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Abstract

This paper studies optimal treatment allocations for two treatment comparisons when the

outcome is ordinal and analyzed by a proportional odds cumulative logits model. The vari-

ance of the treatment effect estimator is used as optimality criterion. The optimal design is

sought so that this variance is minimal for a given total sample size or a given budget, mean-

ing that the power for the test on treatment effect is maximal, or it is sought so that a required

power level is achieved at a minimal total sample size or budget. Results are presented for

three, five and seven ordered response categories, three treatment effect sizes and a

skewed, bell-shaped or polarized distribution of the response probabilities. The optimal pro-

portion subjects in the intervention condition decreases with the number of response cate-

gories and the costs for the intervention relative to those for the control. The relation

between the optimal proportion and effect size depends on the distribution of the response

probabilities. The widely used balanced design is not always the most efficient; its efficiency

as compared to the optimal design decreases with increasing cost ratio. The optimal design

is highly robust to misspecification of the response probabilities and treatment effect size.

The optimal design methodology is illustrated using two pharmaceutical examples. A Shiny

app is available to find the optimal treatment allocation, to evaluate the efficiency of the bal-

anced design and to study the relation between budget or sample size and power.

Introduction

The randomized controlled trial is considered the gold standard for the comparison of multi-

ple treatment conditions [1,2]. An important question while planning a trial is how many sub-

jects should be allocated to each of the treatment groups. Most clinical trials use a balanced

design so that treatment groups are of equal size. The main reason is that such a design often

maximizes statistical power. Furthermore, it is consistent with the view of clinical equipoise

that must exist before the start of the trial [3]. However, since long has it been known a bal-

anced design is not necessarily the best choice, especially so when variances and/or costs vary

across treatment conditions [4]. From a statistical point of view it is often more efficient to

assign more subjects to the condition with lowest costs and highest variance.

Over the past two decades the literature on optimal treatment allocations has grown. For a

quantitative outcome variable attention has been paid to two treatment comparisons [5–7]
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and comparisons of more than two treatments [3,8–11]. In addition, optimal allocations have

been studied for cluster randomized trials [12–16] and other trials with clustered data [17–20].

Optimal treatment allocations have also been studied for binary outcome variables, including

two treatment comparisons [21–23], comparisons of more than two treatments [24–26] and 2k fac-

torial designs [27]. Attention has also been paid to two treatment comparisons in cluster random-

ized trials [28], and trials with partially nested data [29] and to survival analysis models [30–32].

The derivation of optimal treatment allocations has gained less attention for trials with

ordinal outcomes, while this type of outcome is omnipresent in the biomedical and social and

behavioral sciences. Consider as an example a trial that compared different methods to treat

schizophrenia [33]. The outcome was ordinal with four categories: normal, mildly or moder-

ately ill, markedly ill, and severely ill. Another example is a trial that compared different drugs

for the treatment of trauma. The outcome describes the clinical outcome: death, vegetable

state, major disability, minor disability and good recovery [34]. Only two papers study optimal

treatment allocations for ordinal outcomes [35,36]. Both of them focus on D-optimality,

meaning the optimal treatment allocation minimizes the volume of the confidence ellipsoid of

all parameter estimates. Ordinal data are often analyzed using an ordinal logistic model; the

parameters of this model are the thresholds, treatment effect and eventually effects of predic-

tive covariates. Thresholds are parameters that separate the ordinal categories; they are often

not of primary interest. The treatment effect quantifies the difference between the treatments

in term of their logits; this parameter is often of primary interest, so optimal designs that solely

focus on the treatment effect are also of importance. An obvious optimality criterion is to min-

imize the variance of the treatment effect estimator, so that the optimal treatment allocation

results in the most efficient design with respect to the treatment effect, and hence highest

power for the test on treatment effect. This optimality criterion was indeed used in most of the

previously cited references on optimal designs for quantitative or binary outcomes. The rela-

tion between sample size and power for a given treatment allocation has been studied previ-

ously [37], but attention has not been paid on the optimal treatment allocation.

The aim of this contribution is to study optimal treatment allocations for trials with ordinal

outcomes. A restriction is made to two treatment conditions; both may be active treatments,

or the one may be an active treatment and the other a placebo. This paper assumes propor-

tional odds, meaning that the treatment effect size is constant across the cumulative logits of

the ordinal logistic model. This assumption will be further explained in the next section. The

focus is on the design that results in the most efficient estimate of the treatment effect. The

optimal design is sought so that minimum variance, and hence maximum power, is achieved

for a given total sample size or given budget. The effects of the number of categories, response

probabilities across categories, treatment effect size and costs on the optimal allocation are

explored. In addition, the efficiency of the balanced design as compared to the optimal design

is discussed. Furthermore, the robustness of the optimal design against misspecification of the

model parameters is evaluated. A Shiny App is made available for calculating the optimal treat-

ment allocation for three to seven categories and for evaluating the efficiency of alternative

allocations. This app also shows the effect of misspecification of the true value of the treatment

effect and shows the relation between power and budget. The optimal design methodology is

illustrated on the basis of two illustrative examples.

Method

Statistical model

The proportional odds ordinal logistic model is an extension of the logistic model for binary

outcomes and is described in full detail elsewhere [38–40]. The outcome variable Yi of subject
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i = 1,. . .,N is ordinal with categories c1,. . .,cJ and related probabilities πj = p(Yi = j) with
PJ

j pj ¼ 1. The J−1 non-redundant cumulative probabilities p�
1
; . . . ; p�j� 1

are defined as p�j ¼

pðYi � jÞ and for each of these a logistic regression model is formulated

log
p�j

1 � p�j

 !

¼ Zj ¼ gj þ x0ibj: ð1Þ

The thresholds γj are ordered such that −1<γ1<� � �<γJ−1<1. The predictor xi is the treat-

ment dummy with value 0 for the control and value 1 for the intervention and βj is the vector

of associated effects. The proportional odds assumption states that these effects are the same

for all cumulative logits: βj = β8j. So instead of estimating J−1 treatment effects, one common

treatment effect is estimated. Hence, the proportional odds model is a more parsimonious

model than the non-proportional odds model, especially so when the number of categories is

large. The proportional odds assumption can be tested by means of the Brant test [41].

The model parameters θ0 = (γ1, γ2,. . .,γJ−1, β) can be estimated by means of maximum likeli-

hood estimation, for further details see Glonek and McCullogh [42]. The associated covariance

matrix covðŷÞ plays an important role in the derivation of the optimal design. An asymptotic

approximation is calculated from the inverse of the Fisher information matrix F, with

F ¼ nCFC þ nIFI; ð2Þ

where nC and FC are the sample size and Fisher information matrix for the control and nI and

FI are those for the intervention. The appendix explains how the matrices FC and FI are calcu-

lated as a function of the response probabilities.

Derivation of the optimal treatment allocation

Optimal design methodology is used to derive the optimal allocation to treatments [43–45]. In

this contribution the optimal allocation is sought under the condition

minimize varðb̂Þ: ð3Þ

To find the optimal allocation ratio, a constraint must be used, such as a budgetary constraint.

The costs of enrolling, treating and measuring subjects may not exceed some pre-defined bud-

get B. This constraint is formulated as cCnC+cInI�B, where nC and nI are the number of sub-

jects in the control and intervention condition and cC and cI are the costs per subject in these

two treatments. These costs include incentives, costs for recruitment, treatment and measure-

ment, and may vary across the two treatments. Values of these costs should be available before

the optimal design is derived. If there exists doubt on some of these values, then the most plau-

sible value (based on similar studies in the past or the literature) may be used.

A special case of the constraint is when cC = cI = 1 and B is replaced by N. In that case the

optimal design is sought under a fixed total sample size N: nC+nI = N. This constraint is rele-

vant when treatments for a rare disease are compared and only a limited number of subjects

can be enrolled in the trial.

The optimal design p�2(0,1) is the optimal proportion of subjects in the intervention condi-

tion. It is found numerically as follows: for any proportion p in the interval (0,1) the sample

sizes nC and nI are calculated from the budgetary constraint. Note that these sample sizes are

not necessarily integers. These sample sizes are plugged in the Fisher information matrix F
from equation (2) and the value of the optimality criterion is calculated. The optimal design is

the one with the smallest value on the optimality criterion. It can be shown not to depend on

the budget B or total sample size N. In the remainder of this paper a step size of 0.01 for the
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proportion is used to find the optimal design. As the optimal design is expressed in terms of a

proportion, the optimal design is a so-called continuous or approximate optimal design. For

implementation, the optimal design has to be expressed in terms of the sample sizes in both

conditions, a so-called discrete or exact optimal design. Exact designs are often difficult to

find. In practice, the exact optimal design is approximated by calculating nI = p�N and round-

ing to the nearest integer value and calculating nC = N−nI.
Note that it is also possible to minimize the budget (or total sample size) so that a certain

value for the variance of the treatment effect estimator, and hence a certain power for the test

on treatment effect, is achieved. This will result in the same optimal proportion p� as when the

variance is minimized given a fixed budget B (or total sample size N).

The performance of all other designs p as compared to the optimal design p� can be

expressed in terms of their efficiencies. The efficiency of a design is calculated as

Eff ¼
varðb̂Þp¼p�
varðb̂Þp¼p

: ð4Þ

The efficiency varies between 0 and 1; high values such as 0.8 or 0.9 are generally preferred.

A Shiny App is available to help the reader find the optimal allocation for a specific study at

hand and to evaluate the efficiency of other designs, including the balanced design. It considers

three to seven ordered response categories (https://utrecht-university.shinyapps.io/OD_

Ordinal/). The Shiny App also shows the relation between the power for the test on treatment

effect and the budget, for both the optimal design and the balanced design. This graph shows

what power level can be obtained for a given budget, or how large the budget should be to

achieve a certain desired power level. To derive the optimal design a prior estimate of the treat-

ment effect size must be given. The robustness graph shows how well the optimal design per-

forms if this prior estimate is different from the population value. The code for this Shiny App

is available at https://github.com/MirjamMoerbeek/OD_Ordinal.

Results

Optimal treatment allocations

This subsection shows how the number of response categories, the response probabilities in these

categories, the treatment effect size and constraint influence the optimal allocation. Results are

presented for three, five or seven categories. The response probabilities in the control condition

are the same as those in Bauer and Sterba [46] and are depicted in Fig 1. Three distributions are

taken into account: bell-shaped, skewed and polarized. The probabilities in the intervention follow

from a proportional odds model with a treatment effect size (expressed as an odds ratio: OR = eβ)
of 1.68, 3.47 and 6.71, which are small, medium and large effect sizes [47]. A fixed total sample

size is used (i.e. cI/cC = 1), as well as a budgetary constraint with cost ratios cI/cC = 2 and 5.

Tables 1–3 present the optimal proportion of subjects in the intervention and the efficiency

of the balanced design for three, five and seven response categories, respectively. The following

findings are observed with respect to the optimal proportion:

• For the polarized distribution the optimal proportion increases with increasing effect size,

especially so for small number of categories. For the other two distributions the relation is

either absent or slightly decreasing.

• The optimal proportion decreases when the cost ratio increases. This implies the optimal

proportion for a fixed total sample size (i.e. cI/cC = 1) is larger than for a fixed budget (i.e. cI/
cC>1).
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• For the polarized distribution the optimal proportion decreases with increasing number of

categories. For the other two distributions the relation is absent

• The optimal proportion depends on the distribution of the response probabilities. It is high-

est for the polarized distribution.

Fig 1. Response probabilities in the control condition.

https://doi.org/10.1371/journal.pone.0250119.g001
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For a fixed total sample size the optimal proportion for the bell-shaped and skewed distri-

bution is most often near 0.5 and the efficiency of the balanced design is higher than 0.95. For

cost ratios cI/cC = 2 and 5 the optimal proportion of subjects in the intervention is almost

always less than 0.5. The further the optimal proportion is away from 0.5, the lower the effi-

ciency of the balanced design. This efficiency is always larger than 0.8 for the chosen cost

ratios. However, for larger cost ratios the efficiency further decreases. For instance, cI/cC = 20

it is equal to 0.71 for a bell-shaped distribution with three categories and a small effect size. It

can thus be concluded that the balanced design is not always the best choice.

Table 1. Optimal proportion of subjects in the intervention [efficiency of the balanced design] for three response

categories.

cost ratio = 1a

OR bell-shaped skewed polarized

1.68 0.50 [1.00] 0.49 [1.00] 0.52 [1.00]

3.47 0.50 [1.00] 0.50 [1.00] 0.56 [0.99]

6.71 0.50 [1.00] 0.50 [1.00] 0.67 [0.96]

cost ratio = 2

OR bell-shaped skewed polarized

1.68 0.41 [0.97] 0.41 [0.97] 0.43 [0.98]

3.47 0.40 [0.97] 0.40 [0.97] 0.47 [1.00]

6.71 0.40 [0.96] 0.41 [0.97] 0.52 [1.00]

cost ratio = 5

OR bell-shaped skewed polarized

1.68 0.31 [0.87] 0.30 [0.86] 0.32 [0.89]

3.47 0.29 [0.86] 0.29 [0.86] 0.36 [0.94]

6.71 0.28 [0.85] 0.29 [0.86] 0.41 [0.98]

aCost ratio = 1 implies a fixed total sample size.

https://doi.org/10.1371/journal.pone.0250119.t001

Table 2. Optimal proportion of subjects in the intervention [efficiency of the balanced design] for five response

categories.

cost ratio = 1a

OR bell-shaped skewed polarized

1.68 0.50 [1.00] 0.50 [1.00] 0.51 [1.00]

3.47 0.50 [1.00] 0.50 [1.00] 0.53 [1.00]

6.71 0.50 [1.00] 0.50 [1.00] 0.56 [0.99]

cost ratio = 2

OR bell-shaped skewed polarized

1.68 0.41 [0.97] 0.41 [0.97] 0.42 [0.97]

3.47 0.41 [0.97] 0.41 [0.97] 0.44 [0.99]

6.71 0.40 [0.97] 0.40 [0.97] 0.47 [1.00]

cost ratio = 5

OR bell-shaped skewed polarized

1.68 0.31 [0.87] 0.30 [0.87] 0.31 [0.88]

3.47 0.30 [0.86] 0.29 [0.86] 0.33 [0.90]

6.71 0.28 [0.85] 0.28 [0.85] 0.35 [0.93]

aCost ratio = 1 implies a fixed total sample size.

https://doi.org/10.1371/journal.pone.0250119.t002
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Robustness of the locally optimal designs

For any combination of the number of response categories and cost ratio, the optimal propor-

tions in Tables 1–3 are locally optimal, meaning that they depend on the parameters of the

ordinal logistic model: the thresholds (i.e. distribution of response probabilities) and treatment

effect size [48]. For any cost ratio and number of categories, the optimal proportions for the

bell-shaped and skewed distributions are rather similar and they show a weak or absent rela-

tion with the effect size. The optimal proportions for the polarized distribution are most often

different from those of the other two distributions and are stronger related with the effect size.

To calculate the optimal design one must specify the response probabilities in each of the

categories, along with the treatment effect size. Prior estimates can be obtained from an

expert’s knowledge or expectations, the literature or a pilot study. However, there is always a

risk these prior estimates are incorrect, meaning they are different from the population values.

It is therefore important to assess the robustness of the locally optimal design against a misspe-

cification of the prior estimates of the model parameters. For each combination of distribution

of response probabilities and treatment effect size the efficiency of the optimal design was cal-

culated for any other such combination. In other words, it was studied how well the optimal

design for an incorrect prior estimate of these model parameters performs under the true pop-

ulation values of model parameters. Almost all optimal designs in Tables 1–3 have an efficiency

of at least 0.9 for the other eight combinations of distribution of response probabilities and

effect size. Only one of them has an efficiency that is lower than 0.9, but still above 0.85. It is

the optimal design sought under a fixed total sample size, for the polarized distribution with

three categories and OR = 6.71. The efficiency of this design is 0.88 or 0.89 in the case the dis-

tribution is bell-shaped or skewed with OR = 1.68 or OR = 3.47. In general it can be concluded

that the locally optimal designs are highly robust with respect to misspecification of the model

parameters.

For any study, the robustness graph in the Shiny app can be used to evaluate the robustness

of an optimal design based on a prior estimate of the effect size if the population value is differ-

ent from this prior estimate.

Table 3. Optimal proportion of subjects in the intervention [efficiency of the balanced design] for seven response

categories.

cost ratio = 1a

OR bell-shaped skewed polarized

1.68 0.50 [1.00] 0.50 [1.00] 0.50 [1.00]

3.47 0.50 [1.00] 0.50 [1.00] 0.52 [1.00]

6.71 0.50 [1.00] 0.50 [1.00] 0.54 [1.00]

cost ratio = 2

OR bell-shaped skewed polarized

1.68 0.41 [0.97] 0.41 [0.97] 0.42 [0.97]

3.47 0.41 [0.97] 0.41 [0.97] 0.42 [0.98]

6.71 0.40 [0.97] 0.40 [0.97] 0.44 [0.99]

cost ratio = 5

OR bell-shaped skewed polarized

1.68 0.31 [0.87] 0.31 [0.87] 0.31 [0.88]

3.47 0.29 [0.86] 0.29 [0.86] 0.31 [0.88]

6.71 0.28 [0.85] 0.28 [0.85] 0.33 [0.91]

aCost ratio = 1 implies a fixed total sample size.

https://doi.org/10.1371/journal.pone.0250119.t003
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Illustrative examples

Example 1: Treatment for schizophrenia

The psychiatric example in section 10.3 of Hedeker and Gibbons [33] uses data from the

National Institute of Mental Health Schizophrenia Collaborative Study. In this trial 108 schizo-

phrenic patients were randomized to placebo and 329 to anti-psychotic drug. The drug group

consisted of three different drugs, but since previous analyses revealed similar effects these

drug groups were combined. The outcome ‘severity of illness’ was categorized into four

ordered categories: normal, mildly or moderately ill, markedly ill, and severely ill. At baseline

there were no differences between the two treatment groups with respect to the outcome

(b̂ ¼ � 0:09; p ¼ 0:406; OR ¼ 0:92). Three weeks after baseline the outcome was observed

on 87 patients in the placebo condition and 287 in the drug condition. A proportional odds

model showed the effect of condition was significant (b̂ ¼ 1:217; p < 0:001; OR ¼ 3:377).

The estimated thresholds were ðĝ1; ĝ2; ĝ3Þ ¼ ð� 2:79; � 0:96; 0:52Þ, which corresponds to

probabilities in the control (p1, p2, p3, p4) = (0.06,0.22,0.35,0.37). The estimated probabilities in

both conditions are shown in Fig 2; better results are observed in the drug group. The Brant

test shows the proportional odds assumption is not violated (χ2 = 3.13, df = 2, p = 0.21).

Suppose this trial is to be replicated such that the power for any given sample size is maxi-

mized. A relevant question is whether a design with an equal number of subjects per treatment

condition is the most efficient. The design is locally optimal and the parameter estimates as

given above are used to derive the optimal design. Fig 3 shows the efficiencies as a function of

the proportion of patients in the drug condition. The optimal proportion is p� = 0.50, which

implies the optimal design is the balanced design. This optimal design is highly robustness to

an incorrect prior guess of the treatment effect: for any population value of the treatment effect

in the range OR = [0.1,10] its efficiency is at least 0.96.

A relevant question is how large the sample size should be to detect at treatment effect of

size β = 1.217 with a power level of 0.8 in a test with type I error rate of 0.05 and a one-sided

alternative hypothesis. Fig 4 shows the relation between total sample size and power. The total

sample size can be calculated to be 61, which is much lower than in the original study.

Example 2: Treatment for trauma

This example uses data from Chuang-Stein and Agresti [34]. Five ordered categories describe

the clinical outcome of patients who experienced trauma: death, vegetable state, major disabil-

ity, minor disability and good recovery. These are often called the Glasgow Outcome Scale.

There were four treatment groups based on the dose level of the investigational medication:

placebo (n = 210), low dose (n = 190), medium dose (n = 207) and high dose (n = 195).

Suppose this trial has to be replicated and interest is in the comparison of placebo versus

medium dose. A proportional odds model shows the estimated treatment effect is of small size

and insignificant at a ¼ 0:05 ðb̂ ¼ � 0:324; p ¼ 0:064; OR ¼ 0:723Þ. The estimated thresh-

olds are ðĝ1; ĝ2; ĝ3; ĝ4Þ ¼ ð� 0:95; � 0:50; 0:49; 1:90Þ, which corresponds to probabilities in

the control (p1, p2, p3, p4, p5) = (0.28,0.10,0.24,0.25,0.13). The estimated probabilities in both

conditions are shown in Fig 5; more favorable results are observed in the drug group. The pro-

portional odds assumption is not violated (Brant test: χ2 = 4.86, df = 3, p = 0.18).

In the derivation of the optimal design we assume differential costs across the two treat-

ments, with a cost ratio cI/cC = 2.5. The estimated treatment effect and thresholds are used to

derive the locally optimal design. Fig 6 shows the efficiency plot. The optimal proportion of

subjects in the medium dose drug condition is p� = 0.39 and the efficiency of the balanced

design is 0.95. The balanced design is highly efficient but not the best choice. The optimal
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design is highly robust to an incorrect prior estimate of the treatment effect size. For any popu-

lation value of the treatment effect in the range OR = [0.1,10] it has an efficiency of at least

0.99.

Fig 7 shows the relation between budget and the power to detect a treatment effect of β =

−0.324 in a one-sided test with a type I error rate of 0.05. The costs are scaled so that c1 = 1; in

other words, the budget is expressed in terms of the costs per subject in the control condition.

Fig 2. Estimated probabilities in the placebo and drug condition for the schizophrenia example.

https://doi.org/10.1371/journal.pone.0250119.g002
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To achieve a power of 0.8 for the test on treatment effect at a type I error rate of 0.05 and a one

sided alternative a budget of B = 1262 is needed. The corresponding total sample size is 796,

which is almost twice as high as in the original study.

Conclusions and discussion

This study provides methodology and a Shiny app to calculate the optimal treatment allocation

in a trial with two treatment conditions and ordinal outcomes. The optimal design minimizes

the variance of the treatment effect estimator, so that the power for the test on treatment effect

Fig 3. Efficiency graph for the schizophrenia example.

https://doi.org/10.1371/journal.pone.0250119.g003
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is maximized. The optimal design is sought under a budgetary constraint, of which a fixed

total sample size is a special case.

In general the optimal proportion subjects in the intervention condition decreases with the

cost ratio. For the polarized distribution the optimal proportion increases with increasing

effect size and decreases with increasing number of response categories, while for the other

two distributions these relations are decreasing or absent. Furthermore, the optimal propor-

tion depends on the distribution of response probabilities: it is highest for the polarized distri-

bution. However, the optimal design is highly robust with respect to misspecification of the

Fig 4. Power graph for the schizophrenia example.

https://doi.org/10.1371/journal.pone.0250119.g004
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parameters of the ordinal logistic model, hence it is not considered necessary to implement

robust optimal designs, such as a maximin optimal design. The widely used balanced design

has a high efficiency in the case the total sample size is fixed. However, its efficiency declines

when the cost ratio increases. It can therefore be concluded the balanced design is not neces-

sarily the best choice. These findings are also illustrated by the two examples. In the first a

fixed total sample size was used as a constraint. The balanced design turned out to be the opti-

mal design. In the second a budgetary constraint was used, resulting in a loss of efficiency of

the balanced design.

The methodology in this paper can also be used if two naturally existing groups are to be

compared on some ordinal outcome, such as males and females or smokers and non-smokers.

In some studies the number of subjects in one of the groups may be small, for instance the

number of subjects suffering from a rare disease. It may occur fewer of such subjects can be

enrolled in the trial than dictated by the optimal design. In that case the thus unused part of

the budget may be spend on sampling more subjects in the other group. The Shiny app may be

used to evaluate the efficiency of such a sub-optimal design.

The optimal designs as presented in this paper are based on a model that uses cumulative

logits: the probability of a response category and all previous categories is compared to the

probability of all subsequent response categories. There exist other types of logit models for

ordinal response variables, see section 3.1 and chapter 4 in Agresti [39]. The adjacent-catego-

ries logits are the log odds for pairs of adjacent variables: the probability of a response category

is compared to the probability of the subsequent response category. The choice between cumu-

lative and adjacent categories is based on whether one wants to refer to individual response

categories or groupings of response categories that use the entire scale of response categories.

The advantage of the cumulative logit model is that its effect estimates are approximately

Fig 5. Estimated probabilities in the placebi and medium dose group in the trauma example.

https://doi.org/10.1371/journal.pone.0250119.g005
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invariant to the choice and number of response categories. The continuation-ratio logits are

calculated from the probability of a response category against either all higher categories or all

lower categories. Such a model is useful when the ordinal response outcome is determined by

a sequential process, such as different cancer stages or developmental stages. A special applica-

tion is discrete-time survival analysis, where the time variable is discretized into a number of

coarse intervals. The hazard probability of experiencing some event in a particular time inter-

val is conditional on not having experienced the event in any previous intervals. Optimal

designs for discrete-time survival analysis have been presented previously [32].

Fig 6. Efficiency graph for the trauma example.

https://doi.org/10.1371/journal.pone.0250119.g006
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Future work may focus on the derivation of optimal treatment allocations for extensions to

model (1). One such extension are factorial designs, for instance for evaluating pharmaceutical

and behavioral interventions simultaneously. Another extension may focus on one treatment

factor with more than two levels, for instance a placebo versus different types of drugs. Atten-

tion should also be paid to the non-proportional odds model, where the effect of treatment

may vary across the cumulative logits. This implies J−1, rather than one single, treatment

effects should be estimated, and this should be reflected in the optimality criteria. It may be

then relevant to focus on a multiple-objective optimal design, where optimality criteria are

Fig 7. Power graph for the trauma example.

https://doi.org/10.1371/journal.pone.0250119.g007
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ordered with respect to their relative importance. For instance, estimating the effect of treat-

ment on the first cumulative logit, that separates the category “death” from all other categories,

may be considered more important than the treatment effects on all other cumulative logits. It

may also be of interest to study the robustness of the optimal designs as derived under the pro-

portional-odds assumption against violation of this assumption. Other extensions include tri-

als with nested data, such as cluster randomized trials and trials with partially nested data. An

example of the latter is a trial with nesting of subjects within therapists in the psychotherapy

condition and no nesting in the wait list control. Finally, the effect of predictive covariates on

the optimal design should be studied.

For all these extensions it may turn out the locally optimal design is not robust against mis-

specification of the model parameters. In such cases one may derive a robust optimal design,

such as a maximin design [23]. The optimal design is calculated for each combination of plau-

sible values of the model parameters. Next, the efficiency of each other design as compared to

the optimal design is computed. Finally, for each design the minimal efficiency is selected and

the maximin optimal design is the one with the highest minimal efficiency. Instead of using a

range of plausible values of model parameters, one may also specify a prior distribution to cal-

culate a Bayesian optimal design [49]. An alternative is the use of an internal pilot [50]. The

optimal design is first calculated based on a priori estimates of the model parameters. A pro-

portion of the budget or total sample size is then used and pilot data are collected. The model

is then fitted to the data and the estimates of the model parameters are used to re-calculate the

optimal design. Finally all data, including those from the internal pilot, are analyzed and the

effect of treatment is estimated. It may be clear this approach is especially suitable for trials

with short duration.

In summary, this paper has provided optimal allocations for two treatment comparisons

when the response variable is ordinal and modelled using a proportional odds cumulative

logits model. The Shiny app enables researchers to find the optimal allocation for their trial,

and to evaluate the efficiency of alternative designs, including the balanced design.
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