cold property:
nucleotide biosynthetic process, peptidy-L-cysteine S-palmitoylation, lipid modification,
base-excision repair, dipeptide transport, and response to endoplasmic reticulum
stress. For the hot HMs, another six functional modules were identified: embryonic
meristem development, embryonic pattern specification, axis specification, regulation
of RNA polymerase II transcriptional preinitiation complex assembly, mitochondrial RNA
modification, and cell redox homeostasis. The research provided a new insight into HMs’
cold and hot properties from the perspective of the gene expression profile of plants.
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INTRODUCTION

In the system of traditional Chinese medicine (TCM), Yin–Yang
theory is one of the central theories, which is used to explain how
the world and body work. Yin and Yang represent the two ends
of a spectrum like cold–hot, female–male, and inside–outside.
When this concept is applied to the human body, Yin and Yang
are linked to different parts or organs of the body or simply one’s
feeling of cold and hot (Gu and Pei, 2017). Yin and Yang balance
explains all changes and activities in nature, including the balance
of life and body functions (Chan, 1995). The breaking of balance
gives rise to different syndromes, which can be classified as “cold”
syndromes and “hot” syndromes. These two types of syndromes
therapeutically direct the use of Chinese herbal medicines (HMs)
in TCM (Li et al., 2007). The “Yin–Yang” attribution is also used
to define the nature of HMs, as HMs are generally featured as
cold or hot. Actually, the nature of HMs consists of four types:
hot, warm, cold, and cool, based on their interaction with human
body. Cool nature usually is categorized as cold nature, and warm
nature is classified as hot nature. For example, chewing a mint
(Mentha spicata) leaf elicits a cold feeling, while masticating a
piece of ginger (Zingiber officinale) root leads to a hot sensation.
As a result, mint leaf is considered to be “cold” while ginger
root is considered to be “hot” in nature (Zhao et al., 2011).
Furthermore, in order to maintain a homeostasis in our body, the
hot syndrome disease can be treated with cold nature HMs and
cold syndrome disease with hot nature HMs (Chan, 1995). The
cold and hot properties are the important medicinal properties of
HMs in TCM theory.

The theory of four properties of HMs as an integral part
of TCM is rooted from ancient Chinese philosophy. From the
modern medical science point of view, it relies largely on the
accumulation of experiences and the subjective opinions of
TCM practitioners and therefore lacks objective, quantitative
measurements and analysis. Since 1970s, with the introduction
of modern science and technology, research on the properties
of HMs have made some progress, and new ideas and methods
have been appeared constantly, including micro-calorimetry
(Ren et al., 2009; Jia et al., 2010; Zhao et al., 2011), support
vector machine (SVM) (Ung et al., 2007), biophoton radiation
detection (Zhao and Han, 2013), predicting system based on
chemical material basis (Long et al., 2011), etc. According
to different modern scientific instruments and methods, the
properties of HMs were summarized by researchers from
different perspectives. For example, from the thermokinetic
point of view, the herbs that caused the body to release heat
owned the “hot” property, and those that absorbed the heat
owned “cold” property (Zhao et al., 2011). Some pharmacological
studies supported the notion that the cold and hot properties of
HMs were closely related to excitability of nervous system and
endocrine (Li et al., 2008; Fu et al., 2009), mitochondrial ATP
generation, and immunomodulatory function (Ko et al., 2004,
2006; Ko and Leung, 2007). Moreover, research on the functions
of HMs’ targeted proteins suggested that hot propertied HMs
were more related to inflammation and immunity regulation
and that cold-propertied HMs possessed tendencies in cell
proliferation (Liang et al., 2013). From a chemical point of view,

the herbal compounds associated with cold nature generally
possessed more polar structures. Their molecular weights were
lower, in contrast to the compounds associated with hot nature
(Fu et al., 2017; Huang et al., 2018). This research shows that there
are evident differences between cold and hot HMs in the chemical
composition or the efficacy and cognitive experience gained from
patient response. To date, there is no report on the research of
the cold and hot properties of HMs from the perspective of plant
gene expression profile based on RNA-seq.

With the advent of high-throughput RNA-seq, there has been
a concerted effort on generating a whole transcriptome of plant
species (Wang et al., 2009; Zeng et al., 2010; Wenping et al.,
2011; Yuan et al., 2012; He et al., 2013). Transcriptome studies
have focused on functional genes and metabolic pathways and
provided molecular basis for metabolic pathways of natural drugs
(Soetaert et al., 2013; Gao et al., 2014). As previous studies
mainly focused on one species, integrating data of multiple
species in a reasonable way will be more informative to study
the gene function relationship between different properties of
HMs. Indeed, cross-species meta-analysis of gene expression
profiles has previously been used to address many questions
in plants, such as the adaptation to progressive drought stress
(Shaar-Moshe et al., 2015). In the present study, a method for
cross-species comparison of plant was established to investigate
the differences between cold and hot properties of HMs in the
active gene level.

Until now, few computational methods have been proposed
and developed to analyze interspecies gene expression data.
Fisher’s combined probability test, which transforms p-values
from any number of tests into one single p-value, has been
a popular method for comparing multiple gene expression
experiments (Campain and Yang, 2010; Tseng et al., 2012; Matur
and Ulgen, 2019). An approach was developed to compare
gene expression of homologs (identified using reciprocal best
BLAST hits) over a wide range of experimental conditions
(Stuart et al., 2003). Another method called mDEDS combined
several different statistical measures to perform a cross-species
comparison of gene expression profiles (Le et al., 2010).
Other methods include LOLA (Cahan et al., 2005) and L2L
(Newman and Weiner, 2005), which are both online tools
for comparisons among different species by ranking lists of
differentially expressed genes from microarray studies. These
methods were applied to comparisons among species that are
related relatively closely in phylogenetic terms, such as mice and
humans. Furthermore, a method for comparing gene expression
among distant species was developed by taking the homology
structure of compared species into account and comparing
expression data from genes with any number of orthologs and
paralogs (Kristiansson et al., 2013). However, the homology
mapping mainly depended on whether these species had available
well-annotated genomes (e.g., model species). As HM many
plants are less common (non-model species) and distantly related
species, such as gymnosperm Ephedra sinica and angiosperm
Scutellaria baicalensis, these methods did not seem to be suitable
for most species in this study. Therefore, a method for cross-
species comparison of less common and distant species was
needed to be established.
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Benchmarking Universal Single-Copy Ortholog system
(BUSCO1) (Waterhouse et al., 2018) proposed a measure
for the assessment of assembled transcriptomes with single-
copy orthologs. Specifically, BUSCO assessment tool used the
orthologs of 31 plants from OrthoDB2 (Zdobnov et al., 2017)
to produce 1,440 BUSCO gene sets from plant phylogenetic
clades. By using HMMER 3 (Eddy, 2011), hidden Markov model
(HMM) profiles were obtained from amino acid alignments
built with these 1,440 gene sets. Then, the transcriptome
completeness information (C: single and completed; D:
duplicated and completed; F: fragmented; M: missing) of
plant phylogenetic clades could be assessed, which provided
a way to find out the orthologs (C: single and completed)
of less common and distant plant species. We could use
these orthologs (C: single and completed) to establish our
cross-species comparison standard. That is, with the aid
of BUSCO, ortholog and phylogenetic information could
be taken into account during the gene annotation process.
The flowering plant Arabidopsis thaliana is a dicot model
organism for research in many aspects of plant biology. The
comprehensive annotation of its genome paves the way for
understanding the functions and activities of all types of
transcripts, including mRNA, the various classes of non-
coding RNA, and small RNA (Provart et al., 2016). The
maintained database TAIR11 completely recorded its genetic and
molecular biology data (Cheng et al., 2017). Therefore, the main
annotation strategy in this study was to use the model organism
A. thaliana as the reference to compare any other query species
to annotate genes.

In this study, 20 sets of available plant RNA-seq data (HMs
with the cold and hot properties) from 20 published papers
were collected. We first created a comparison standard for
cross-species designation of gene function based on BUSCO
results, applied it in BLASTP search, and then annotated
their genes. With the specifically expressed gene on hot
or cold HMs, we finally performed functional enrichment
analysis to identify differences between hot-enriched and cold-
enriched functional modules. From the perspective of gene
expression profiles, the results might provide useful new clues
for exploring measurable features of cold and hot HMs with their
original definition.

MATERIALS AND METHODS

Selection of HMs With Cold and Hot
Properties
To obtain sufficient data for HMs, we reviewed the advances
in HMs transcriptome studies. Specifically, the databases
MEDLINE3, Embase4, and Google Scholar5 were searched for
articles published up to January 01, 2018. For the information

1http://busco.ezlab.org
2www.orthodb.org
3https://www.ncbi.nlm.nih.gov/pubmed
4http://www.embase.com
5http://scholar.google.cn/

associated with HMs, such as TCM properties, medicinal organs
of plants were searched from Chinese Medicine Dictionary
(Shanghai Science and Technology Press, Second Edition)
and listed as basic information. The collected data were
filtered, and HMs datasets only from Illumina paired-end
sequencing with similar read lengths were kept for further
study. In order to achieve even organ distribution between
the two categories of HMs, 5 samples for roots, stems,
leaves, and flowers were selected, respectively. In this way, a
total of 10 cold and 10 hot HMs were enrolled (Table 1).
The phylogenetic tree of species was constructed by NCBI
Taxonomy tools6.

De novo Assembly and Assessment of
the Transcriptome Assemblies
The RNA-seq data sets were downloaded from the NCBI
Sequence Read Archive (SRA7) according to their SRR
IDs recorded in 20 articles (Table 1). Then, all reads were
processed through a trimming pipeline using Trimmomatic
(version 0.32, default parameters) (Bolger et al., 2014)
to remove residual adapters, low-quality sequences, and
reads below 36 bp. FastQC8 was used an overview for
sequencing quality. The remaining high-quality reads
were de novo-assembled into candidate unigenes longer
than 200 bp by using Trinity (version 2.6.6, default
parameters) (Grabherr et al., 2011). The abundance of each
transcript and gene measured by the value of transcripts
per million (TPM) was calculated by using the script
align_and_estimate_abundance.pl from Trinity software
package. Here, RSEM (Li and Dewey, 2011) was called
to compute TPM after alignments were done by Bowtie2
(Langmead and Salzberg, 2012).

TransRate (Smith-Unna et al., 2016) was used to evaluate
the transcriptome assembly contiguity by producing a score
based on length-based and mapping metrics. BUSCO (version
3.0), which evaluates assembly content by searching the
assemblies against conserved single copy orthologs found in all
Embryophyta, was applied for further quantitative assessment of
the assembly completeness.

Cross-Species Gene Annotation
Arabidopsis thaliana protein sequences and annotation
information downloaded from TAIR11 were selected as
reference. The distances of phylogenetic relationships between
A. thaliana and each species in our research varied greatly;
some species such as gymnosperm E. sinica and angiosperm
S. baicalensis were distantly related. The annotations of
genes were assigned by the reference genes through the
searching results of BLASTP (Camacho et al., 2009). Among
the species, the results would be greatly influenced by the
evolutionary distance from reference if uniform cutoff was
set, because, at the same sensitivity, the longer distance the
species to which the sequence belonged, the less possibility

6https://www.ncbi.nlm.nih.gov/taxonomy/
7https://www.ncbi.nlm.nih.gov/sra/
8http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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TABLE 1 | Selected Chinese herbal medicines.

Property Sample id Species Organs HM Chinese
name

HM Latin name SRR id References

Cold cold1 Rehmannia glutinosa (Gaertn.)
Libosch.

Roots Xian Di Huang Radix Rehmanniae
recens

SRR832972 Li et al., 2013

cold2 Dracocephalum tanguticum Maxim. Leaves Tang Gu Te Qing
Lan

Herba Dracocephali
Tangutici

SRR2915458 Li et al., 2017

cold3 Scutellaria baicalensis Georgi Roots Huang Qin Radix Scutellariae SRR3367956 Liu J. et al., 2015

cold4 Catharanthus roseus (L.) G. Don Flowers Chang Chun Hua Herba Catharanthi
Rosei

SRR1271859 Verma et al., 2014

cold5 Andrographis paniculata (Burm. f.)
Nees

Leaves Chuan Xin Lian Herba Andrographis SRR1519324 Garg et al., 2015

cold6 Swertia mussotii Franch. Flowers Zang Yin Chen Herba Swertiae
Mussotii

SRR3951703 Liu et al., 2017

cold7 Gentiana rigescens Franch. ex
Hemsl.

Roots Long Dan Radix Gentianae SRR924095 Zhang X. et al.,
2015

cold8 Gardenia jasminoides Ellis Petals Zhi Zi Hua Flos Gardeniae
Jasminoidis

SRR1045129 Tsanakas et al.,
2014

cold9 Lonicera japonica Thunb. Flowers Jin Yin Hua Flos Lonicerae SRR3591711 Rai et al., 2017

cold10 Isatis tinctoria Fort. Leaves Qing Dai Indigo Naturalis SRR1565773 Zhou et al., 2015

Hot hot1 Allium fistulosum L. Leaves Cong Ye Folium Allii Fistulosi SRR1609976 Liu et al., 2014

hot2 Isodon rubescens (Hemsl.) Hara Leaves Dong Ling Cao Herba Rabdosiae
Rubescentis

SRR5367856 Su et al., 2016

hot3 Curcuma longa L. Rhizomes Jiang Huang Rhizoma Curcumae
Longae

SRR3928562 Sahoo et al., 2016

hot4 Atractylodes lancea (Thunb.) DC. Rhizomes Cang Zhu Rhizoma Atractylodis SRR3104394 Huang et al., 2016

hot5 Erigeron breviscapus (Vant.) Hand.
-Mazz.

Flowers Deng Zhan Xi Xin Herba Erigerontis SRR1867750 Zhang W. et al.,
2015

hot6 Ephedra sinica Stapf Shoot tip Ma Huang Herba Ephedrae SRR1188607 Groves et al., 2015

hot7 Anemone flaccida Fr. Shmidt Stems Di Wu Rhizoma Anemones
Flaccidae

SRR3233423 Zhan et al., 2016

hot8 Pinellia ternata (Thunb.) Berit Tubers Ban Xia Rhizoma Pinelliae SRR1186931 Zhang G. et al.,
2016

hot9 Panax notoginseng (Burk.) F. H.
Chen ex C. Chow

Roots San Qi Radix Notoginseng SRR1032053 Liu M. et al., 2015

hot10 Lindera glauca (Sieb. et Zucc.) Bl Roots Shan Hu Jiao Gen Radix Linderae SRR1438496 Niu et al., 2015

it was to hit the homologous gene. So, it was necessary to
establish the reasonable cutoff value for each species separately
by considering its evolutionary distance. Meanwhile, the
E-value, which considered the size of the database and the
scoring system, provided an indication of the statistical
significance of a given pairwise alignment. Therefore, E-value
was chosen as the cutoff, and it must be that when the
phylogenetic relationships between the species and the
reference are farther, the looser they are. The process was
as follows (Figure 1).

Step 1: Identify species candidate protein sequences. For each
species, the transcriptome was assembled de novo from
the RNA-seq reads by using Trinity. The sequences
were trimmed down to open reading frame by using
Exonerate (Slater and Birney, 2005). The longest
transcript was extracted for each protein-coding gene
locus after confirming the presence of start and stop
codons and the proper reading frame. The coding
sequences were then translated into protein sequences.

Step 2: Identify orthologs of HM plants conserved genes in
Arabidopsis. This step was to classify the candidate
conserved genes form 20 plants into BUSCO orthologs
and establish gene pairs of HM plants and Arabidopsis.

(I) OrthoDB2 was a comprehensive catalog of orthologs. In
2016 OrthoDB reached its 9th release, which contained
more than 22 million genes from over 5,000 species.
BUSCO used OrthoDB to define 1,440 BUSCO sets,
which contained gene orthologs from 31 species of plants
(including A. thaliana).

(II) The HMMER3 HMM profiles from amino acid alignments
were used to assess whether a protein sequence from
species could join the orthologs of distinct BUSCO set and
to classify the matches into four categories of C, D, F, or M.

(III) HMMER3 matching was performed on each species
separately, and only the newly formed orthologs of C were
retained for subsequent steps. Among genes in the same
orthologs, the gene from HM species and the gene from
A. thaliana were picked up to form a gene pair.
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FIGURE 1 | Pipeline of cross-species gene annotation and selection of specific expressed genes.
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Step 3: Define BLASTP E-value cutoff values for each species.

(I) In each HM species, BLASTP was performed with default
parameter between the protein sequences of A. thaliana
and the candidate protein sequences of each species to get
the hits and their similarity information including E-value.

(II) In each HM species, among the matched gene pair
identified by BLASTP, those corresponding to the gene
pairs obtained by using BUSCO (Step 2) were found. Their
E-values were collected for 20 species, respectively, and
the maximum value of individual species was taken as the
E-value cutoff of the species.

Step 4: Another round of BLASTP was run for each HM species
by setting the species-specific E-value cutoff yielded
from Step 3, again using A. thaliana as reference.
The gene function information was finally assigned
according to its matched gene of A. thaliana. It should
be noted that one reference sequence might be matched
by more than one HM sequence, so there are cases
where multiple genes in same species shared the same
annotation. Meanwhile, the genes that were expressed
only in cold HMs or only in hot HMs were figured out,
as well as genes that were expressed only in specific
organ, dicotyledons or non-dicotyledons. The reference
genes that matched their counterparts only in a certain
group of HMs were defined as group-specific genes.

To further validate the reliability of the newly formed
orthologs and the cross-species annotation of 20 HMs conserved
genes, we conducted two types of analysis accordingly:

(1) Another model organism (Oryza sativa Japonica Group)
was selected as the outgroup. In each newly formed
ortholog (Step 2), the conserved genes of 20 HMs and
the outgroup were collected. These multi-sequence data
sets were, respectively, aligned by using MAFFT (v7.305,
options –thread - 12 –auto) (Katoh and Standley, 2013) and
filtered by using trimAl (v1.4 rev10, option -automated1)
(Capella-Gutierrez et al., 2009). Then, all the alignments
were concatenated, and the maximum likelihood tree
was produced by using RAxML (v8.1.2, raxmlHPC-
PTHREADS-SSE3 -T 12 -f a -m PROTGAMMAJTT -N
100 -n rodents -s $wd/supermatrix.aln.faa -p 13432 -x
89090) (Stamatakis, 2014). The resulting tree was rooted
by newick utilities (v1.6) (Junier and Zdobnov, 2010). The
overall validity of conservation for the annotated genes
from 20 HMs could be verified by comparing the inferred
phylogenetic relationships with the NCBI Taxonomy tree.

(2) Model organism (O. sativa Japonica Group) was selected
as another reference by using database Ensembl. The gene
function information of 20 HMs’ conserved genes was
assigned according to its best matched gene of O. sativa by
using BLASTP. The reliability of cross-species annotation
of 20 HMs’ conserved genes was evaluated by comparing
consistency of annotation results between using A. thaliana
as the reference and using O. sativa as the reference. On
the one hand, the proportions of the genes with consistent

annotations were manually inspected and counted. On the
other hand, genes of A. thaliana matched to HMs were
assigned to Oryza sativa using BLASTP. The pairs of genes
from A. thaliana and O. sativa were obtained. Then, the
proportions of the pairs of which both genes were matched
the same HM sequence were calculated.

Gene Function Module Enrichment
Analysis
Functional enrichment analysis was performed on group-specific
genes by using Metascape9, an online bioinformatics pipeline
for multiple gene lists, which supports effective data-driven
gene prioritization decisions (Zhou et al., 2019). The analysis
workflow included (i) ID conversion of input gene identifiers
into Entrez gene IDs of A. thaliana; (ii) extraction of annotations
for the gene list using GO ids and KEGG Pathways ids; and (iii)
functional enrichment analysis through the gene list. Functional
categories of GO Molecular Functions, GO Cellular Components,
GO Biological Processes GO were applied for the analysis of
organ-specific and dicotyledon-/non-dicotyledon-specific genes,
and GO Biological Processes and KEGG Pathways were applied
for cold/hot specific genes. All genes in the reference genome
(A. thaliana) were used as the enrichment background and
the filtering criteria for the results were, minimal number of
overlap genes ≥ 3, enrichment factor > 1.5, and P-value < 0.01.
Remaining significant terms were then hierarchically clustered
into a tree based on Kappa-statistical similarities among their
gene memberships. A kappa score of 0.3 was applied as the
threshold to cast the tree into term clusters. A subset of up to 10
representative terms from each of the 20 top-score clusters were
then selected and converted into a network layout. Networks
were visualized through Cytoscape (v3.1.2) (Bauer-Mehren,
2013) using ‘force-directed’ layout with edges bundled for clarity.
For identifying enrichment of specific terms of interest, a term
with FDR < 0.05 was considered significant.

Statistical Analysis for Between-Group
Comparisons
The Illumina sequencing and transcriptome assembly results
were compared between cold and hot properties of HMs. For
normally distributed data, the homogeneity of variance test was
conducted first. T-test was performed for those with homogeneity
of variance, and t′-test for those with missing variance. For non-
normally distributed data, Mann–Whitney U non-parametric
test was performed. All tests were performed using a two-tail
hypothesis, with significance set at P < 0.05.

Acquisition of Chemical Components of
HMs and Their Metabolic Pathways
All of the chemical ingredients of HMs were collected
from BATMAN-TCM (Bioinformatics Analysis Tool for
Molecular mechANism of TCM) (Liu Z. et al., 2016), an
online bioinformatics analysis tool for studying the molecular
mechanism of TCM. As components of cold2 (Herba

9http://metascape.org
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Dracocephali Tangutici), cold6 (Herba Swertiae Mussotii),
hot7 (Rhizoma Anemones Flaccidae) and hot10 (Radix Linderae)
were not recorded in the database, chemical ingredients for these
four HMs were obtained from literature (Zhang et al., 2008; Zuo
et al., 2015; Chen et al., 2016; Liu T. et al., 2016; Yang et al., 2016;
Wang H. et al., 2017; Xiang et al., 2019; Yixi et al., 2020). For
the cold or hot group, the components that were shared by at
least two HMs in one group and were not contained in the other
group were regarded as the group-specific components. The
metabolic pathways of group-specific chemical ingredients were
searched through KEGG database10.

RESULTS

Statistical Results of HMs
High-Throughput Transcriptome
Literature Data
Up to January 01, 2018, 159 articles related to HM and
transcriptome were identified (Supplementary Table S1). The
information collection process was shown in Figure 2A. Among
the articles, 113 HMs were screened, including 32 with the hot
property (32 with warm property and 0 with hot property), 58
with the cold property (45 with cold property and 13 with cool
property), and 23 with a neutral property (Figure 2C). Of the
sampled organs from HMs, the largest proportion was 30.60% in
leaves, followed by roots, stems, flowers, and fruits, accounting
for 26.12, 23.13, 11.94, and 5.97%, respectively. The proportion of
seeds was the smallest, only 2.24% (Figure 2B). There were four
types of platforms used for sequencing reported in the articles,
namely Ion Torrent, PacBio, 454, and Illumina (Figure 2D).
Among them, Illumina covered 81% of the total, which came
to be the most commonly used sequencing platform for HM
transcriptome sequencing, followed by 454 (18%). Illumina’s
models included Illumina miseq (1.02%), Illumina nextseq
(1.53%), Illumina genome analyzer (14.80%), and Illumina
hiseq (82.65%).

Selection of HMs With Cold and Hot
Properties and de novo Assembly
As shown in Table 1, 10 cold and 10 hot propertied HMs were
recruited into the analysis. The selected samples were evenly
distributed among organs (Figure 3B). The phylogenetic tree of
our selected 20 species showed that the closest species to the
reference specie (A. thaliana) was Isatis tinctoria (cold10), and
the farthest was E. sinica (hot6) (Figure 3A). The species in this
lineage contained dicotyledonous and non-dicotyledonous plants
and were from Magnoliophyta, except for hot6 from Gnetophyta
(Supplementary Table S2).

The RNA-seq datasets were downloaded according to their
SRR IDs (Table 1). After the removal of adaptor, ambiguous
reads, and low-quality reads, the GC content was 42–48%,
the percentage of Q20 of each sample was 100%, and the
percentage of Q30 was 86.43–97.56% (Supplementary Table S3).

10https://www.genome.jp/kegg/kegg2.html

The FastQC results of each sample before and after quality
control were shown on Supplementary Figure S1. All the
clean reads from each sample were brought together and
assembled de novo by using Trinity, respectively, generating
33,605 ∼ 102,400 unigenes. The average lengths of the
unigenes were 577 ∼ 1,101 bp, and the lengths of N50 were
796 ∼ 2,155 bp. The length distribution of unigenes was shown
in Supplementary Figure S2. The TransRate assembly score was
0.09014 ∼ 0.53457 and the BUSCO completeness range was
44∼ 77.3% (Supplementary Table S4).

The Illumina sequencing and transcriptome assembly results
were compared between cold and hot HMs, including reads
number, GC content, average length, base sequencing accuracy,
total number of reads, total number of bases, mapping rate,
BUSCO completeness, TransRate assembly score, and N50. The
results showed that except for N50 (P = 0.0432), all the other
variables listed above revealed no significant differences between
cold and hot groups (p-values > 0.05, Figures 3C–E).

Cross-Species Gene Annotation Results
The abundances of unigenes were comprehensively surveyed.
In most species, the number of genes with TPM < 1
[log10(TPM) < 0] accounts for a very small proportion, and the
cumulative frequency of genes increases rapidly after TPM < 1
(Supplementary Figure S3). As the computing of TPM had been
weighted by library size, and in order to choose genes only with
strong expression evidences, TCM > 1 was set as the filtering
criterion to collect candidate genes for analyses.

Among expressed genes, some conserved genes were classified
into BUSCO sets (Supplementary Data S1/BUSCO result).
With these genes in all 20 species, new complete single-copy
orthologs were found. Among the gene items of the orthologs,
the gene pairs of genes from sample species and a gene from
A. thaliana were identified (Figure 1, Step 2-III). Similarity
indicators for these gene pairs obtained by BLASTP through
the default parameter (Supplementary Data S1/BLASTP default
parameter) were identified. For each species, maximum E-value
on this list was taken as cutoff for corresponding species and
applied to the final annotation. Figure 4A shows the phylogenetic
tree of 20 samples, 31 species from BUSCO, and each sample’s
E-value cutoff, which was converted to “−log10(E-value).” Isatis
indigotica (cold10) and A. thaliana were closest in genetic
relationship, as they both belonged to Cruciferae. The value of
I. indigotica was 114, which was the largest, while Gymnosperms
ephedra (hot6) was the farthest species from A. thaliana, with
a value of 16, the smallest. The values of Isodon rubescens
(hot2), Dracocephalum tanguticum (cold2), S. baicalensis (cold3),
Rehmannia glutinosa (cold1), Andrographis paniculata (cold5),
Swertia mussoi (cold6), Gentiana rigescens (cold7), Catharanthus
roseus (cold4), Gardenia jasminoides (cold8), Atractylodes lancea
(hot4), Erigeron breviscapus (hot5), Panax notoginseng (hot9),
and Lonicera japonica (cold9), which belongs to Compositae,
ranged from 43 to 57. The values of Curcuma longa (hot3),
Allium fistulosum (hot1), Pinellia ternata (hot8), and Lindera
glauca (hot10), which belonged to Monocotyledonous, far away
from A. thaliana, were lower than 35. These results show the
tendency that the larger the evolutionary distance between a
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FIGURE 2 | Statistics for HMs high-throughput transcriptome literature data. (A) Source and process of data acquisition of high-throughput transcriptome and HMs’
information. (B) Distribution of sampled organ of HMs. (C) Quantity of HMs for each property. (D) Distribution of types of sequencing platforms.

sample and A. thaliana, the greater the E-value, which made
the next round of BLASP for gene annotation more sensitive
in species that were distantly related to the reference. By
applying the specific E-value as BLASTP cutoff for each species
(Supplementary Data S1/BLASTP specific cutoff), there were
1,693–2,152 distinct reference genes matched by genes of 20
samples (Figure 4B), and no significant difference in quantity
between hot and cold groups (P = 0.5787 > 0.05). The assembled
sequences and their annotations are available by request through
email. There were 27,416 proteins of A. thaliana collected in
TAIR11; among them, 4,810 (17.54%) in total were hit by
HM proteins. In each group (cold/hot) of HMs, the numbers
of proteins that hit each single protein of the reference were
counted. The numbers of reference genes were counted according
to how many proteins were hit (Figure 4E). The heat map
showed that the numbers of reference genes which matched
different numbers of the genes of cold or hot propertied HMs
were generally evenly distributed on both sides of the diagonal,
indicating that there was no obvious cold or hot bias under the
annotation process.

Besides, the inferred phylogenetic tree (Figure 4D) through
concatenated conserved gene sequences rooted with O. sativa
showed good agreement with the species phylogeny (Figure 4A).
There was minor deviation on hot1 and hot10, which might be
due to the distant evolutionary distance relative to other plants.
The coincidence rates of the annotation results between using

A. thaliana as the reference and using O. sativa as the reference
were 85.32–95.39% or 84.20–93.77% (by the BLASTP match or
the manual check, Figure 4C). These results showed that the
cross-species annotation of conserved genes in this study were
relatively reliable.

Functional Enrichment Analysis of
Specific Organs
There were 4,810 kinds of genes expressed in one or more
organs, and 2,234 (44.46%) were shared by all four organs. The
number of kinds of genes specific to organs is 279 for roots, 584
for leaves, 290 for stems, and 376 for flowers (Figure 5A and
Supplementary Data S2/specific genes). Enrichment analysis
was performed on genes exclusively expressed in only one
organ by using Metascape. The results showed the organ-
specific functional patterns on these four groups (Figure 5B
and Supplementary Data S2/enriched GO terms), and some
enriched items might be explained by knowledge of the
function of the specific organ in the organisms. For example,
in leaves, chloroplast envelope (GO:0009941), chloroplast
stroma (GO:0009570), chloroplast nucleoid (GO:0042644),
chlorophyll biosynthetic process (GO:0015995), response to high
light intensity (GO:0009644), and short-day photoperiodism
(GO:0048572) were detected. Chloroplast envelope, chloroplast
stroma, chloroplast nucleoid, and chlorophyll biosynthetic
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FIGURE 3 | Phylogenetic relationship, organ distribution, qualities of sequencings, and assemblies of 20 samples. Red color indicates HMs with the hot property;
blue color indicates HMs with the cold property. (A) Phylogenetic relationship of species used in the study. (B) Organs of selected HMs. The pictures of HMs were
cited from Chinese Medicine Dictionary (Shanghai Science and Technology Press, Second Edition). (C,D) Sequencing qualities before and after quality control.
(E) Statistics for de novo transcriptome assembly after quality control.

process are related to chloroplast. The variation of light intensity
has obvious effects on leaf external morphology, internal
anatomy, and physiological characteristics (Feng et al., 2018).
Photoperiod has effects on photosynthesis (Mousseau, 1984).
In roots, a response to toxic substance (GO:0009636), abscisic
acid (ABA)-activated signaling pathway (GO:0009738), and toxin
catabolic process (GO:0009407) were detected. Plants are able
to release chemical compounds from their roots into the soil.
Some of these products are toxic when the roots of neighboring
plants take them up (Bonner, 1950). As a result, the response
to toxic substance and toxin catabolic process might be a
“protective behavior” of roots. ABA, a major abiotic stress-
responsive hormone, plays an important role in root hair

elongation (Richardson et al., 2009; Wang T. et al., 2017).
ABA enhances both auxin transport and auxin biosynthesis in
root tips, and ABA and auxin co-regulate a set of genes to
promote root hair length (Wang T. et al., 2017). In flowers,
enriched function included microsporogenesis (GO:0009556)
and an anthocyanin-containing compound metabolic process
(GO:0046283). The relationship between microsporogenesis and
flower development has been examined in some research.
Generally, microsporogenesis and pollen formation are precisely
timed and choreographed, and meiosis occurs in a precise
chronological order that correlates with the flower bud
size (Yang and Kang, 2015). Anthocyanins are commonly
found in flowers and the fruits of many plants. Most
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FIGURE 4 | Cross-species annotation of expressed genes in 20 species. Red color indicates HMs with the hot property, blue color indicates HMs with the cold
property, yellow color indicates reference species, and green color indicates 31 plants from 1,440 BUSCO sets. (A) E-value cutoff parameters of 20 samples in
BLASTP. The phylogenetic tree showed the relationships of 20 HMs samples, the reference, and 31 plants from BUSCO. The column graphs on the right side
showed the E-value cutoff which had been converted to –log10(E-value). (B) Read alignment counts of 20 samples. The difference of alignment counts was not
statistically significant (P > 0.05). (C) Coincidence rates of the annotation results between using Arabidopsis thaliana as the reference and using Oryza sativa as the
reference. Blue color indicates the coincidence rates were obtained by using BLASTP match; red color indicates the coincidence rates were obtained by manual
comparison. (D) The maximum likelihood phylogenetic tree of 20 HMs and O. sativa constructed by concatenating the sequences of conserved genes. The numbers
on the branches were the consistent quantities derived from bootstrap analysis. (E) The heat map of reference gene numbers according to the numbers of species
genes (axis X-/Y-) in each group which matched to the reference genes. The color key from gray to brown indicates small to large matched gene numbers.

of the red-, purple-, and blue-colored flowers contained
anthocyanins (Khoo et al., 2017). Additionally, significant
variation in one metabolite that belongs to “Vitamin” class
was putatively identified as [5-Hydroxy-4-(hydroxymethyl)-
6-methyl-3-pyridinyl]methyl dihydrogen phosphate in leaves
rather than flowers (Sotelo-Silveira et al., 2015). Our results
showed that genes mapped to the reference canonical pathways
in KEGG with vitamin B6 metabolic function were only
found in leaf-specific genes (AT5G53580). Very interestingly,
seed development (GO:0048316) in leaves and male gamete
generation (GO:0048232) in stems were also found in the results.

Functional Enrichment Analysis of
Dicotyledons and Non-dicotyledons
In this study, 5 of the samples were dicotyledons (hot1,
hot3, hot6, hot8, and hot10); the other 15 samples
(hot2, hot4, hot5, hot7, and hot9 and 10 cold-propertied
samples) were non-dicotyledons. The specific genes
of dicotyledons or non-dicotyledons were found. The
number of specific genes in dicotyledons and non-
dicotyledons were 1,700 and 315, respectively (Figure 5C and

Supplementary Data S3/specific genes). Several GO functional
categories were identified by enrichment analysis (Figure 5D
and Supplementary Data S3/enriched GO terms). Among them,
regulation of stomatal complex patterning (GO:2000037) was
only enriched in dicotyledons. As eudicots were also known as
the “three-pore pollen group,” because their pollen had three or
more pores, which distinguished them from other angiosperms
(Dunn and Campbell, 1965), this identified category might be
related to the phenomenon that dicotyledons have more pores.
The gene function enrichment analysis results in plant organs,
dicotyledons, and non-dicotyledons suggests that our analysis
strategy has a certain degree of credibility.

Functional Enrichment Analysis and
Comparison Between HMs With Cold
and Hot Properties
709 hot-specific and 1,039 cold-specific genes were identified,
and the numbers of genes in different groups of HMs matched
to reference genes were illustrated by heat map; the red and
blue boxes indicate these hot-/cold-specific genes (Figure 6A).
The complete list of cold or hot property-specific genes and the
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FIGURE 5 | Organ-specific and dicotyledon-/non-dicotyledon-specific genes and functional enrichment analyses results. (A) Venn diagram of the annotated gene
numbers in the leaves, roots, stems and flowers. (B) Heat map of P-values of significant enriched functional categories on each organ. The color key from gray to
brown indicates large to small P-values. (C) Venn diagram of the annotated gene numbers in dicotyledons and non-dicotyledons. (D) Heat maps of P-values of
significant enriched functional categories on dicotyledons or non-dicotyledons. The color key from gray to brown indicates large to small P-values.

enriched functions was shown in Supplementary Data S4. The
gene enrichment analysis results showed that five functional
categories were shared among the cold- and hot-propertied
HMs, such as protein autophosphorylation (GO:0046777),
microtubule-based movement (GO:0007018), etc., meaning that
different group-specific genes of these two groups belonged
to the same categories that obtained the significant values
through the analysis (Figure 6B). In the results, there were
also several GO Biological processes and KEGG pathways
identified as enriched categories only in the cold HMs or
hot MHs. Among the enriched KEGG pathways, flavonoid
biosynthesis (ath00941), ABC transporters (ath02010),
taurine and hypotaurine metabolism (ath00430), and starch
and sucrose metabolism (ath00500) were detected only in
the cold HMs, and fatty acid biosynthesis and elongation
(M00083) was only in the hot HMs. The searching results of
chemical components of HMs and their metabolic pathways
(Supplementary Data S5) indicated some links between

group-specific chemical ingredients and group-specific enriched
KEGG pathways. For example, among cold-specific chemical
ingredients, chrysoeriol was shared in cold3 (Radix Scutellariae)
and cold9 (Flos Lonicerae); swertiajaponin was shared in cold4
(Herba Catharanthi Rosei) and cold7 (Radix Gentianae); luteolin
was shared in cold2 (Herba Dracocephali Tangutici), cold7 (Radix
Gentianae), and cold9 (Flos Lonicerae); and paniculatin and
wogonin were shared in cold3 (Radix Scutellariae) and cold5
(Herba Andrographis). These five components belonged to flavor
biosynthesis (ath900941). In addition, inositol was shared in
cold4 (Herba Catharanthi Rosei) and cold9 (Flos Lonicerae),
which belong to ABC transporters (ath02010). Similarly, in
hot-specific chemical ingredients, lauric acid and octanoic acid
were shared in hot3 (Rhizoma Curcumae Longae) and hot6
(Herba Ephedrae); hexadecanoic acid and heptadecane were
shared in hot6 (Herba Ephedrae) and hot9 (Radix Notoginseng);
and pentadecanoic acid was shared in hot3 (Rhizoma Curcumae
Longae), hot6 (Herba Ephedrae) and hot9 (Radix Notoginseng).
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FIGURE 6 | Specific genes of cold/hot HMs and functional enrichment analyses results. (A) Heat map of numbers matched genes in different sample groups. The
color key from gray to brown indicates small to large number of matches. Blue/red box indicates the reference genes matched only genes in the cold/hot group
when genes divided into two groups according to their cold or hot HMs. (B) Heat maps of P-values of significant enriched functional categories on cold and/or hot
group. The color key from gray to brown indicates large to small P-values. (C) Network of enriched categories basing on hot/cold-specific genes. Each node
represents an enriched category. Its size indicated the number of genes, for which the category contained a range of 3–63. The thickness of the edge indicated the
degree of membership similarity between two nodes. The representative terms of the clusters are shown on the legend.
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These five components belonged to fatty acid biosynthesis and
elongation (M00083).

The enriched candidate categories were clustered and
further formed the networks of functional blocks (Figure 6C).
The clusters with representative terms and the similarity
links between the nodes provide a more comprehensive and
higher-level visualization for the difference in gene function
modules between cold and hot HMs. The terms of clusters
belong to independent network blocks that only contained
cold-specific genes were embryonic meristem development,
embryonic pattern specification, axis specification, regulation
of RNA polymerase II transcriptional preinitiation complex
assembly, mitochondrial RNA modification, and cell redox
homeostasis, while the terms deduced only by hot-specific
genes were nucleotide biosynthetic process, peptidy-L-
cysteine S-palmitoylation, lipid modification, base-excision
repair, dipeptide transport, and response to endoplasmic
reticulum stress.

DISCUSSION

Nowadays, theories in cold and hot properties of HMs have
become a topic of interest and been researched from different
aspects during these years. The relevant research can be divided
into two categories based on their research objects. One is to
study the physical or clinical responses (thermal behavior, anti-
oxidative activity, etc.) of test subjects (Fu et al., 2015), and the
other is to study the chemical materials of herbs themselves (Long
et al., 2011). With the rapid development of the next-generation
sequencing (NGS), RNA sequencing (RNA-Seq) is widely used in
the analysis of transcriptomes of various organisms. For RNA-
Seq, improved sequencing throughput and accuracy, shortened
sequencing time, and significantly reduced price have opened the
door to a better understanding of the sophisticated mechanisms
of more species of plants. To date, our research makes the first
attempt to study the differences between cold and hot HMs based
on their gene expression profiles by taking original material of
HMs as research object.

To study the gene function differences between different
properties of HMs, cross-species comparison of plants was
necessary and informative. Although there has been existing
research on comparing gene expression among different species
(Kristiansson et al., 2013; Shaar-Moshe et al., 2015), these
methods did not seem to be suitable in this study for the less
common (non-model species) and distantly related species of
HMs. In this study, we established a method for the cross-
species annotation of conserved genes by using transcriptome
data of 20 HMs with cold and hot properties. As cross-species
gene expression analyses were often hampered by the lack of
publicly available genomes and gene orthology information,
especially for species that were not common, using the operation
procedures of BUSCO, we developed a pipeline for generating
species-specific ortholog sets, profiled gene expression by RNA-
seq, and identified the specific genes grouped by different
features (organs, hot/cold properties, and dicotyledons/non-
dicotyledons).

In order to ensure the reliability of the data sources, we applied
strict selection procedures for choosing RNA-seq data included
in current study. As HMs are specific parts of plants, which
grow in specified areas with specific environment (Huang et al.,
2011), all of the datasets were obtained from the exact samples
for medicinal purpose. In terms of phylogenetic relationships,
the 20 species of samples recruited were scattered within the
lineage of plants from BUSCO set (Figure 4A). As for sequencing
platform, all of 20 datasets were generated by Illumina paired-
end sequencing with the similar read length. Literature searching
and data screening results showed that the research of cold
HMs is more popular (Figure 2C), which may be related to its
high nephrotoxicity (Liang et al., 2013). Besides, the Illumina
sequencing and transcriptome assembly results showed that there
was no statistical difference in sequencing throughput, quality
(Figures 3C,D), and assembly variables between cold and hot
HMs, except for N50 (Figure 3E). These results suggest that
the sequencing and assembly processes were unlikely to cause
systemic bias in the follow-up analysis.

As for cross-species gene annotation, the complexity of
genes on plant genomes and the incompleteness of gene
annotation information makes it almost impossible to compare
the expression of all genes across species, as plant genome
sizes vary dramatically, ranging from 0.063 to 148.8 Gbp
(Greilhuber et al., 2006; Hidalgo et al., 2017); meanwhile, the
length of single-copy regions varies widely among plant species
(Claros et al., 2012), and the protein-coding gene count is not
significantly correlated to genome size (Michael, 2014). As a
result, only the conserved genes of the 20 HMs inferred by
A. thaliana were annotated and their information was deployed
for enrichment analysis in the present study. Besides, relative to
sensitivity, accuracy of the annotation was more concerned in
this study, which was reflected in the followings. First, only the
assembled transcripts with TPM greater than 1 were remained
for annotation. Second, the cutoff for BLATSP was strict: 1e-
114 for the closest species (cold10) and 1e-16 for the furthest
species (hot6). Third, only a small percentage (1.73–5.30%) of
unigenes of each HMs and a small percentage (17.54%) of genes
on the reference genome matched each other established the links
for gene annotation. It should be noted that the numbers of
genes for calculation of enrichment parameters were the numbers
of genes on reference genome. Thus, the different functional
gene modules between groups were the results obtained through
the gene function of specific parts of genomic mapped by
conserved genes of HMs.

There were three and four types of organs from which cold
and hot HMs were sampled, respectively (Figure 3C). This design
was to prevent the difference between cold and hot HMs in the
results due to organ specificity. The main purpose of performing
enrichment analysis on each type of organs or dicotyledons/non-
dicotyledons was to assess the effectiveness of the whole
computational pipeline. Among the results, expressed genes in
leaves were enriched in chloroplast- and chlorophyll-associated
functional categories, expressed genes in roots were enriched
in toxic and ABA-associated categories, and expressed genes in
flower were enriched in microsporogenesis and anthocyanin-
associated categories. Meanwhile, regulation of stomatal complex
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patterning was an enriched category found in dicotyledons.
These findings match what we already know about the specific
gene functions of plant organs or dicotyledons (see Results
sections “Functional Enrichment Analysis of Specific Organs”
and “Functional Enrichment Analysis of Dicotyledons and Non-
dicotyledons”). Although seed development (GO:0048316) was
found in leaves as well as male gamete generation (GO:0048232)
in stems, which might be due to the types of organs that are not
included the seed and the complex multi-function of genes, the
results were still somewhat reasonable under the analysis strategy.

Some of natural products are produced by specific metabolic
pathways of plants. These natural products can be served as
drugs to modulate molecular networks of humans, which is
probably because their corresponding biosynthesis pathways
are chemico-biologically associated with the human molecular
networks (Zhang B. et al., 2016). In our results, expressed
genes in cold HMs were enriched in associated metabolic
pathways of flavonoid, taurine, hypotaurine, starch, and sucrose,
as well as a pathway for ABC transporters and genes of hot
HMs enriched in the pathway of fatty acid biosynthesis and
elongation. These were consistent with the metabolic pathways
of cold/hot-specific chemical ingredients in plants (see Results
sections “Functional Enrichment Analysis and Comparison
Between HMs With Cold and Hot Properties”). The results
suggested that there might be different patterns of compound
metabolism between cold and hot HMs, which might play
different roles in affecting the metabolic network of drug
users. The Enrichment Network provides a more concise result
with regards to the enrichment of expressed gene function
(Figure 6C). For hot HMs, biological processes associated with
embryonic development, mitochondrial RNA modification, cell
redox homeostasis, and so on were extracted as the hot-
specific functional modules. For cold HMs, processes associated
with nucleotide biosynthetic and repair, peptidy-L-cysteine
S-palmitoylation, lipid modification, dipeptide transport, and
response to endoplasmic reticulum stress, were extracted as the
cold-specific functional modules. The functional modules and
their relationship with the hot/cold property of HMs need to be
further verified and interpreted.

Here we describe, to the best of our knowledge, a
comprehensive method for the comparison of RNA-seq data
among plant species. The novelty should be emphasized.
Although previous research has made an effort toward
interspecies comparisons, an approach for distant species
comparison has not been developed to date. Furthermore, the
comparison of RNA-seq data among different species in the
present study means that comparisons among huge numbers
of species are possible. However, there remains a defect to be
discussed. By analyzing suitable transcriptomes of only 10 cold
and 10 hot propertied HMs, although the results of specific
conserved gene expressing patterns could be obtained, and some
could be found reasonable, it was very possible that recruiting
more HMs would have impact on the results. Thus, a larger
sample size was needed to reach more reliable signals about the
difference of functional gene modules between cold and hot HMs.
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FIGURE S1 | FastQC results of each sample before and after quality control.
(A1,B1,C1,D1) Results of raw data. (A2,B2,C2,D2) Results of clean data. (A1,A2)
Average quality scores by nt locations of reads. (B1,B2) Number distributions of
reads in average quality scores. (C1,C2) Percentages of base N content by nt
locations of reads. (D1,D2) Percentage distributions of sequence GC content,
green for “pass,” yellow for “warn,” red for “fail”.

FIGURE S2 | The length distribution of unigenes.

FIGURE S3 | Distribution of sample gene expression level. Gene expression levels
were measure by log10(TPM). The different colors of the curves represented
different species. (A) Density of RNA-seq gene expression level. (B) Cumulative
frequency of RNA-seq gene expression level.

TABLE S1 | Summary of Chinese herbal medicines.

TABLE S2 | Classification and sampling sources of 20 plants and reference
species.
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