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A B S T R A C T

Biofilm-associated infections constitute a significant challenge in managing infectious diseases due to their high 
resistance to antibiotics and host immune responses. Biofilms are responsible for various infections, including 
urinary tract infections, cystic fibrosis, dental plaque, bone infections, and chronic wounds. Quorum sensing (QS) 
is a process of cell-to-cell communication that bacteria use to coordinate gene expression in response to cell 
density, which is crucial for biofilm formation and maintenance.. Its disruption has been proposed as a potential 
strategy to prevent or treat biofilm-associated infections leading to improved treatment outcomes for infectious 
diseases. This review article aims to provide a comprehensive overview of the literature on QS-mediated 
disruption of biofilms for treating infectious diseases. It will discuss the mechanisms of QS disruption and the 
various approaches that have been developed to disrupt QS in reference to multiple clinical pathogens. In 
particular, numerous studies have demonstrated the efficacy of QS disruption in reducing biofilm formation in 
various pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus. Finally, the review will discuss 
the challenges and future directions for developing QS disruption as a clinical therapy for biofilm-associated 
infections. This includes the development of effective delivery systems and the identification of suitable tar-
gets for QS disruption. Overall, the literature suggests that QS disruption is a promising alternative to traditional 
antibiotic treatment for biofilm-associated infections and warrants further investigation.

Introduction

The emergence of antimicrobial resistance (AMR) makes the treat-
ment of bacterial infections increasingly difficult in clinical settings (Llor 
and Bjerrum, 2014). Several antibiotic-resistant pathogens such as 
Enterococcus faecium; Staphylococcus aureus, Klebsiella pneumoniae, Aci-
netobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, 
commonly abbreviated as ESKAPE pathogens, pose an increasing risk of 
infectious diseases (De Oliveira et al., 2020). Vancomycin-resistant 
(VRSA), methicillin-resistant Staphylococcus aureus (MRSA), 
fluoroquinolone-resistant strains of Pseudomonas aeruginosa, and multi-
ple drug-resistant (MDR) strains of Mycobacterium tuberculosis in 
particular, are on the rise. The worldwide spread of antibiotic-resistant 
bacteria in hospitals, especially in immunocompromised patients and in 
low-resource settings, increases the burden of infectious diseases with 
implied costs in healthcare (Antimicrobial Resistance C, 2022; Ventola, 
2015). Thus, alternative therapeutic strategies are required to combat 
bacterial pathogens that have developed resistance to antibiotics (Mc 
et al., 2020).

The development of antibiotic resistance is a complex process that 
can arise due to a variety of factors, including natural selection and 
human behavior, and it is a growing problem that poses a significant 
threat to public health. When antibiotics are present in an environment, 
they create selective pressures that significantly alter the structure of 
microbial communities. This leads to a reduction in biodiversity and 
promotes the proliferation of antibiotic-resistant bacteria (ARB) and 
antibiotic resistance genes (ARGs). The ecological consequences of this 
shift are considerable, especially when compared to antibiotic-free en-
vironments, where microbial communities tend to be more stable, 
diverse, and capable of performing essential ecological functions 
without the pressure to develop resistance.

Bacteria can survive in the presence of antibiotics by acquiring drug- 
resistance genes through several mechanisms, including intrinsic resis-
tance, random spontaneous mutation, hypermutation, adaptive muta-
tion, and horizontal transfer of resistance genes from other bacteria. 
Mutations that confer antibiotic resistance are typically advantageous 
under selective pressures from antibiotics. When antibiotics are present, 
even weak selective pressures can favor the survival and proliferation of 
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resistant strains, often through mutations that alter drug targets or efflux 
mechanisms. These resistance mutations tend to persist because they 
directly improve bacterial fitness in an antibiotic-laden environment 
(Pereira et al., 2023). In environments without antibiotics, resistance 
mutations can come with fitness costs, such as slower growth or 
increased metabolic burdens. As a result, these mutations may be less 
likely to be favored. Numerous studies have shown that in the absence of 
antibiotic pressure, the prevalence of resistance traits often declines due 
to these associated disadvantages (Vanacker et al., 2023) However the 
fitness impact of resistance mutations could be context-dependent, 
varying with both the specific genetic makeup of the bacteria and the 
environmental conditions (Hinz et al., 2024).These mechanisms can 
result in the development of genetic changes that allow bacteria to evade 
the effects of antibiotics and continue to grow and reproduce. It is 
important to note that not all bacteria are capable of developing anti-
biotic resistance through these mechanisms, and some may require a 
combination of factors to become resistant. Additionally, the overuse or 
misuse of antibiotics can increase the selective pressure for bacteria to 
develop resistance, making it a growing concern for public health (Blair 
et al., 2015; Maclean et al., 2010; Wright, 2011).

Conventional mechanisms of antibiotic resistance include the inac-
tivation of active molecules, alteration of target sites, reduction of drug 
concentration through restricted uptake, and the action of efflux systems 
that expel antibiotics from bacterial cells (Rouveix, 2007; Wright, 
2005). However, additional resistance mechanisms such as target 
modification, biofilm formation, and bacterial communication (quorum 
sensing) also play critical roles in enhancing resistance, especially in 
persistent and multidrug-resistant infections (Romero et al., 2011; 
Schillaci et al., 2017; Lewis, 2001; Stewart and Costerton, 2001).

A biofilm refers to a community of bacterial species that are attached 
to a surface or to each other encased in an exopolysaccharide-based 
matrix (Donlan, 2002). Biofilm formation is a complex process where 
bacteria transition from a free-living state to a structured community 
attached to surfaces and embedded in an extracellular polymeric sub-
stance (EPS) matrix. This biofilm enhances cellular adhesion and pro-
vides protection, increasing resistance to antimicrobials and 
environmental stresses (Donlan, 2002). Biofilms form when bacteria 
adhere to a surface, aided by specific surface proteins and extracellular 
DNA essential for their stability (Whitchurch et al., 2002). Mechano-
sensing and quorum sensing regulate biofilm development by promoting 
gene expression changes that enhance maturation and maintenance 
(Remis et al., 2010). Surface-associated growth allows bacterial cells to 
thrive in various environments. Consequently, biofilms pose significant 
challenges in healthcare and industry due to their role in persistent in-
fections and biofouling (Zhao et al., 2023). Biofilms can be found in 
diverse environments in nature. Importantly, a diverse range of micro-
bial infections is associated with biofilm formation ranging from cystic 
fibrosis, dental caries, endocarditis, wound infections, medical implant 
device infections, etc (Del Pozo, 2018). Resistance to conventional an-
tibiotics in biofilm state is 10 to 1000 fold higher as compared to that 
observed in free-floating or planktonic cells. Such high levels of resis-
tance to antibiotics in biofilms make treatment of biofilm-associated 
infections makes it difficult if not impossible, even with the highest 
dose of antibiotics. Several alternative mechanisms have been proposed 
for biofilm-induced resistance (Stewart and Costerton, 2001; Mah and 
O’Toole, 2001; Li et al., 2020).

One major mechanism for the resistance of biofilms is the extracel-
lular matrix that surrounds the biofilm (Uruén et al., 2020). The extra-
cellular matrix acts as a physical barrier that can prevent antibiotics 
from penetrating the biofilm and reaching the bacterial cells within. The 
extracellular matrix also contains enzymes that can degrade antibiotics 
and render them inactive before they can reach their target. This can 
lead to much higher concentrations of antibiotics being required to 
effectively penetrate the biofilm and eliminate the bacterial cells 
(Karygianni et al., 2020; Goodman and Bakaletz, 2022). Another 
mechanism for the resistance of biofilms is the presence of persister cells. 

Persister cells are a small subpopulation of bacterial cells that are 
dormant and can tolerate high levels of antibiotics (Roberts and Stewart, 
2005). These cells can “switch off” their metabolic activity and enter a 
dormant state, which makes them less susceptible to antibiotics. This 
allows the persister cells to survive antibiotic treatment and then “wake 
up” when the antibiotic is no longer present, potentially leading to re-
currences of infection (Yan and Bassler, 2019). Bacteria within biofilms 
can grow more slowly than planktonic cells, leading to a reduced sus-
ceptibility to antibiotics that target actively growing cells. Biofilms can 
also exhibit altered gene expression patterns that can lead to changes in 
metabolism and increased antibiotic resistance. This can be due to 
environmental cues within the biofilm, such as changes in pH, oxygen 
concentration, and nutrient availability. Biofilms can contain more 
efflux pumps, which are protein complexes that pump antibiotics out of 
bacterial cells. The increased number of efflux pumps in biofilms can 
contribute to higher levels of antibiotic resistance. Biofilms can facilitate 
horizontal gene transfer, which allows bacteria to exchange genetic 
material and acquire antibiotic resistance genes from other bacteria 
within the biofilm or the environment (Liu et al., 2024). Finally, bacteria 
within biofilms can communicate with each other using quorum sensing, 
which allows them to coordinate gene expression and behavior. Quorum 
sensing can lead to the upregulation of genes involved in antibiotic 
resistance and the formation of a more robust biofilm. This can lead to 
the spread of antibiotic resistance within the biofilm and beyond, 
making treatment more difficult (Ghasemi et al., 2018) (see Fig. 1).

Quorum sensing

The development of bacterial biofilms requires self-organization, 
cooperation, and communication among members of the biofilm com-
munity to switch from free-floating planktonic cells to a three- 
dimensional well-organized biofilm mode of existence. Biofilm forma-
tion requires several environmental cues: stress, nutrient limitation and 
cell-to-cell communication. Bacterial adaptation to a changing envi-
ronment requires sensing and responding by coordinated gene expres-
sion. A form of bacterial cell-to-cell communication, Quorum Sensing 
(QS) coordinates and regulates gene expression via the release, detec-
tion, and uptake of small diffusible molecules called autoinducers (AI) in 
a cell-density-dependent manner. QS can occur within a given species of 
bacteria (intraspecies) or among different species (interspecies) and 
regulates several physiological processes such as DNA transfer, expres-
sion of virulence factors, secondary metabolites such as antibiotics, 
motility, and biofilm formation (Mukherjee and Bassler, 2019). Quorum 
sensing systems are very well dissected in several gram-positive and 
gram-negative bacteria. In gram-negative bacteria, N-acyl homoserine 
lactone (AHL), furanosyl borate diester termed autoinducer 2 (AI-2), and 
autoinducer 3 (AI-3) are major autoinducers. Quorum sensing (QS) 

Fig. 1. Key biofilm characteristics that enhance antimicrobial resis-
tance mechanisms.
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regulates several stages of biofilm formation by controlling processes 
like motility, the production of adhesins, extracellular polysaccharides, 
DNA release, and biosurfactants, which collectively aid in both biofilm 
maturation and the release of cells from biofilms in various pathogens 
(Quadriya et al., 2018). Through these regulatory mechanisms, QS en-
hances the structural integrity of biofilms while also facilitating 
detachment and dispersion, which are essential for bacterial survival 
and spread in new environments (Muhammad et al., 2020). The regu-
lation of QS on biofilm formation can be both positive and negative; for 
example, QS represses and induces biofilm in Vibrio cholerae and Vibrio 
anguillarum respectively (Hammer and Bassler, 2003; Croxatto et al., 
2004).

QS plays a critical role in regulating biofilm formation in many 
bacterial species, including Pseudomonas aeruginosa and Staphylococcus 
aureus. P. aeruginosa is a gram-negative bacterium commonly found in 
soil and water, but it can also infect humans. P. aeruginosa uses a com-
plex QS system to regulate its virulence and biofilm formation. The QS 
system in P. aeruginosa involves the production and sensing of multiple 
signaling molecules called acyl-homoserine lactones (AHLs) (Chadha 
et al., 2022). The production of AHLs is regulated by the LasI/R and 
RhlI/R systems, which interact to form a hierarchical network. The LasI/ 
R system is responsible for the production and detection of the AHL 
molecule, 3-oxo-C12-HSL, while the RhlI/R system is responsible for the 
production and detection of the AHL molecule, C4-HSL (Lee and Zhang, 
2015). These two systems work together to regulate the expression of 
genes involved in virulence and biofilm formation. In P. aeruginosa, QS 
regulates the production of extracellular polysaccharides (EPS), which 
are essential for biofilm formation. The LasI/R system is responsible for 
the production of EPS, while the RhlI/R system is responsible for the 
regulation of EPS synthesis (Pearson et al., 1997; Schuster et al., 2023).

S. aureus is a gram-positive bacterium that can colonize human skin 
and mucosal surfaces. It is also an important opportunistic pathogen that 
can cause a range of infections. S. aureus uses a QS system involving the 
production and sensing of autoinducing peptides (AIPs). The production 
of AIPs is regulated by the agr locus, which is a quorum-sensing regu-
lator. The agr locus produces and detects AIPs, which regulate the 
expression of genes involved in virulence and biofilm formation 
(MDowell et al., 2001; Williams et al., 2023). In S. aureus, QS regulates 
the expression of genes involved in biofilm formation, such as icaA, 
which encodes a protein involved in the synthesis of the polysaccharide 
intercellular adhesin (PIA), an important component of the biofilm 

matrix (see Fig. 2).
Quorum sensing development of biofilm occurs in several other 

gram-positive bacteria, such as Bacillus subtilis (Omer Bendori et al., 
2015; Mielich-Suss and Lopez, 2015);; Enterococcus (Hancock and Per-
ego, 2004), and Streptococcus mutans (Jimenez and Federle, 2014). In 
case of gram-negative bacteria, such as Vibrio cholerae, high cell density 
biofilm formation is repressed and at low cell density biofilm formation 
is induced (Hammer and Bassler, 2003; Zhu and Mekalanos, 2003). 
However, for other pathogens such as Acinetobacter spp., use of N-acyl 
homoserine lactone have been shown to induce biofilm formation 
(Anbazhagan et al., 2012). Understanding the molecular mechanisms of 
QS in these organisms may lead to the development of novel strategies 
for controlling biofilm formation and improving the treatment of bac-
terial infections (Gray et al., 2013; Vasquez et al., 2017).

Quorum sensing inhibition as a target to disrupt biofilm 
formation

Targeting quorum sensing is an alternative and effective strategy to 
disrupt biofilm-associated infections and the genetics of quorum sensing 
circuits of several bacterial pathogens have been well characterized. 
Quorum Sensing Inhibitors (QSIs) disrupt bacterial QS and can aid in 
combatting bacterial infections by mitigating virulence without 
imposing selective pressure associated with traditional antibiotics 
(Rasmussen and Givskov, 2006; Vashistha et al., 2023). QSI are neither 
bacteriostatic nor bactericidal agents, their mode of action can vary 
including degradation of auto-inducers, regulating the expression of 
autoinducer synthase or QS receptors (Chen et al., 2018; Shaaban et al., 
2019; Bzdrenga et al., 2017). QSI can interfere with bacterial commu-
nication and prevent the formation of coordinated bacterial commu-
nities, such as biofilms, which are often more resistant to antibiotics and 
host immune responses and will likely increase susceptibility to both the 
host immune response and to antibiotics that are less effective for bac-
teria that have formed a biofilm. Without the ability to communicate 
effectively, bacterial species may become more vulnerable to the host 
immune response, as they are unable to coordinate their defenses and 
evade host immune cells. Additionally, QSI can reduce the production of 
virulence factors and enhance the efficacy of the host immune response, 
leading to better outcomes for the host. Many chemicals have been 
identified that can disrupt quorum sensing in Gram-positive and Gram- 
negative bacterial pathogens. Inhibition of QS pathways permits the use 

Fig. 2. Role of quorum sensing in the regulation of biofilm formation, maturation, and dissemination.

A. Mitra                                                                                                                                                                                                                                           The Cell Surface 12 (2024) 100133 

3 



of lower doses of antibiotics to treat bacterial infections as antibiotics 
might be more effective at lower concentrations in biofilm deficient 
cells. Furthermore, QSI usage is less likely to develop antimicrobial 
resistance as it targets alternative pathways for virulence without the 
use of antibiotics. QS can be blocked at the stage of signal generation, 
transmission, or reception using inhibitors and the use of QSI has 
been shown to disrupt different stages of biofilm formation or the 
expression of virulence factors (see Fig. 3).

It is thought that microbes may have developed mechanisms to 
inhibit QS in response to environmental pressures or to compete with 
other bacterial species. Studies have shown that many bacteria produce 
natural QSI, such as enzymes or small molecules, which can interfere 
with QS systems even in other species. QSI are of interest for their po-
tential applications in developing new antibiotics and anti-biofilm 
agents and thereby could potentially influence the outcome of a clin-
ical condition. The use of QSI is an attractive target for many biofilm- 
associated bacterial infections. Table 1 highlights characteristic 
quorum-sensing inhibitors that disrupt biofilm formation in clinical 
environments while Table 2 lists some mechanisms of quorum 
quenchers targeting biofilm formation in clinical pathogens.

Therapeutic potential of QSI in cystic fibrosis

For the clinical manifestation of QS in clinical biofilms, a very well- 
studied example is Cystic Fibrosis (CF), which affects both children and 
adults. CF is a genetic disorder that affects the respiratory, digestive, and 
reproductive systems. CF is characterized by mucus secretion in the 
respiratory epithelium, leading to colonization of various pathogens in 
the lungs and dysregulation of innate immune functions and inflam-
mation. Biofilm formation is a common feature of bacterial infections in 
the lungs of CF patients and people with CF are more susceptible to 
respiratory infections. QS is known to play a critical role in the forma-
tion and maintenance of biofilms in the lungs of CF patients and dis-
rupting QS has been proposed as a potential therapeutic approach for 
treating CF-associated infections (Bjarnsholt et al., 2009). Common 
pathogens associated with CF include Pseudomonas aeruginosa; Staphy-
lococcus aureus, Burkholderia cepacia complex, Haemophilus influenzae, 
Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Asper-
gillus fumigatus. Associated with chronic infections in the CF lungs, 
Pseudomonas aeruginosa, a resident opportunistic pathogen switches 
from nonmucoid, planktonic cells to alginate-producing mucoidy bio-
films. Key reference strains for cystic fibrosis (CF) include Pseudomonas 

aeruginosa PAO1, a commonly used laboratory reference strain in CF 
research (Salunkhe et al., 2005). These biofilms are difficult to treat as 
they are resistant to various antibiotics such as β-lactams and to the -
host’s innate immune defense mechanism such as the action of macro-
phages. The triggering of this phenotypic switch is likely due to the 
excessive secretion of mucus, which decreases bacterial motility in CF 
patients. Additionally factors such as hypoxia and the release of secreted 
proteins contribute to an apparent increase in the concentration of 
bacterial cells.. Autoinducers 3O-C12-homoserine lactone and C4- 
homoserine lactone have been detected in the sputum of cystic fibrosis 
patients. Several compounds have been identified that can disrupt bio-
film formation. For the treatment of cystic fibrosis, one target is quorum 
sensing mediated biofilm disruption. Small molecule QSI has been 
demonstrated to inhibit biofilm formation of CF- associated bacteria. A 
study found that a synthetic QS-inhibiting compound called N-acyl 
homoserine lactone could inhibit biofilm formation by Pseudomonas 
aeruginosa, which is a common bacterial pathogen in CF patients 
(Malesevic et al., 2019). In Pseudomonas aeruginosa PA14, a compound 
meta-bromo-thiolactone has been identified from a screen of quorum 
sensing dependent production of pyocyanin production, a virulence 
factor. The compound has been found to inhibit both pyocyanin pro-
duction and biofilm formation (O’Loughlin et al., 2013).

Another study found that an AHL analogue, a halogenated furnanone 
inhibits AHL mediated Quorum sensing and affecting biofilm architec-
ture and dispersal in flow chambers (Hentzer et al., 2002). Other studies 
have explored the role of enzymatic QSI such as lactonases to degrade 
QS molecules. Studies have found that the expression of a lactonase 
called SsoPox, from the bacterium Sulfolobus solfataricus, could disrupt 
biofilms formed by Pseudomonas aeruginosa and Burkholderia cen-
ocepacia, which are both common CF pathogens (Ng et al., 2011). Mode 
of action of azithromycin, a macrolide antibiotic is thought to act by 
disruption of quorum sensing (Hoffmann et al., 2007). Other studies 
suggest the use of acidified sodium nitrite to remove mucoid 
P. aeruginosa in CF patients (Major Tiffany et al., 2010). Some studies 
have investigated the use of combination therapies that target both QS 
and other bacterial processes. For example, a study found that a com-
bination of the antibiotic tobramycin and a QS-disrupting molecule, 6- 
gingerol analog, could enhance the efficacy of tobramycin against 
Pseudomonas aeruginosa biofilms (Ham et al., 2021). Another study 
explored the use of combined enzymes with antibiotics to disrupt QS 
pathways and biofilm formation in multiple drug-resistant P aeruginosa 
(Zhang et al., 2023). Such a combination of QSI with antibiotics could 

Fig. 3. Quorum sensing disruption as a strategy to interfere with biofilm-associated infections.
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potentially reduce the emergence of antimicrobial resistance. Bur-
kholderia cepacia complex (BCC) is a group of bacterial pathogens that 
can cause respiratory infections in CF patients. One study found that cis- 
14-methylpentadec-2-enoic acid, a structural analog of Burkholderia 
diffusible signal factor [BDSF]) QS could disrupt BCC biofilms and 
virulence (Cui et al., 2019).

Therapeutic potential of QSI for MRSA and other resistant 
pathogens

Even though Staphylococcus aureus is part of normal flora in humans, 
a large number of infections including skin, respiratory, blood, and soft 
tissue infections are caused by the microbe. Alternative strategies are 
required for infections caused by Methicillin and Vancomycin resistance 
strains of Staphylococcus infections as they are extremely difficult to 
treat, even with broad-spectrum antimicrobial agents. Methicillin- 
resistant Staphylococcus aureus (MRSA) is resistant to multiple antibi-
otics, making it difficult to treat infections caused by this pathogen. It 
can cause a wide variety of infections varying from skin to systemic 
infections leading to bacteremia and sepsis. A quorum sensing system in 
Staphylococcus includes a RNAI activating peptide (RAP) and its 
conserved target protein, TRAP (Balaban et al., 2001). A small linear 
peptide, RIP (RNAIII inhibiting peptide) antagonizes TRAP by inhibiting 

its phosphorylation leading to a reduction in cellular adhesion. Because 
TRAP is conserved among various species of Staphylococcus, RIP could 
potentially block infections caused by MRSA or VRSA. Synthetic RIP is 
active both in vitro and in animal models of infection (Balaban et al., 
2005). A compound, benzylaniline 4 K, downregulated QS-related genes 
and eradicated biofilm formation in MRSA strains (Zhang et al., 2019). 
An antimicrobial peptide LL37 was investigated for both its antibiofilm 
and antimicrobial activity against Methicillin-resistant Staphylococcus 
aureus and Methicillin-sensitive Staphylococcus aureus. The study found 
that quorum sensing and virulence-related genes including atlA; agrA, 
and RNAIII were affected by LL-37 at suboptimal range and the com-
pound inhibited biofilm formation of both MRSA and MSSA (Demirci 
et al., 2022). Analogues of AI-2 have been investigated as potential QSIs 
for MRSA. One study found that a compound called (S)-4,5-dihydroxy- 
2,3-pentanedione (DPD) could inhibit QS and reduce biofilm formation 
in MRSA (Fteita et al., 2018). Aza derivatives of Diflunisal in combi-
nation with or without clindamycin have shown to be effective in 
reducing MRSA infections regulated by quorum sensing mediated agr 
system. One derivative, Azan 7 in particular, demonstrated reduced 
cytotoxicity, did not affect bacterial growth, and reduced expression of 
virulence genes such as agrA, hla, hysA, among others. Besides, the 
compound also repressed hemolysis, improved killing by macrophages 
and reduced survival of pathogen at low pH. In combination with clin-
damycin, Azan 7 improved the susceptibility of MRSA both in planktonic 
and biofilm mode and did not induce resistance (Bernabe et al., 2021). 
Octopromycin, an antimicrobial peptide, can inhibit quorum sensing 
pathways, prevent biofilm formation, and effectively kill resistant 
strains of Acinetobacter baumannii, an opportunistic pathogen 
(Rajapaksha et al., 2023).

Therapeutic potential of QSI in dental caries

The oral cavity is diverse in microbial composition and can fluctuate 
depending on health and disease conditions. Dental caries is a chronic 
infectious disease that causes irreversible demineralization of teeth.

Dental caries is primarily caused by the bacterium Streptococcus 
mutans, which forms biofilms in the mouth. This process involves viru-
lence factors and quorum sensing, likely through the production of 
glucans that aid in colonizing tooth surfaces. Antimicrobial photody-
namic therapy (aPDT) using nano-quercetin in combination with blue 
light has been shown to reduce biofilm formation of S. mutans via 
increased reactive oxygen species generation, reduced metabolic activ-
ity, and inhibition of QS-related genes such as comA, comB, comDE 
among others (Pourhajibagher et al., 2022). Ligustrum robustum extract 
(LRE), a component of herbal tea has been tested for its impact on 
reducing the biofilm formation of S. mutans, which also downregulated 
comD and comE (Zhang et al., 2021). Yet, another study exhibited that 
gecko cathelicidin Gj-CATH2 has been shown to inhibit S. mutans bio-
film formation and also represses quorum sensing genes including luxS 

Table 1 
Representative quorum sensing inhibitors for biofilm disruption in clinical conditions.

Infectious disease or 
infection

Causative 
agent or pathogen

Quorum sensing 
genes

Qurum sensing inhibitors References

Cystic fibrosis Pseudomonas aeruginosa las I, lasR, rhlI, rhlR Dimetridazole or Ribavirin Yuan et al. (2022)
Urinary tract infections Escherichia coli fimA, 

pap A
PPK1 inhibitors Peng et al. (2020)

Implant infections Coagulase-negative staphylococci RNAIII, agr RNA III inhibiting peptide (RIP) de Oliveira et al. (2021)
Dental Caries Streptococcus mutans comA, comB, com DE Antimicrobial photodynamic 

therapy
Pourhajibagher et al. 
(2022)

Nosocomial infections Methicillin-resistant Staphylococcus aureus 
(MRSA)

norA, agrA 
hlyA, hlA

Benzylaniline 4K Zheng et al. (2022)

Wound infections Pseudomonas aeruginosa lasB, rhlA, pqsA Sodium salicylate Gerner et al. (2020)
Periodontitis Porphyromonas gingivalis luxS, rgp, kgp, hagB Coumarin He et al. (2022)
Skin infection Chromobacterium violaceum cviR Imidazole derivaties Arendse et al. (2022)
Luminescent vibriosis Vibrio campbellii luxR, 

pl-1, pl-2, pl-3
Sodium Ascorbate Han et al. (2020)

Table 2 
Representative mechanisms of quorum quenchers targeting biofilm formation in 
clinical pathogens.

Pathogen Quorum 
quencher

Effect on biofilms References

Pseudomonas 
aeruginosa

Chlorogenic 
acid

Reduces pyocyanin and 
elastase production

Xu et al. (2022)

Escherichia coli Ginkgetin 
(Gin)

Reduces expression of 
curli, flagella, 
exopolysaccharide 
production

Bai et al. (2022)

Salmonella 
typhimurium

Terazosin Downregulates sdiA 
gene encoding QS 
receptor

Hegazy et al. 
(2022)

Staphylococcus 
aureus

Terpenes 
combination

Reduced expression of 
agr (accessory gene 
regulator), and hld 
encoding hemolysin

Salinas et al. 
(2022)

Klebsiella 
pneumoniae

Silver 
nanoparticles

Downregulates mrkA, 
encoding type 3 
fimbriae and luxS gene

Foroohimanjili 
et al. (2020)

Acinetobacter 
baumanii

Nervonic acid 
and oleic acid

Binds to 
acylhomoserine lactone 
synthase

Khadke et al. 
(2021)

Multi-drug 
resistant 
Pseudomonas 
aeruginosa

Methanol 
extract of 
E. globulus 
leaves

Regulates swarming, 
and exopolysaccharide 
synthesis

Sagar et al. 
(2022)
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and comD/E. Rhodiola rosea extract (RE) was found to be effective in 
reducing biofilm formation, and EPS synthesis with reduced expression 
of quorum sensing and virulence-related genes in S. mutans (Zhang et al., 
2020). Relapse of dormant persisters of S. mutans is thought to be crucial 
for recurrent infections or developing resistance and has been studied in 
the presence of novel quaternary ammonium: dimethylaminododecyl 
methacrylate (DMADDM). The resumption of persisters in the presence 
of a lethal dose of DMADDM via induction of quorum sensing and VicRK 
pathways and hence such pathways could also serve as potential targets 
for the pathogen (Lu et al., 2019). A quorum sensing inhibitor, furanone 
C-30, inhibits biofilm formation in both S. mutans and its luxS mutant 
strain, without affecting its growth (He et al., 2012).

Therapeutic potential of QSI for infections of indwelling medical 
devices

In clinical settings, implanted medical devices such as indwelling and 
urinary catheters provide surfaces for microbes to adhere and form 
biofilms. Hence, therapeutic approaches for reduction of infections 
associated with implanted medical devices include steps to minimize 
biofilm formation. Novel Thiazolinyl-picolinamide based palladium(II) 
complexes are effective against biofilm formation and quorum sensing 
processes such as pilli and exopolysaccharide production in Acenito-
bacter baumanii. Such coating could offer protection against various 
pathogens by inhibiting of biofilm formation and reducing infections on 
the surfaces of implants (Jothipandiyan et al., 2022). Another study 
investigated the combination of photothermal therapy with quorum 
sensing inhibition strategy as a modification of a Ti-based implant sur-
face to reduce biofilm formation in medical settings (Hu et al., 2022). A 
combination of nanorods responsive to near-infrared laser, QSI, and ROS 
has been shown to reduce S. aureus biofilms rapidly from Titanium 
surfaces at a moderate temperature of 45 ◦C (Zhang et al., 2021). 
Nanofibers have also been incorporated with antibiofilm compounds 
such as PLGA, which was effective in BALB-C mice (Geremias et al., 
2021). Flufenamic acid, a nonsteroidal anti-inflammatory drug, also 
inhibited the quorum sensing genes and biofilm formation of MRSA and 
improved local MRSA infections in mice. The drug also acted synergis-
tically with oxacillin and exhibited reduced resistance and could serve as 
useful coating on implants (Zhang et al., 2020). A QSI has been 
demonstrated to reduce biofilm formation by Streptococcus pneumoniae 
and highly efficacious in minimizing infection or otitis media in guin-
eapigs (Cevizci et al., 2015). Perillaldehyde, a flavoring agent, inhibited 
biofilm formation of a common catheter-associated pathogen, Pseudo-
monas aeruginosa, via disruption of quorum sensing systems, possibly by 
binding to QS receptors (Benny et al., 2022). Indole extract from 
rhizobium Enterobacter sp. Zch127 inhibits biofilm formation by Pro-
teus mirabilis, a common cause of catheter-associated urinary tract in-
fections. The extract also down-regulated swarming activity and quorum 
sensing genes, luxS at sub-minimum inhibitory concentrations, and 
exhibited reduced toxicity in human fibroblasts (Amer et al., 2022). 
Using scanning electron microscopy, the role of RNAIII inhibiting pep-
tide, a peptide that phosphorylates TRAP and interferes with the QS 
system of Staphylococcus spp., was investigated (de Oliveira et al., 
2021). When grown in the presence of the peptide on catheter surfaces, 
biofilm formation is significantly impaired in coagulase-negative 
Staphylococci (de Oliveira et al., 2021). Quercitin in combination with 
commonly used antibiotics could inhibit quorum sensing and subse-
quently impair biofilm formation in Pseudomonas aeruginosa (Vipin 
et al., 2020).

Therapeutic potential of QSI in wound infections

Chronic wounds are difficult to heal due to the persistence of bac-
teria within biofilms. Targeting of biofilms within wounds by disruption 
of quorum sensing can speed up the recovery and healing of wound 
infections. Such an approach can also reduce the incidences of 

antimicrobial resistance. Furanone C-30, a QS-disrupting compound, 
significantly reduced quorum sensing gene expression in Pseudomonas 
aeruginosa and disrupted its biofilms in vitro and in a mouse model of 
infected wounds, resulting in improved healing (Proctor et al., 2020). A 
heterologously expressed lactonase targeting AHL-mediated QS in 
Gram-negative bacteria inhibited biofilm formation of Pseudomonas 
aeruginosa PAO1 and multidrug-resistant clinical strains. When a lacto-
nase lactonase-expressing strain was combined with Tobramycin or 
Gentamycin, the survival of the zebrafish post-infection with the PAO1 
strain improved greatly (Djokic et al., 2022). Sodium salicylate reduces 
the expression of QS genes including lasB; rhlA, and pqsA, and other 
virulence factors in P. aeruginosa, however, presence of serum increased 
expression of QS-related genes and decreased biofilm formation (Gerner 
et al., 2020). Sodium salicylate, in the presence of silver, significantly 
inhibits the biofilm formation of P. aeruginosa, a bacterium that hinders 
wound healing. This combination could effectively target quorum 
sensing and treat wound infection (Gerner et al., 2021). Diabetic foot 
infections are chronic wound infections caused by a commonly occur-
ring pathogen, P. aeruginosa. Hypertonic glucose reduced expression of 
QS-related genes such as lasI and lasR and reduced swimming motility, 
growth, and biofilm formation in multi-drug resistant strain of 
P. aeruginosa, PAO1. Besides, the administration of hypertonic glucose 
also facilitated the survival of Galleria mellonella larvae infected with 
P. aeruginosa which suggested the potential use of hypertonic glucose for 
the treatment of chronic wound infections (Chen et al., 2020). A wireless 
electroceutical dressing (WED) model, which generates a weak electrical 
field, was evaluated for the treatment of polymicrobial infections caused 
by P. aeruginosa and A. baumanni and its potential use as a wound 
dressing. WED was found to disrupt biofilm formation in wounds as 
evident by scanning electron microscopy, accelerated wound healing 
and disrupted QS genes including pqsR, rhlR, and lasR and E-cadherin 
silencing and opened the possibility of using electroceuticals for treat-
ment of wound infections (Barki et al., 2019).

Discussions

As biofilms are resistant to many antibiotics, an alternative thera-
peutic approach is required to combat biofilm-mediated infections. 
Because biofilm formation requires quorum sensing-dependent regula-
tion in certain clinical pathogens, targeting QS is increasingly becoming 
an attractive choice for those pathogens. Since there is very little se-
lective pressure from the QSI, they are less likely to develop resistance. 
While several QSI appear effective in vitro, very few have been tested in 
vivo, and only a limited number of candidates have shown promise in 
animal models.. A number of clinical trials have been conducted to 
assess the efficacy of QSI; however, much work remains to be done in 
this area.Inhibition of quorum sensing may have an insignificant effect 
on the infectivity of certain pathogens; however, for others, disruption 
of QS systems can increase their virulence.. Combined use of genomics, 
metagenomics, and other approaches can help identify newer targets, 
which can facilitate designing novel antimicrobials. QSI alone or in 
combination with antimicrobials might be used together to target 
different QS in different bacterial pathogens causing infectious diseases 
in clinical settings.
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