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Ageing appears to be a nearly universal feature of life, ranging from unicel-
lular microorganisms to humans. Longevity depends on the maintenance of
cellular functionality, and an organism’s ability to respond to stress has been
linked to functional maintenance and longevity. Stress response pathways
might indeed become therapeutic targets of therapies aimed at extending
the healthy lifespan. Various progeroid syndromes have been linked to
genome instability, indicating an important causal role of DNA damage
accumulation in the ageing process and the development of age-related
pathologies. Recently, non-cell-autonomous mechanisms including the
systemic consequences of cellular senescence have been implicated in regu-
lating organismal ageing. We discuss here the role of cellular and systemic
mechanisms of ageing and their role in ageing-associated diseases.
1. Introduction
Ageing can be defined as a state of progressive functional decline accompanied
by an exponential increase in mortality (the Gompertz law [1–3]). Despite being
widespread among almost all multicellular organisms [4,5], there are excep-
tions. The existence of species without an observable time-dependent
functional decline and increase in mortality, termed ‘negligible senescence’
[6–8], suggests that the ageing process is not an entirely ubiquitous, inevitable
one, hence raising the important questions of ‘why does it happen?’ and ‘how
can it be so variable?’

In the wild, extrinsic factors are the ones mostly leading to mortality: ani-
mals tend not to grow very old and, as a result, the power of natural
selection declines over time. Natural selection is, therefore, predicted to only
have a weak influence on the process of senescence, making the existence of
genes that actively promote ageing very unlikely [9]. Instead, according to
the ‘mutation accumulation’ theory, this lack of selective effects in later life
stages allows the accumulation of alleles with late, unselected effects over sev-
eral generations [9]. Alternatively, the ‘antagonistic pleiotropy’ theory proposes
a major contribution of pleiotropic genes—genes selected to maintain fitness
during early life but with unselected deleterious effects later, after the organ-
ism’s reproductive period—in the development of age-related phenotypes [4].
Finally, the ‘disposable soma’ theory states that, because of resource scarcity,
organisms evolved mechanisms to optimally allocate metabolic resources into
reproduction at the expense of somatic maintenance. Proper somatic mainten-
ance is only required to ensure that an organism reaches reproductive
maturity; therefore, it can be beneficial not to invest resources into somatic
repair and maintenance even if that will lead to damage accumulation over
time, ultimately driving the ageing process [5,10]. Both the ‘antagonistic
pleiotropy’ and ‘disposable soma’ theories are based on the idea of a cellular
‘trade-off’—a compromise, where mechanisms that are at first advantageous
bring detrimental consequences later on.

In this review, we primarily focus on the role of DNA damage accumulation
in pathology and in the ageing process. We start by highlighting evolutionary
trade-offs between somatic maintenance and reproduction and how these can
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be tightly connected to an organism’s environment; we then
move on to the role of DNA repair pathways in enforcing
these trade-offs at the cellular and organismal level. Finally,
we give special attention to non-cell-autonomous DNA
damage responses (DDRs), which promote tissue dysfunction
and compensatory responses with the aim of re-establishing
tissue homeostasis, as the study of these will surely facilitate
the identification of the mechanisms underlying the systemic
effects of DNA damage in the future.
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2. Influence of the environment on lifespan
and ageing

Seeing that organisms inhabit highly variable environments,
it is not surprising that there is a vast range of highly
specialized traits and responses that promote survival
and/or optimal reproduction for those specific environ-
ments and circumstances. In the nematode Caenorhabditis
elegans, some of these environmental responses are very
well characterized. Temperature is a major influencing
factor in the nematode’s lifespan: hermaphrodite worms
have a half-life of about 13 days at 20°C but their lifespan
can be modulated by the environment’s temperature [11].
A decrease in temperature to 16°C increases the worms’
half-life to approximately 20 days, while an increase in
temperature to 25°C has the opposite effect, decreasing
half-life to approximately 8 days [11].

In addition to temperature, food availability is also a
major modulator of the worms’ lifespan. When faced
with starvation, C. elegans can enter diapause—a physio-
logical state of dormancy and developmental delay, with
halted feeding and reproduction [12–14]. Depending on
the developmental stage at which the worms face star-
vation, distinct diapause states can be established. Dauer
arrest, the most well-studied diapause state, is established
when worms are starved at the L2 larval stage. Dauer
worms undergo specific anatomical and metabolic modifi-
cations and are surprisingly resistant to different
environmental stressors when compared with non-dauer
worms [14–16]. Importantly, worms have been reported
to survive up to several months in this stage but are still
able to resume development, reach adulthood and display
normal adult lifespan and reproduction when faced again
with ideal conditions [14]. A distinct diapause state—
adult reproductive diapause (ARD)—is established under
conditions of starvation and high larval density shortly
after the transition from the L4 larval stage into young
adulthood [17]. Unlike dauer, this state is not associated
with major anatomical changes and, while in this state,
worms show some signs of tissue and cellular ageing,
including atrophy of the intestine and germline degra-
dation [17]. Remarkably, shortly after exiting ARD,
worms display normal adult morphology (including a
repopulated germline and functional intestine) and lifespan
[17]. This rejuvenation process becomes even more extra-
ordinary because it takes place in adult worms, in which
all somatic cells are postmitotic, strongly hinting towards
the existence of signalling pathways promoting tissue
functionality or, in this case, rejuvenation in a systemic
way following stressful conditions. The mediators involved
in this rejuvenation process are still unknown; however,
reactivation of RNAmetabolism appears to be a requirement
for somatic restoration post-ARD to occur [18].

The impact of food availability in stress responses and
longevity is not restricted to C. elegans. The effects of caloric
restriction (CR) (reduction in caloric intake without malnu-
trition) in slowing the ageing process and promoting health
have been extensively described in animal models and
recent studies have suggested that this might translate even
to human health maintenance [19–21]. CR is hypothesized
to trigger an evolutionary conserved adaptive response for
periods of food scarcity responsible for shifting an organism’s
energy resources from growth and reproduction to somatic
maintenance [22,23]. The trade-off becomes particularly
apparent in C. elegans, where extraordinarily long-lived
dauer larvae maintain somatic function until they resume off-
spring generation once food becomes available and are then
subject to age-related somatic decline. According to the dis-
posable soma theory, it is not surprising to observe a
correlation between longevity and the amount of resources
applied to somatic maintenance and repair. This is well sup-
ported by classical studies reporting a correlation between
DNA repair capacity and mammalian lifespan [24,25].
3. The DNA damage response
One important aspect of the ageing process is the accumu-
lation of DNA damage through time [26,27]. While
containing the entire genetic information (except for
mitochondria-encoded genes), the nuclear genome is con-
stantly threatened by genotoxic insults, with an estimated
frequency of the order of tens of thousands per day [28].
These hazards can arise from exogenous or endogenous
sources. Exogenous sources are, to some extent, avoidable;
these include ultraviolet (UV) and ionizing radiation and a
variety of genotoxic chemicals. Endogenous sources, on the
other hand, are unavoidable as they include metabolic by-
products, such as reactive oxygen species (ROS), and spon-
taneous chemical reactions that target DNA molecules
(including alkylation and hydrolysis of DNA chemical
bonds) [28,29]. The lesion type inflicted on the DNA greatly
depends on the source of the damage. Lesions caused by
endogenous sources tend to arise stochastically at a higher
rate. Single-strand breaks (SSBs) constitute the majority of
DNA lesions, as they can arise from base hydrolysis and
oxidative damage [30]. Stochastic errors during DNA replica-
tion occur at a low rate but may lead to single-nucleotide
substitutions and ROS cause oxidative DNA lesions such as
8-oxoguanine [31]. Lesions caused by exogenous sources
can be mutagenic and also highly cytotoxic. For instance,
exposure to UV radiation leads to helix-distorting lesions
such as 6–4 photoproducts [32] and, most predominantly,
cyclobutane pyrimidine dimers [33]; chemotherapeutic inter-
ventions can also induce interstrand cross-links (ICLs) and
double-strand breaks (DSBs) [34,35] (figure 1).

DNA damage can have distinctive consequences for cells.
Persistent nucleotide substitutions, due to erroneous repair
followed by misreplication, lead to the accumulation of per-
manent mutations and chromosomal aberrations, which
increase the risk of cancer development [36]. By contrast,
bulky types of DNA lesions can block transcription and repli-
cation, triggering the arrest of the normal cell cycle,
ultimately leading to cell senescence or cell death, both
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Figure 1. Different types of DNA lesions and corresponding DNA repair systems. Distinct DNA lesions have distinct consequences for a cell. Nucleotide substitutions
followed by misreplication lead to accumulation of mutations and chromosomal aberrations, increasing the risk of cancer development. By contrast, bulkier lesions can
also block replication and transcription, leading to cell-cycle arrest and, possibly, cell senescence or apoptosis. To avoid this, cells have evolved complex, highly conserved
DNA repair systems capable of responding to specific types of lesions. Base mispairs (1) and short deletions/insertions are repaired by mismatch repair (MMR). Single-
strand breaks (2) are repaired by complex SBBR cascades. Helix-distorting lesions, such as cyclobutane pyrimidine dimers (3), are repaired by the nucleotide excision
repair (NER) pathway. Oxidative lesions and small alkylation products (4) are repaired by base excision repair (BER). Highly cytotoxic double-strand breaks (5) are either
repaired by the efficient but error-prone non-homologous end-joining (NHEJ) pathway or by the precise homologous recombination (HR) pathway.
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states preventing the cell from transforming into tumour cells
but ultimately contributing to ageing [36]. Nuclear DNA
requires constant maintenance to be kept intact and error-
free in order to avoid the aforementioned consequences.
For this, cells evolved intricate, evolutionarily highly con-
served machineries mediating cellular responses to DNA
damage—termed the ‘DDR’. These highly complex systems
include not only several repair pathways specific for different
types of lesion but also distinct signalling cascades of damage
sensors, signal boosters and effectors responsible for deciding
the cell’s fate. This system has two immediate goals: (i) arrest
the cell cycle to prevent the propagation of corrupted genetic
information, while providing time to repair the damage, and
(ii) actually coordinate the repair of the DNA lesion. Depend-
ing on the success of these previous steps, the cell’s fate is
then decided: after lesions are successfully repaired, the
DDR signalling ceases, cells survive and return to their orig-
inal state; however, impossible to repair lesions trigger a
persistent DDR signalling which can then engender cellular
senescence or apoptosis [37,38]. Given the harmful conse-
quences of irreparable DNA damage, it is not surprising
that defects in DNA repair pathways are associated with
severe human pathological conditions.
4. Genome instability syndromes
Human genome instability syndromes support the link
between genome stability and human health, particularly
premature ageing and cancer. These syndromes are typically
characterized by chromosomal instability and hypersensi-
tivity to DNA-damaging agents, thus increasing cancer
predisposition and exacerbating the progressive degeneration
of specific tissues [36,39–41]. Owing to the large variety of
DNA lesions, cells evolved specialized, lesion-specific repair
systems. Defects in these repair systems can, however, have
highly distinct functional consequences.

The most common DNA lesions, SSBs, are repaired by
complex single-strand break repair (SBBR) signalling cas-
cades initiated when the sensor protein poly(ADP-ribose)
polymerase 1 (PARP1) detects and binds to SBBs [30,42].
This is followed by DNA end-processing, gap filling and lig-
ation. Deficiencies in different factors involved in SBBR result
in severe neurodegenerative phenotypes. Patients with
defects in the DNA end-processing factors aprataxin, tyro-
syl-DNA-phosphodiesterase 1 and polynucleotide kinase/
phosphatase develop different types of cerebellar ataxia and
microcephaly with sensitivity to genotoxic agents [43–50].

Oxidative and helix-distorting lesions are common types of
DNA damage and are mostly repaired by three major excision
repair pathways. In one of these pathways, base excision repair
(BER), a DNA glycosylase recognizes and excises small chemi-
cal modifications such as oxidative lesions and small alkylation
products and SSBs triggering a downstream repair signalling
cascade [51,52]. BER is the main mechanism countering the
deleterious effects caused by ROS, often regarded as drivers
of the ageing process. It is possible that BER dysfunction
plays a significant role in age-related phenotypes as it has
been shown that several tissues in old mice display reduced
BER capacity [53]. Importantly, age-associated neurodegenera-
tive diseases such as Alzheimer’s and Parkinson’s diseases
have also been linked to increased oxidative DNA damage
[51,54,55] and BER has been shown to be impaired in the
brains of sporadic Alzheimer’s disease patients [56].

A second pathway, mismatch repair (MMR), corrects
base mispairs and short deletion/insertion loops originated
from replication errors, thus becoming a critical system
ensuring maintenance of genome stability following DNA
replication [57].

The last of the major excision repair pathways, nucleotide
excision repair (NER), removes helix-distorting DNA lesions
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in four consecutive steps: (i) lesion recognition; (ii) DNA
unwinding; (iii) damage excision; and (iv) DNA synthesis
and ligation. Two distinct lesion-recognition systems initiate
the same downstream machinery, allowing the differentiation
of two NER sub-pathways: (i) transcription-coupled NER
(TC-NER), activated by RNA polymerase II stalling during
transcription by chromatin remodelling proteins Cockayne’s
syndrome protein A (CSA) and B (CSB), and (ii) global
genome NER (GG-NER), initiated by the UV-damaged
DNA-binding protein (UV-DDB) complex and xeroderma
pigmentosum group C (XPC) protein, which scan the entire
genome, independently of transcription [58].

Syndromes caused by inherited defects in the NER
machinery are rare and are surprisingly heterogeneous in
terms of symptoms, despite a common feature of hypersensi-
tivity to sunlight. Defects in the NER enzyme genes XPA,
XPB, XPC, XPD, XPE, XPF and XPG can cause xeroderma
pigmentosum owing to a defective GG-NER. GG-NER
defects lead to the accumulation of lesions across the entire
genome and, therefore, it is not surprising to observe that
patients with xeroderma pigmentosum, in addition to sun-
induced pigmentation abnormalities, also display a dramati-
cally increased risk of skin cancer and internal tumours [59].
By contrast, defects in TC-NER do not inherently lead to an
increased mutational load; instead, cells remain in a state of
blocked transcription that ultimately leads to apoptosis.
Mutations in the aforementioned lesion-recognition genes
CSA and CSB can cause Cockayne’s syndrome (CS). Patients
with CS display a range of symptoms associated with accel-
erated ageing, including growth/development impairment,
severe neurological defects, hearing loss, cataracts and
cachexia (for an extensive review of the clinical features, see
[60]), reflecting the systemic consequences of the elimination
of cells with low levels of transcription-blocking DNA
lesions. In addition, specific point mutations in the NER heli-
case genes XPB and XPD can also cause trichothiodystrophy,
a severe progeroid syndrome in which patients display the
features of CS and also brittle hair and nails [59,61]. The fea-
tures of these NER-deficiency syndromes are well studied in
animal models [62–66]. Importantly, studies with animal
models have revealed that the severity of the progeroid fea-
tures correlates well with the degree of DNA repair defects,
suggesting causality [66,67].

Lastly, highly cytotoxic DSBs are primarily repaired either
by the efficient but error-prone nonhomologous end-joining
(NHEJ) pathway or the more precise homologous recombina-
tion (HR) pathway. NHEJ works in somatic cells (or
proliferating cells in G1 stage) and is capable of joining the
ends of the DNA strand via different sub-pathways, depend-
ing on the configuration of the DNA ends [68]; however, it
works without a proper template, as it occurs independently
of replication, and, therefore, often results in mutations (del-
etions or insertions). On the other hand, HR works in
proliferating cells and is of particular importance during
embryogenesis. After replication, HR uses the available iden-
tical copy of the damaged DNA to properly align the broken
ends and repair the lesion [69], thus promoting cell survival
without contributing to an increased mutagenic load. In
addition, together with Fanconi’s anaemia (FA) proteins, HR
is also involved in ICL removal. In humans, mutations in
key HR genes lead to a clear increase in cancer development,
with mutations in the BRCA1 and BRCA2 genes being associ-
ated mostly, but not exclusively, with breast and ovarian
cancer [70–72]. Mutations in HR genes can also lead to the
development of FA/FA-related pathologies, characterized
by bone marrow failure, developmental deficiencies and also
an increased risk of cancer development [70].

The existence of such complex syndromes highlights the
intricate relationship between DNA damage, ageing and
cancer predisposition. Mutations in repair pathways that
deal with mutagenic lesions often lead to cancer development
while mutations in systems dealing with cytotoxic lesions (i.e.
arrested transcription) are detrimental for normal growth
and tissue homeostasis and thus contribute to an ‘artificially
accelerated’ ageing process. This phenotypical dichotomy
emphasizes the trade-off between the decisions a cell needs
to take when facing irreparable DNA damage: minimize
malignancy risk or maintain tissue functionality.

Moreover, the broad range of, sometimes highly specific,
pathological outcomes strongly suggests that those genome
instability syndromes, and physiological ageing itself,
cannot be explained simply by the cell-autonomous effects
of DNA damage. If the cell-autonomous DNA damage-
induced increase in mutagenesis/cell death were the sole
agent at play here, one would expect to observe similar
tissue-unspecific pathologies independently of the affected
repair pathway. Instead, different types of DNA damage
appear to affect tissues differently, suggesting that complex
signalling pathways might influence the whole organismal
phenotype by coordinating specific systemic responses
to damage.
5. Non-cell-autonomous DNA damage
responses

The direct cell-autonomous consequences of DNA damage
are unlikely to be the sole cause of both the complex patho-
logical outcomes observed in patients with genome
instability syndromes and the broad range of age-related phe-
notypes. Under this paradigm, the following questions arise:
(i) Are there non-cell-autonomous responses promoting
tissue dysfunction following DNA damage? (ii) Alternatively,
are there compensatory non-cell-autonomous responses
aiming to re-establish tissue homeostasis? (iii) Can different
types of damage elicit specific systemic responses?

Regarding (i), we discuss below the influence of cellular
senescence in the ageing process. Accumulating evidence
shows the contribution of cellular senescence to age-related
tissue dysfunction, and ablation of senescent cells via differ-
ent mechanisms has shown potential in ameliorating
multiple age-related phenotypes and even increasing lifespan
[73–76]. Additionally, because of their heterogeneous aber-
rant secretory profiles (the senescent-associated secretory
phenotype, SASP) [77,78], senescent cells are indeed capable
of coordinating distinct non-cell-autonomous responses able
to disrupt tissue homeostasis. Moreover, the tight links
between cellular senescence, inflammation and stem cell
exhaustion reflect the entanglement between different hall-
marks of ageing and how multiple physiological layers
orchestrate the onset of age-related functional decline.

Finally, regarding questions (ii) and (iii), we discuss recent
findings in C. elegans and in mammalian models exemplifying
compensatory stress responses, involving trans-tissue com-
munication, elicited following different types of damage in
order to maintain tissue functionality.
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Figure 2. Non-cell-autonomous DNA damage responses contributing to age-associated tissue dysfunction. Cellular senescence can be elicited in response to a
permanent DDR following exposure to DNA-damaging agents (a). Once established, senescent cells secrete a host of pro-inflammatory cytokines, chemokines,
growth factors and matrix-remodelling enzymes (SASP), capable of coordinating distinct non-cell-autonomous responses. Via the SASP, senescent cells create a
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cells ( paracrine senescence) (b). This induction of senescence in bystander cells might be a relevant mechanism contributing to the reported age-associated accumu-
lation of senescent cells in multiple tissues. Additionally, the resulting pro-inflammatory environment (c) might create a positive feedback loop, escalating the
number of senescent cells within a tissue and the production of pro-inflammatory components, contributing to age-associated tissue dysfunction.
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5.1. Cellular senescence, inflammation and ageing

Cellular senescence has been traditionally regarded as a
state of irreversible cell-cycle arrest elicited by replicative
exhaustion (replicative senescence) or in response to diverse,
oncogenic or DNA-damaging stressors (oncogene-induced
senescence and stress-induced premature senescence)
[79–82]. Classical hallmarks of senescence include (i) pro-
miscuous and highly heterogeneous gene expression;
(ii) apoptosis resistance; and (iii) growth arrest [82]. For dec-
ades now, cells have been mainly identified as senescent by
the presence of senescence-associated β-galactosidase (SA-
βGal) activity [83]. Senescent cells display striking changes
in gene expression when compared with their non-senescent
counterparts [84–86]; major changes often include the over-
expression of important cell-cycle inhibitors, including the
cyclin-dependent kinase inhibitors p21 (CDKN1a/CIP1)
and p16 (CDKN2a/INK4) [82,87–89], downstream effector
proteins resulting from the activation of p53, thus linking
the DDR to the establishment of cell-cycle arrest. In recent
years, many other features have been associated with a senes-
cent phenotype, including loss/redistribution of lamin B1
[90], accumulation of lipofuscin [91,92], loss of nuclear
HMGB1 [93], telomere-associated DNA damage foci [94],
senescence-associated heterochromatin foci [95] and senes-
cence-associated mitochondrial dysfunction [96], to name
but a few. Most striking, though, is the distinct secretome pro-
file of senescent cells, termed SASP [97,98]. Senescent cells
secrete a host of pro-inflammatory cytokines, chemokines,
growth factors and matrix-remodelling enzymes capable of
altering a tissue’s microenvironment via autocrine and
paracrine signalling, ultimately contributing to age-related
tissue dysfunction [98,99]. Importantly, senescent cells, via
the SASP and/or ROS production, have been shown to be
capable of maintaining a state of chronic inflammation and
inducing senescence in adjacent bystander cells, both
in vitro and in vivo [100–104]. This induced senescence, via
a ‘bystander effect’, might be a relevant mechanism leading
to the reported age-dependent accumulation of senescent
cells in vivo [105,106]. Even more worrisome, by creating a
local chronic state of inflammation via the SASP, a small
amount of senescent cells can convert other, otherwise
healthy, cells into a senescent state, which in turn will escalate
the production of pro-inflammatory components, creating a
positive feedback loop potentially capable of affecting the
organism in a systemic way (figure 2). This is especially
concerning, as it has been reported that even relatively
low numbers of senescent cells induce a bystander effect
and can disrupt tissue homeostasis [75,104,107,108]; thus,
senescent cells might play an active role as a driver of
many age-related disorders and the process of physiological
ageing itself.

The contribution of senescent cell accumulation to ageing is
verywell illustrated by the studies of Baker et al., originallywith
BubR1 mice. BubR1 mice have severe genome instability due
to defects in spindle assembly and, consequently, display mul-
tiple progeroid features and increased levels of senescent cells
[73,109]. Notably, genetic clearance of p16-positive cells in the
BubR1 background delayed both the onset and progression of
age-related phenotypes [73]. Using the same system, clearance
of naturally occurring p16-positive cells in a non-progeroid
background increased both healthspan and lifespan [74].
These studies provide strong evidence that senescent cells are
active drivers of the ageing process; nevertheless, it is important
to note that senescent cells can be highly heterogeneous and not
every senescent cell shows necessarily increased expression of
p16, so it is possible that only a number of specific senescent
cell populations (in this case, p16-expressing cells) are the
actual drivers of the observed phenotypes.

Intriguingly, senescence-like phenotypes have been
reported in postmitotic cells such as neurons [110], osteocytes
[111], retinal cells [112], myofibres [104] and cardiomyocytes
[113], among others, challenging the traditional view of
senescence as a proliferation arrest-dependent programme.

Senescence is, however, not only tightly associated with
physiological age-related phenotypes but also with multiple
age-associated pathologies [114]. Cells with senescence-like
phenotypes have been shown to accumulate in the lung in
cases of idiopathic pulmonary fibrosis [115], in osteoarthritic
joints [116] and in the liver in non-alcoholic fatty-liver disease
[117], among other situations [114]. Correspondingly, trans-
plantation of senescent cells can induce an osteoarthritic-
like phenotype and impair function [75,116]. Conversely,
removal of senescent cells with senolytic drug treatments
has been shown to improve several healthspan parameters
[75] and to improve tissue function in animal models of pul-
monary fibrosis [115], atherosclerosis [118], hepatic steatosis
[117] and obesity [119].
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Senescence can be a highly heterogeneous phenotype,
induced by multiple inputs and often leading to different
and even opposite outputs [99]. In fact, senescent cells have
been shown to promote both tumour suppression
[80,120,121] and tumour progression [107,108,122,123], to
contribute to wound repair [124] (but ultimately they may
also drive the ageing process) and have been associated
with numerous age-associated disorders [114]. Cellular senes-
cence can thus be classified as an antagonistic hallmark of
ageing [27] and a good representative of the antagonistic
pleiotropy theory of ageing. Cellular senescence might have
evolved as a tumour suppression mechanism with clearly
beneficial effects early on; however, as senescent cell frequen-
cies increase with age [105,106], the deleterious effects,
mainly of the SASP, start to outweigh the initial, ‘selected-
through-evolution’, beneficial effects.

The effects of the SASP are also inherently interconnected
with other age-associated features, particularly the age-
dependent increase in low-grade systemic inflammation
(inflammageing) [125,126]. This increase in inflammation is
not exclusively due to the SASP; enhanced activation of the
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) transcription factor, the gradual inability of
the immune system to remove sources of inflammation and
autophagy dysfunction are also important contributors to
age-associated inflammageing [127,128]. Overexpression of
NF-κB is a known driving feature of ageing [129] and its inhi-
bition delays cellular senescence and the onset of age-
associated features [130]. Conversely, chronic activation of
NF-κB induced by knockout of its nfkb1 subunit promotes
cellular senescence by exacerbating telomere dysfunction
and reduces the regenerative potential of tissues, thus acceler-
ating ageing [100]. The reduction of tissues’ regenerative
potential is also one of the most striking features of ageing.
This results mostly from functional exhaustion of stem cells
in the majority of an organism’s stem cell compartments
[27], promoted not only by inflammation [100,131] but also
by DNA damage [132] and cellular senescence [133,134],
once again highlighting the entanglement of mechanisms
and feedback loops driving the ageing process. Moreover,
NF-κB activation, specifically in the hypothalamus, has
been shown to inhibit the production of gonadotropin-releas-
ing hormone, consequently contributing to the dysfunction of
several other tissues [135]. Additionally, the age-associated
decrease in hypothalamic stem cells and decrease in exosome
secretion also accelerate the ageing speed and distal tissue
dysfunction [135,136]. The hypothalamus thus appears to
be involved in modulating systemic responses driving age-
related pathology [137], reflecting the importance of the
brain during ageing.
5.2. Compensatory stress responses, tissue functionality
and longevity

Numerous studies from the past few decades have revealed
that the ageing process is genetically regulated and cannot
be explained simply as a consequence of damage accumu-
lation. Pioneering studies with C. elegans have shown that
lifespan can be significantly extended by mutations in
single genes [138]. Currently, hundreds of genes have been
identified in model organisms in which mutations lead to
an increased lifespan—in some cases, up to a 10-fold increase
[139]. Identification of these genes allowed the recognition of
multiple so-called ‘longevity-pathways’, which, importantly,
appear to be evolutionarily conserved in mammals. Among
the best studied of these pathways are the above-mentioned
CR and the insulin/insulin-like growth factor 1 (IGF-1)
signalling (IIS) pathways.

The mechanisms accounting for the beneficial effects of
CR remain somewhat elusive but their study is paramount
in identifying cellular/systemic processes counteracting the
age-associated increases in morbidity and mortality. Both
the IIS and the target of rapamycin (TOR) pathways have
been shown to mediate some of the beneficial effects of CR
[23,140]. The inhibition of the TOR pathway, in particular,
has been shown to have a very well-conserved role in mediat-
ing the CR-dependent lifespan extension among different
organisms [141]. Reducing TOR activity leads, among other
processes, to an increase in autophagy and a decrease in
protein biosynthesis, both required for the CR-dependent
increase in lifespan [23,141–143]. Nevertheless, the exact
mechanisms by which these two processes exert their effects
are still poorly understood.

Curiously, classical studies have shown that mice under
CR are also more resistant to different acute stressors, includ-
ing damage by surgical procedures, toxic drug administration
and acute increase in ambient temperature [144], highlighting
the intrinsic link between somatic maintenance and the retar-
dation of the ageing process. In particular, studies in both
humans and other animal models have shown that CR amelio-
rates oxidative damage, in particular to DNA and RNA
[145,146], improves cellular quality control by promoting
autophagy [147], promotes mitochondrial biogenesis [148]
and impairs the SASP of senescent cells [149]. These and
other mechanisms may very well be the drivers of the
observed CR-associated increase in lifespan.

Regarding the IIS pathway, in mammals, the production
of IGF-1 is promoted by the growth hormone (GH) produced
and secreted from the pituitary gland. Dampening insulin
signalling by manipulating components of this pathway
(i.e. GH, the insulin/IGF-1 receptors or downstream effectors,
such as FOXO) has been associated with an increase in long-
evity in both animal models and humans [150–152]. In
C. elegans, dampening of the IIS pathway via mutations in
the daf-2 and age-1 genes (the genes encoding the worm’s
orthologues of the insulin/IGF receptor and phosphatidyl-
inositol 3-kinase, respectively) results in lifespan extension
[138,139,150]. This effect is, however, dependent on the
DAF-16 (the FOXO orthologue) transcription factor
[138,150], the main IIS effector.

Importantly, the IIS pathway responds to DNA damage
[153,154]. DAF-16 has been shown to be activated in response
to persistent DNA damage in somatic tissues during the
development of C. elegans in order to promote tissue func-
tionality and allow growth to proceed; however, DAF-16
responsiveness to DNA damage is severely blunted with
ageing [153]. Similarly, a recent proteome analysis of NER-
deficient worms following UV exposure identified DAF-2 as
a central hub, connecting different signalling nodes and coor-
dinating a systemic response to permanent DNA damage
[154]. Notably, the observed proteome changes resembled
the ones naturally occurring during ageing [155,156], again
underscoring the role of DNA damage accumulation during
physiological ageing and hinting towards a systemic adaptive
‘survival response’ aiming to maintain tissue functionality
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following damage. Additionally, multiple transcriptome
analysis of NER-deficient mice also showed a dampening of
the somatotropic axis in response to DNA damage [157–160],
emphasizing that the same physiological mechanisms are
shared between short- and long-lived models [159,161]. Of
note, this same response was also observed in wild-type ani-
mals exposed to DNA-damaging agents [157]. These findings
raise the intriguing possibility that low levels of, possibly loca-
lized, genotoxic stress are capable of triggering systemic stress
responses and actually contribute to the maintenance of tissue
functionality. Supporting this hypothesis, NER deficiency in C.
elegans has been shown to increase the expression of ‘stress-
responsive’ genes and further increase the lifespan of the
already long-lived daf-2 mutants [162].

Systemic responses to tissue-specific DNA damage have
previously been observed in both Drosophila melanogaster and
C. elegans [163,164]. In D. melanogaster larvae, DNA damage
in the epidermis triggers an immune response dependent on
c-Jun N-terminal kinase (JNK) and Janus kinase (JAK)/
signal transducer and activator of transcription (STAT) signal-
ling, consequently limiting insulin-like peptide secretion by
the central nervous system and activating FOXO [163]. JNK
signalling is a prominent stress-responsive pathway in D. mel-
anogaster and JAK/STAT signalling has been shown multiple
times to be involved in systemic responses promoting tissue
regeneration in injury models [165,166].

In C. elegans, the germline has been known for many
years to be able to influence somatic maintenance, with
germ cell-deficient worms being long-lived and stress-resist-
ant [167,168]. In addition, somatic tissues are able to
respond to damage in germ cells. GG-NER mutant worms,
unable to remove DNA lesions in the germline, have surpris-
ingly resistant somatic tissues. This stress response is
mediated by an innate immune response in the germline trig-
gered by the mitogen-activated protein kinase 1 (MPK-1, the
extracellular signal-regulated kinases 1/2 (ERK1/2) MAPK
homologue), which later becomes systemically established.
This coordinated mechanism has been termed ‘germline
DNA damage-induced stress resistance’ [164] and appears
to be a mechanism evoked in order to extend an organism’s
lifespan following localized DNA damage. This provides
the organism with more time to repair the damage present
in the germline and prevent the transmission of harmful
mutations to the next generation without sacrificing too
much of the amount of progeny produced [169]. Supporting
this explanation, offspring production is transiently reduced
following exposure to DNA-damaging agents, but resumes
after the period used for DNA repair and lasts past the
normal reproductive period of non-damaged worms [164].

Lastly, it is important to mention the role of the neuronal
system in the coordination of systemic stress responses. Neur-
ons are ideally equipped for this as they are capable of
(i) secreting chemicals able to reach distal tissues; (ii) sensing
and processing environmental cues; and (iii) integrating those
signals and coordinating physiological responses accord-
ingly. Many reports have demonstrated the crucial role of
the neuronal system in regulating longevity and proteostasis
in C. elegans, mostly via communication with the intestine,
presumably via neuroendocrine signals [170–178]. In the
future, it would be of importance to better characterize the
types of neuronal responses elicited following distinct DNA
lesions and investigate possible neuron-mediated distal
stress responses following DNA damage.
6. Concluding remarks
Research over past decades has elucidated the role of
genomic instability as a root cause of ageing. The observed
age-dependent accumulation of somatic mutations in the
genome [26] and the accelerated ageing phenotypes caused
by deficiencies in DNA repair systems provide compelling
evidence supporting an active role for intrinsic DNA
damage in mediating loss of tissue functionality with
ageing. Still, the broad range of phenotypic variability
within ageing populations strongly suggests that complex
signalling pathways might coordinate specific systemic
responses to DNA damage. These systemic responses have
become increasingly apparent in multiple species and
appear to have a major role not only during the physiological
ageing process but also in response to acute stress. Impor-
tantly, these responses represent perfect examples of the
intricate connection between DNA damage and other hall-
marks of ageing, such as cellular senescence, stem cell
exhaustion and altered intercellular communication [27],
which can all occur as a consequence of the DDR. Neverthe-
less, the interplay between cell-autonomous and these non-
cell-autonomous responses is still somewhat poorly under-
stood. Future studies should aim to better understand how
different types of DNA lesions can elicit such phenotypic
variability by identifying key effector systemic signalling net-
works. For this, C. elegansmight prove especially useful, as the
nematode worm is an ideal model organism to study the con-
sequences of damage in fully differentiated, postmitotic
tissues. This system will facilitate the identification of mechan-
isms orchestrating the systemic consequences of DNA damage
and will surely provide important novel insights about the
impact of genome instability in physiological ageing and
age-related pathology.
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