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Abstract: In this paper, by introducing a generalized quantum-kinetic model which is coupled
self-consistently with Maxwell and Boltzmann transport equations, we elucidate the significance of
using input from first-principles band-structure computations for an accurate description of ultra-fast
dephasing and scattering dynamics of electrons in graphene. In particular, we start with the tight-
binding model (TBM) for calculating band structures of solid covalent crystals based on localized
Wannier orbital functions, where the employed hopping integrals in TBM have been parameterized
for various covalent bonds. After that, the general TBM formalism has been applied to graphene
to obtain both band structures and wave functions of electrons beyond the regime of effective low-
energy theory. As a specific example, these calculated eigenvalues and eigen vectors have been further
utilized to compute the Bloch-function form factors and intrinsic Coulomb diagonal-dephasing rates
for induced optical coherence of electron-hole pairs in spectral and polarization functions, as well
as the energy-relaxation time from extrinsic impurity scattering of electrons for non-equilibrium
occupation in band transport.

Keywords: graphene; scattering; dephasing; relaxation time; band structure; tight-binding model

1. Introduction

Very recently, a generalized parameter-free quantum-kinetic model [1,2] based on
many-body theory [3,4] has been developed, which is self-consistently coupled with
Maxwell equations [5] for an interacting electromagnetic field and with Boltzmann trans-
port equation [6] for a conduction current, as illustrated in Figure 1. Here, being an
off-diagonal element in a density matrix, the induced quantum coherence for electron-hole
pairs leads to a macroscopic optical polarization field [1] included in the Maxwell equations.
Meanwhile, the modified electric field determined from the Maxwell equations can also
change the microscopic quantum coherence [1] of electron-hole pairs. In this way, a self-
consistent loop is constructed between electrons in the quantum-kinetic model and electric
field in the Maxwell equations. This theory aims at enabling first-principles computations
of ultra-fast dynamics for non-thermal photo-generated electron-hole pairs in undoped
semiconductors [1,2]. At the same time, this a theory is also able to simultaneously describe
electromagnetic, optical and electrical properties of crystal materials and their interplay all
together. More importantly, the numerical output of this first-principles dynamics model
can be utilized as an input for material optical and transport properties to be fed into a
next-stage simulation software facilitated by finite-element methods, such as COMSOL

Nanomaterials 2021, 11, 1194. https://doi.org/10.3390/nano11051194 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://doi.org/10.3390/nano11051194
https://doi.org/10.3390/nano11051194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11051194
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano11051194?type=check_update&version=2


Nanomaterials 2021, 11, 1194 2 of 20

Multiphysics [7], for devices with various configurations. Consequently, device character-
istics can be accurately predicted beyond the linear-response regime [3,4] for numerical
bottom-up design and engineering. However, such a quantum-kinetic model itself requires
an input from wave functions and band structures associated with different host materials
in devices.

In Figure 1, we introduce the product of field frequency (ω) with the carrier momentum-
relaxation time (τp). The situations with ωτp � 1 and ωτp � 1 correspond separately
to optical and bias field regimes, while ωτp ≈ 1 uniquely specifies the terahertz regime
with dual optical and bias field characteristics. The bridging connection between the
Maxwell [5] and semiconductor Bloch [8,9] equations is provided by the induced optical-
polarization field P(r, t) as a quantum-statistical average of the electric-dipole moment
with the induced microscopic optical coherence pj(k, t) with j the band index. The bridg-
ing connection between the Maxwell [5] and Boltzmann transport [6] equations, on the
other hand, is fulfilled by the optically-induced magnetization field M(r, t) as a quantum-
statistical average of the induced microscopic magnetic-dipole moment mj(k, t) from spins
or orbital angular momentum. Finally, the bridging connection between the semiconduc-
tor Bloch [8,9] and Boltzmann transport [6] equations is facilitated by the bias-induced
macroscopic center-of-mass drift velocity vd(t) as a non-equilibrium quantum-statistical
average of the microscopic electron group velocities vj(k) from multi-band dispersions for
modifying optical-transition properties of driven carriers within the center-of-mass frame
due to relative scattering motions of carriers.

Figure 1. Illustration of a Device Modeling & Simulation Triangle for strong-coupling model ap-
plied to multi-functional electro-optical devices, where the device electromagnetic, opto-electronic
and electronic characteristics are fully described by coupled Bloch, Maxwell, and Boltzmann equa-
tions all together.

The first-principles computation of electron Bloch wave function and band dispersion
of a targeted material can be performed by employing the well-known Kohn-Sham density-
functional theory [10]. Meanwhile, the tight-binding model [11–15] for solid crystals is
usually considered as an alternative approach for computing electronic band structure
using an approximate set of orbital wave functions based upon superposition of bond-
orbital states for isolated atoms sitting at different lattice sites. In fact, this method is closely
related to the linear combination of atomic orbitals method [16] adopted commonly in
quantum chemistry. Such a real-space tight-binding model can be applied to a lot of solids,
even including a magnetic field, Ref. [17] and it is proved giving rise to good qualitative
results [18]. Moreover, this method can be combined with other models to produce better
results whenever the tight-binding model fails. Here, we would like to emphasize that
although the tight-binding model is only a one-electron model in nature, it indeed provides
a basis for more advanced computations [11], such as the computation of surface states,
application to various kinds of many-body problems, and quasi-particle calculation [19].
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Historically, the family of carbon-based materials can be characterized into two distinct
crystal forms, i.e., the isotropic diamond and anisotropic graphite. Recently, their allotropes,
such as fullerenes and carbon nanotubes, entered into play and expanded to graphene,
which is a unique material consisting of a two-dimensional lattice of carbon atoms with a
honeycomb symmetry. Graphene stands for an physically interesting system [20,21], and
becomes very promising for future device applications. On the atomic level, e.g., density-
functional theory, electron certainly follows the Schrodinger equation. However, by using
an approximate effective-mass Hamiltonian [22,23] for low-energy electrons near the K or
K′ valley, the quasi-particles are found to satisfy the relativistic Dirac equation for massless
fermions. Today, the extensive investigations on various graphene systems have turned
into a broad research field for qualitatively new two-dimensional systems [24]. Up to now,
the basic properties of novel 2D allotropes of carbon, including graphene [22,23], graphene
bilayer [25–27], multi-layer graphene [28,29], graphene on a silicon carbide substrate [30],
are well known and the basis of graphene physics becomes well established.

In recent years, by using the low-energy Dirac Hamiltonian [4], we have exten-
sively explored varieties of dynamical properties of electrons in graphene and other
two-dimensional materials, including Landau quantization [18,31–35], many-body optical
effects [36–41], band and tunneling transports [42–50], etc. In this paper, we particularly
focus on the application of computed electronic states and band structures from a tight-
binding model to the calculations of Coulomb and impurity scatterings of electrons in
graphene on the basis of a many-body theory [3,4], where the former and latter determine
the lineshape [1] of an absorption peak and the transport mobility [44], respectively.

The rest of paper is organized as follows. In Section 2, we present a general description
of tight-binding model for novel two-dimensional materials. Section 3 is devoted to discuss
the Slater-Koster approximation for bonding parameters and bonding integrals. We acquire
the parameter values in Section 4 and obtain graphene wave functions and band structures.
We study the Coulomb diagonal-dephasing rate of electron-hole pairs in undoped graphene
in Section 5, as well as the impurity scattering rate of conduction electrons in Section 6,
respectively. Finally, a brief summary is presented in Section 7 along with some remarks.

2. General Description of Tight-Binding Model

For completeness, we start with tight-binding model [14] for computing complete
band structures of two-dimensional materials. The advantage of tight-binding model is
easily incorporating a magnetic field through the so-called Peierls substitution in the phase
of a hopping integral [51]. In quantum mechanics, the single-electron static Schrödinger
equation is written as [52]

ĤΦk(r) = Ek Φk(r) , (1)

where Φk(r) is the Bloch wave function, Ek the eigen-energy, and k is the wave vector of
electrons within the first Brillouin zone of two-dimensional materials. The Hamiltonian
operator Ĥ in Equation (1) takes a general form

Ĥ = Ĥ0 + V(r) , (2)

in which the kinetic-energy operator Ĥ0 is

Ĥ0 = − h̄2

2me
∇2

r (3)

with free-electron mass me, while the potential energy V(r) for an electron within the lattice
of two-dimensional materials is given by [11]

V(r) = Vion(r) + ∆VL(r) (4)

with Vion(r) and ∆VL(r) specifying the potentials of a single ion and that for the rest of
ions, respectively. The Bloch wave function Φk(r) of electrons in Equation (1) can be
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decomposed into a linear combination of a set of orbital wave functions
{

φβ,k(r)
}

within
the first Brillouin zone, leading to [11]

Φk(r) = ∑
β

Cβ φβ,k(r) , (5)

where the index β labels all the atomic orbitals of the lattice of two-dimensional materials.
The expansion coefficient Cβ introduced in Equation (5) can be decided from

Cβ =
∫

d3r φ∗β,k(r)Φk(r) , (6)

where the orthonormal property for the set of orbital wave functions
{

φβ,k(r)
}

has
been adopted.

Applying the method of linear combination of atomic orbitals (LCAO) of all ions on the
lattice [16], we further express each orbital wave function φβ,k(r) in Equation (5) by a linear
combination of bond-orbital states

{
ψβ(r− Rj)

}
within a unit cell in real space, namely

φβ,k(r) =
1√
N

N

∑
j=1

exp(ik · Rj)ψβ(r− Rj) , (7)

where j is the index for all bonded lattice ions, Rj the lattice-ion position vector, and N the
total number of atoms within the unit cell. Here,

ψβ(r− Rj) =
1√
N

∑
k

exp(−ik · Rj) φβ,k(r) (8)

is termed as the localized Wannier function for the β orbital of a bonded lattice ion at the
site Rj, which satisfies the single-ion Schrödinger equation [16][

Ĥ0 + Vion(r)
]
ψβ(r− Rj) = ε j,β ψβ(r− Rj) (9)

with ε j,β being the βth energy levels of electrons within an ion at the lattice site Rj.
Combining results in Equations (5) and (7), we acquire the following full LCAO

expansion of a Bloch wave function [11]

Φk(r) =
1√
N

N

∑
j=1

∑
β

Cβ; j(k)ψβ(r− Rj) (10)

with Cβ; j(k) = Cβ exp(ik · Rj). At the same time, using Equation (5), we find from
Equation (1) that

∑
β

Cβ

∫
d2r φ∗α,k(r) Ĥ φβ,k(r) = E(k) ∑

β

Cβ

∫
d2r φ∗α,k(r) φβ,k(r) , (11)

or equivalently, the following eigenvalue equation

∑
β

Hα,β(k)Cβ = E(k) ∑
β

δα,β Cβ = E(k)Cα . (12)

As a result, the eigenvalue En(k) can be determined from the secular determinant of
Equation (12) for any given k, yielding

Det
{
Hα,β(k)− En(k) δα,β

}
= 0 , (13)

and the orthonormal-eigenvectors
{

Cn,β
}

are also obtained, corresponding to the eigen-
value En(k) at given k, where the index n labels different quantized energy bands of
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two-dimensional materials. Explicitly, using Equation (7), we obtain the Hamiltonian
matrix elements in Equation (12) as [11]

Hαβ(k) =
1
N

N

∑
i,j=1

exp
(
ik · Rij

)
Hiα, jβ , (14)

in which Rij = Rj − Ri, and

Hiα, jβ =
∫

d2r ψ∗α(r− Ri)
[
Ĥ0 + Vion(r)

]
ψβ(r− Rj) +

∫
d2r ψ∗α(r− Ri)∆VL(r)ψβ(r− Rj) . (15)

In fact, we know from Equation (9) that∫
d2r ψ∗α(r− Ri)

[
Ĥ0 + Vion(r)

]
ψβ(r− Rj) = ε j,β δα,β δi,j , (16)

∫
d2r ψ∗α(r− Ri)∆VL(r)ψβ(r− Rj) ≡


CΣ δα,β if i = j ,

tαβ(Rij) if i 6= j ,
(17)

where (ε j,β + CΣ) represents the site energy, and tαβ(Rij) is usually called the two-center
(or hopping) integral [14].

As a final step, with the help from Equation (10), we arrive at the full expression for
Hamiltonian matrix elements, given by∫

d2r Φ∗n′ ,k′(r) ĤΦn,k(r) =
1
N

N

∑
j,j′=1

∑
α,β

C∗n′ ,α Cn,β exp(ik · Rj − ik′ · Rj′)Hj′α, jβ

=
(ε j,β + CΣ)

N

N

∑
j=1

∑
β

C∗n′ ,β Cn,β exp[i(k− k′) · Rj]

+
1
N

N

∑
j,j′=1

′ ∑
α,β

C∗n′ ,α Cn,β exp(ik · Rj − ik′ · Rj′) tαβ(Rj′ j) , (18)

where the primed summation in the second term of the right-hand side of the last equation
excludes the contribution from j = j′, and Cn,β can be obtained from the calculated
eigenvector from Equation (12). The matrix elements for other physical operators can be
computed in a similar way.

3. Slater-Koster Approximation for Hopping Integrals

To seek for the feasibility of fast numerical computation, we introduce a parameterized
process for the tight-binding model described in Section 2. For the Coulomb interaction
between electron and ion within an atom, the potential field presents a spherical symmetry.
Therefore, the energy levels labeled by the radial quantum number n = 1, 2, · · · will
degenerate with the angular-momentum quantum number ` = 0, 1, · · · , n− 1, as well as
the magnetic quantum number m = −`, · · · , 0, · · · , ` [52]. Consequently, there exists a
total orbital degeneracy n2 (excluding the spin-degeneracy). Customarily, we specify these
orbitals by ` = 0, 1, 2, 3, · · · for {s, p, d, f , · · · } orbitals.

In order to describe the chemical bonds between a pair of atoms inside a lattice, we
often adopt the concept of overlapping electronic orbitals {s, p, d, f , · · · }. To further
specify the spatial direction of the chemical bonding between two atoms at the lattice sites
Ri and Rj, we have to rely on three directional cosines `, m, n, as defined in Figure 2.

Considering s and p orbitals as an example, we display their possible bonding poten-
tials V`,`′ ;σ(π) in Figure 3 for s, p orbitals and four different configurations, including σ and
π bonds. Meanwhile, we also list six different π, σ, δ bonding configurations in Figure 4
for s, p, d orbitals.

To speed up numerical computations, the bonding potentials V`,`′ ;σ(π) for `, `′ = s, p, d
in Figures 3 and 4 are usually parameterized as: [53] V`,`′ ;ξ = (h̄2/med2) η``′ ;ξ ,
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V`,d;ξ = (h̄2r3/2
d /med7/2) η`,d;ξ and Vd,d;ξ = (h̄2r3

d/med5) ηd,d;ξ , where d and rd represent
the bonding length and atomic radius, and ξ = σ, π, δ are for various bond configurations.
Here, the dimensionless bonding parameters η`,`′ ;ξ for different bonding types are listed
in Table 1.

z

y

x

a

b

g

Rj

Ri

l = cos a
m = cos b
n = cos g

Figure 2. Illustration for three directional cosines `, m, n in a three-dimensional position space for
two atoms sitting at r = Ri and r = Rj, respectively.

Figure 3. Illustrations for π and σ bonding of atomic s and p orbitals. Details on description of these
bonding orbitals in this figure can be found in Ref. [11].

Figure 4. Illustrations for π, σ and δ bonding of atomic s, p, and d orbitals. Details on description of
these bonding orbitals in this figure can be found in Ref. [11].
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Table 1. Inter-atomic bonding parameters.

Bonding Parameter Value [11]

ηs,s;σ −1.40
ηs,d;σ −3.16
ηd,d;σ −16.2
ηs,p;σ 1.84
ηp,d;σ −2.95
ηd,d;π 8.75
ηp,p;σ 3.24
ηp,d;π 1.36
ηd,d;δ 0
ηp,p;π −0.81

By using these parameterized bonding potentials V`,`′ ;ξ , V`,d;ξ and Vd,d;ξ , we are able
to compute further the hopping integrals tαβ(Rij) based on the Slater-Koster approxima-
tion [14], and some commonly-used results are shown in Table 2.

Table 2. Expressions for Bonding Integrals.

Bonding Integral Expression [14]

ts,s Vs,s;σ
ts,x `Vs,p;σ
tx,x `2 Vp,p;σ + (1− `2)Vp,p;π
tx,y `m (Vp,p;σ −Vp,p;π)
tx,z `n (Vp,p;σ −Vp,p;π)
ts,xy

√
3`m Vs,d;σ

ts,x2−y2 (
√

3/2) (`2 −m2)Vs,d;σ
t3z2−r2 [(n2 − (`2 + m2)/2]Vs,d;σ

...
...

4. Tight-Binding Model for Graphene Band Structure

To seek for an application, we use the general theory, as developed in Sections 2 and 3,
for novel two-dimensional graphene material in order to obtain its electronic wave func-
tions and band structures for the full first Brillouin zone [54]. In this way, we are able to
study scattering dynamics with respect to high-energy electrons in graphene resulted from
Coulomb interactions between either pair of electrons or between electrons and ionized
impurity atoms.

Monolayer graphene displays a hexagonal (or honeycomb) lattice structure of carbon
atoms, as illustrated in Figure 5, where each carbon atom is connected by σ covalent bonds
with its three nearest neighbors. The electronic orbitals of a carbon atom are characterized
as 1s2 2s2 2p2. However, the unique energy difference between the 2s and 2p orbitals favors
the appearance of a mixed state of these two orbitals. The first-principles density-functional
calculations reveal that it becomes energetically favorable to move an electron from the
2s orbital to the 2p orbital in this mixed state. Since the 2p orbitals include 2px, 2py, 2pz,
as a result, each of these three 2p orbitals will accommodate one electron, leading to
the x–y orbitals within the plane of the lattice, as well as the z orbital out of the lattice
plane. Here, two electrons in the mixed x–y orbitals form the higher-energy σ bonds,
while the remaining electron in the z orbital leads to the lower-energy π bonds, i.e., a
side-on overlap of the 2p-orbital wave functions. Consequently, these π-bond electrons
give rise to the low-energy bands of graphene and will be studied exclusively based on a
tight-binding model.
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a1
a2

d1

d2d3

kx

ky
b1

b2

G

K

K’

M

A B

Figure 5. (Left) A diagram illustrating the hexagonal-lattice structure of a monolayer graphene with
two sublattices A (blue) and B (red) with the Bravis lattice vectors a1,2 and the nearest-neighbor
lattice vectors δ1, 2, 3. (Right) the first Brillouin zone of graphene with labeled high-symmetry points
Γ, M, K, K′ in the k–space with reciprocal-lattice vectors b1,2. In the left panel, a unit cell is shown in
the shaded region in yellow.

From Equation (7), we know the wave function for π-bond (pz-orbital) electrons in
graphene can be expressed as

φA,B
pz ,k(r) =

1√
N

N

∑
j=1

exp(ik · Rj)ψA,B
pz (r− Rj) , (19)

where k ≡ (kx, ky), Rj ≡ (Rx
j , Ry

j ) = mja1 + nja2 represents the Bravis lattice-site vectors
as indicated in Figure 5, and indexes A, B refer to two sublattices of graphene. By including
both sublattices A and B, we have

φpz ,k(r) = ak φA
pz ,k(r) + bk φB

pz ,k(r) , (20)

where ak and bk are two elements of the eigenvector corresponding to the eigenvalue
equation with respect to two sublattices. Specifically, from Equations (11) and (20), we
arrive at the matrix-form Schrödinger equation HAA(k) HAB(k)

HBA(k) HBB(k)

 ak

bk

 = En(k)

 SAA(k) SAB(k)

SBA(k) SBB(k)

 ak

bk

 , (21)

where S``′(k) = 〈 φ`
pz ,k | φ`′

pz ,k 〉, H``′(k) = 〈 φ`
pz ,k | Ĥ | φ`′

pz ,k 〉, `, `′ = A or B, and En(k)
represents the eigen-energies of π-bond electrons with n = 1, 2 labeling two graphene low-
energy bands determined by the secular determinant:Det{H``′(k)− En(k)S``′(k) }2×2 = 0.

As in Equation (7), we can rewrite the orbital wave function φpz ,k(r) in Equation (20)
approximately only by its near-neighbor decomposition, yielding

φpz ,k(r) =
1√
Nc

∑
`∈A,B

exp(ik · R`)
Nc

∑
j=1

ajk ψpz(r− R` + ∆j) , (22)

and then, the eigenvalue equation turns into Det
{
Hjj′(k)− Es(k) Sjj′(k)

}
Nc×Nc

= 0 with

eigen-vectors {ajk}Nc×1, where Nc represents the number of near-neighbor atoms within a
unit cell, ∆j stands for the lattice vectors of the near-neighbor atoms relative to the sublattice
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site R`, and ajk = ak exp(−ik · ∆j). Moreover, we findHjj′(k) = ε2 Sjj′(k) + tjj′(k), where
ε2 stands for the second energy level of electrons within a carbon atom,

Sjj′(k) = ∑
`∈A,B

exp(ik · R`)
∫

d2r ψ∗pz(r− R` + ∆j)ψpz(r− R` + ∆j′) (23)

is the overlap integral, while

tjj′(k) = ∑
`∈A,B

exp(ik · R`)
∫

d2r ψ∗pz(r− R` + ∆j)∆VL(r)ψpz(r− R` + ∆j′) (24)

is the hopping integral.
For simplicity, we would omit the orbital index pz from now on. Without loss of

generality, we can assume that the vectors that connect sublattice A site to the equivalent
site on the B sublattice is δ3, as seen in Figure 5. As a result, the hopping and overlap
amplitudes between the nearest neighbor (nn) and the next-nearest neighbor (nnn) can be
computed explicitly from Equations (23) and (24), leading to

tAB(k) = t∗BA(k) = γ∗(k) tnn ,

tAA(k)− CpSAA = tBB(k)− CpSBB = 2 tnnn

3

∑
i=1

cos(k · ai) = (|γ(k)|2 − 3) tnnn ,

SAB(k) = S∗BA(k) = γ∗(k) snn ,

SAA(k) = SBB(k) = 1 + (|γ(k)|2 − 3) snnn ≈ 1 , (25)

where a3 ≡ a1 − a2, γ(k) = 1 + exp(ik · a1) + exp(ik · a2), and the hopping and overlap
integrals are calculated as

Cp =
∫

d2r ψ∗A(r)∆VL(r)ψA(r) =
∫

d2r ψ∗B(r)∆VL(r)ψB(r) ,

tnn =
∫

d2r ψ∗A(r)∆VL(r)ψB(r + δ3) ,

tnnn =
∫

d2r ψ∗A(r)∆VL(r)ψA(r + a1) =
∫

d2r ψ∗B(r)∆VL(r)ψB(r + a1) ,

snn =
∫

d2r ψ∗A(r)ψB(r + δ3) ,

snnn =
∫

d2r ψ∗A(r)ψA(r + a1) =
∫

d2r ψ∗B(r)ψB(r + a1) . (26)

Particularly, the results for these tight-binding model parameters in Equation (26) for
band structures are presented in Table 3, which have been computed from listed bonding
parameters in Table 1 and bonding integrals in Table 2.

Finally, from the eigenvalue equation Det{ t``′ (k) − E(k) S``′ (k) }2×2 = 0 in
Equation (21) for `, `′ = A, B, we obtain an explicit expression

E2(k)Det{←→S } − E(k)[SAAtBB + SBBtAA − SABtBA − SBAtAB] +Det{t} = 0 , (27)

where, by setting snnn = 0, we have three coefficients

Det{←→S } = 1− s2
nn |γ(k)|2 ,

Det{←→t } = (|γ(k)|2 − 3|)2 t2
nnn − t2

nn |γ(k)|2 ,

SAAtBB + SBBtAA − SABtBA − SBAtAB = 2
[
(|γ(k)|2 − 3) tnnn − tnnsnn |γ(k)|2

]
. (28)
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This leads to the explicit solution of Equation (27), namely [55]

Eλ(k) =
(
ε2 + Cp

)
+

(|γ(k)|2 − 3|) tnnn − tnnsnn |γ(k)|2 + λ
√
D(k)

1− s2
nn|γ(k)|2

, (29)

where λ = ±1 correspond to valence (−1) and conduction (+1) bands, respectively, and

D(k) =
[
(|γ(k)|2 − 3) tnnn − tnnsnn |γ(k)|2

]2
− (1− s2

nn |γ(k)|2)

×
[
(|γ(k)|2 − 3|)2 t2

nnn − t2
nn |γ(k)|2

]
= |γ(k)|2

[
(|γ(k)|2 − 3) tnnn snn + tnn

]2
. (30)

Table 3. Graphene structure and tight-binding model parameters.

Parameter Value [55]

a1 (a/2) (3,
√

3)
a2 (a/2) (3,−

√
3)

a3 (a/2) (0, 2
√

3)
δ1 (a/2) (1,

√
3)

δ2 (a/2) (1,−
√

3)
δ3 −a (1, 0)
K (2π/3

√
3a) (
√

3, 1)
K′ (2π/3

√
3a) (
√

3,−1)
snn 0.106
snnn 0.001
tnn −2.78 eV
tnnn −0.12 eV

ε2 + Cp −0.36 eV

By using the result in Equations (29) and (30) can be rewritten as

Eλ(k) =
(
ε2 + Cp

)
+

(|γ(k)|2 − 3) tnnn[1 + λ|γ(k)| snn]− tnnsnn|γ(k)|2 + λ |γ(k)| tnn

1− s2
nn|γ(k)|2

≈
(
ε2 + Cp

)
+

(|γ(k)|2 − 3) tnnn − tnnsnn|γ(k)|2 + λ tnn |γ(k)|
1− s2

nn|γ(k)|2
. (31)

By setting Cp + ε2 = 0 as the reference point for energy, the result in Equation (31) is
plotted in Figure 6 by employing the graphene structural parameters listed in Table 3.

𝑘𝑘𝑥𝑥 (1/𝐴𝐴)
o

(a) (b)

Figure 6. Calculated dispersion of energy bands for graphene. Panel (a) displays 2D plot for energy
dispersion of graphene electrons. Panel (b) shows 3D plot for upper and lower bands touched at six
Dirac points (three K and three K′ valleys), at which the energy is set to be zero.
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Furthermore, by using the result in Equation (31), two elements of the eigenvector, aλ
k

and bλ
k , are found to be

aλ
k =

{
γ∗(k) [Eλ(k) snn − tnn]

(|γ(k)|2 − 3) tnnn − Eλ(k)

}
bλ

k ,

bλ
k =

|(|γ(k)|2 − 3) tnnn − Eλ(k)|√
|γ∗(k) [tnn − Eλ(k) snn]|2 + |(|γ(k)|2 − 3) tnnn − Eλ(k)|2

. (32)

As known experimentally, both the nearest-neighbor (nn) overlap and the next-nearest-
neighbor (nnn) hopping integrals are much smaller than the nearest-neighbor (nn) hopping
integral. By neglecting some constants, the dispersion in Equation (31) can be further
simplified as

Eλ(k) ≈ 2 t′nnn

3

∑
i=1

cos(k · ai) + λ tnn

[
3 + 2

3

∑
i=1

cos(k · ai)

]1/2

, (33)

where t′nnn = tnnn − snntnn is the corrected hopping amplitude.

5. Coulomb Diagonal-Dephasing Rate for Optical Coherence in Undoped Graphene

The quantum coherence of electrons is associated with the off-diagonal elements of
their density matrix. The presence of an external field can induce coherence between two
quantum states of electrons if the field frequency matches the energy separation between
the two relevant electronic states. Dephasing refers to a physics mechanism which recovers
classical behavior from a quantum system, and it quantifies the time required for electrons
to lose their field-induced quantum coherence. Diagonal-dephasing rate connects to the
ways in which coherence caused by perturbation decays over time, and then, the system
goes back to the state before perturbation [1]. This is an important effect in molecular and
atomic spectroscopy, and also in condense-matter physics of mesoscopic devices.

In order to demonstrate the significance of band-structure computation with a tight-
binding model on dynamical properties of electrons in graphene, we first study Coulomb
diagonal-dephasing (CDD) rate for induced optical polarization of thermally-excited elec-
trons and holes around the Dirac point in an intrinsic (or undoped) graphene sample. For
undoped graphene, conduction electrons can be introduced by a photo-excitation pro-
cess [8], giving rise to equal number of electrons and holes ne = nh ≡ n0, where n0 repre-
sents the areal density of photo-excited carriers. For non-equilibrium photo-carriers under
a transverse optical field, its induced optical coherence in steady states decays [1] with the
sum of CDD rates ∆e(k) and ∆h(k) for electrons (e) and holes (h), respectively. These two
rates determine the inhomogeneous line-shape of a resonant interband-absorption peak at
h̄ω = εe

k + εh
k for vertical transitions of electrons with their kinetic energies εe,h

k in valence
and conduction bands.

As illustrated by Feynman diagrams [3] in Figure 7, the CDD rate ∆e(k) of electrons is
calculated as [1,44]

∆e(k) =
8π

h̄A2 ∑
k1,q 6=0

∣∣∣Vee
k,k1; k1−q,k+q

∣∣∣2[L0(ε
e
k1−q + εe

k+q − εe
k1
− εe

k, Γe)

×
{

f e
k1−q f e

k+q (1− f e
k1
) + (1− f e

k1−q) (1− f e
k+q) f e

k1

}]
+

8π

h̄A2 ∑
k1,q 6=0

∣∣∣Vhe
k,k1; k1−q,k−q

∣∣∣2[L0(ε
e
k1−q + εh

−(k−q) − εe
k1
− εh
−k, Γeh)

×
{

f e
k1−q f h

−(k−q) (1− f e
k1
) + (1− f e

k1−q) (1− f h
−(k−q)) f e

k1

}]
, (34)

where both spin and valley degeneracies are included, A represents the surface area
of graphene sample, the first and second terms correspond to the left and right panels
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of Figure 7, and both scattering-in and scattering-out contributions [44] are taken into
consideration in these two terms. Moreover, εe,h

k in Equation (34) stands for the kinetic
energy of electrons (e) or holes (h), and f e,h

k = {1 + exp[(εe,h
k − µe,h)/kBT]}−1 is the Fermi

function for thermal-equilibrium photo-carriers with their chemical potentials µe,h at
temperature T. Here, µe,h are separately determined by following two equations for given
T, i.e.,

ne,h =
4
A ∑

k

1

1 + exp[(εe,h
k − µe,h)/kBT]

, (35)

where both spin and valley degeneracies are included and µe = µh in our case. Furthermore,
in Equation (34), L0(a, b) = (b/π)/(a2 + b2) is the Lorentzian line-shape function, Γe,h are
inverse lifetime of unperturbed electrons or holes, and Γeh = (Γe + Γh)/2.Diagonal Dephasing Rate  Dk

(e)

Vee(q)

k+q (e)

k (e)

k1-q (e)

k1 (e)

Vhe(q)

-k (h)

-(k-q) (h)

k1-q (e)

k1 (e)

coulomb coupling between pair of  electrons 
in a scattering event for inverse electron 
lifetime

coulomb coupling between an electron and a  
hole in a scattering event for inverse electron 
lifetime

Figure 7. Feynman diagrams for CDD rate ∆e(k) of electrons in Equation (34). (left) Coulomb
coupling between pair of electrons in one inelastic-scattering event; (right) Coulomb coupling
between an electron and a hole in another inelastic-scattering event.

In addition, we have introduced in Equation (34), as well as in Equation (40) below,
the Coulomb-interaction matrix elements, given by [56]

Vee
k,k1; k1−q,k+q = uc(q)F (c)

k, k+q(q)F
(c)
k1, k1−q(−q) ,

Vhe
k,k1; k1−q,k−q = uc(q)F (v)

k, k−q(q)F
(c)
k1, k1−q(−q) ,

Vhh
k,k1; k1−q,k+q = uc(q)F (v)

k, k+q(q)F
(v)
k1, k1−q(−q) ,

Veh
k,k1; k1−q,k−q = uc(q)F (c)

k, k−q(q)F
(v)
k1, k1−q(−q) , (36)

where uc(q) = e2/[2ε0εr (q + q0)]) in Equation (36) is the two-dimensional Fourier trans-
formed Coulomb potential ∼ 1/r including static screening, ε0 represents the vacuum
permittivity, and εr = 2.4 is the average dielectric constant of the host material. Addi-
tionally, q0 stands for the inverse Thomas-Fermi screening length, and can be given by a
semi-classical model as [57]

q0 =

(
e2

8ε0εrkBT

)
4
A ∑

k

[
cosh−2

(
εe

k − µe

2kBT

)
+ cosh−2

(
εh

k − µh

2kBT

)]
, (37)

where both spin and valley degeneracies have been included.
Furthermore, the introduced F (s)

k, k′(q) in Equation (36) with s = c, v represents the
Bloch-function form factor, calculated as [57]
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F (s)
k, k′(q) =

∫
d2r [Φ(s)

k (r)]∗ exp(iq · r)Φ(s)
k′ (r) =

1
Nc

{
[a(s)

k ]† ⊗ a(s)
k′

}
×

Nc

∑
j,j′=1

exp[−i(q− k) · ∆j − ik′ · ∆j′ ] ∑
`,`′∈A,B

exp[i(k′ − k + q) · R`]Ws(q, R`′` + ∆jj′) , (38)

where the Bloch functions Φc,v
k (r) in Equations (5) and (22) have been employed. In

Equation (38), Nc represents the number of near-neighbor atoms within a unit cell, ∆j
stands for the lattice vectors of the near-neighbor atoms relative to the sublattice site R`,
and a(s)

k are two column eigenvectors in Equation (32) for s = c, v. The Wannier-function
structure factorWs(q, R`′` + ∆jj′) in Equation (38) is defined as

Ws(q, R`′` + ∆jj′) =
∫

d2r [ψ(s)
pz (r)]

∗ exp(iq · r)ψ
(s)
pz (r− R`′` − ∆jj′) , (39)

where R`′` = R`′ − R` and ∆jj′ = ∆j − ∆j′ . In fact, Equations (34) and (36)–(39) are the key
results in this paper for connecting the calculated tight-binding wave functions and band
structures to a quantum-statistical theory for graphene optical properties.

Similarly, as illustrated by Feynman diagrams [3] in Figure 8, the CDD rate ∆h(k) of
holes takes the form [1,44]

∆h(k) =
8π

h̄A2 ∑
k1,q 6=0

∣∣∣Vhh
k,k1; k1−q,k+q

∣∣∣2[L0(ε
h
−(k1−q) + εh

−(k+q) − εh
−k1
− εh
−k, Γh)

×
{

f h
−(k1−q) f h

−(k+q)(1− f h
−k1

) + (1− f h
−(k1−q)) (1− f h

−(k+q)) f h
−k1

}]
+

8π

h̄A2 ∑
k1,q 6=0

∣∣∣Veh
k,k1; k1−q,k−q

∣∣∣2[L0(ε
e
k−q + εh

−(k1−q) − εe
k − εh

−k1
, Γeh)

×
{

f h
−(k1−q) f e

k−q (1− f h
−k1

) + (1− f h
−(k1−q)) (1− f e

k−q) f h
−k1

}]
. (40)Diagonal Dephasing Rate  Dk

(h)

Vhh(q)

-k1 (h)

-(k1-q) (h)

-k (h)

-(k+q) (h)

Veh(q)

k-q (e)

k (e)

-k1 (h)

-(k1-q) (h)

coulomb coupling between pair of  holes in 
a scattering event for inverse hole lifetime

coulomb coupling between a hole and an 
electron in a scattering event for inverse hole 
lifetime

Figure 8. Feynman diagrams for CDD rate ∆h(k) of holes in Equation (40). (left) Coulomb coupling
between pair of holes in one inelastic-scattering event; (right) Coulomb coupling between a hole and
an electron in another inelastic-scattering event.

Computationally, the π-electron band structure of graphite can be obtained by employ-
ing the nearest-neighbor tight-binding model [58,59]. For graphene, the reciprocal lattice in
the wave-vector space also acquires the hexagonal symmetry, same as that in real lattice.
Moreover, the low energy bands are found linear and isotropic near the corners of the first
Brillouin zone or K point. Such K-point linear bands become essential for the low-energy
(or small wave-number) excitation of electrons. The calculated energy dispersions by
diagonalizing the 2× 2 Hamiltonian matrix are given by [58,59]

εe,h
k = ±3

2
γ0bk ≡ h̄vFk , (41)
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where γ0 = 2.4 eV is the hopping integral between the nearest-neighbor atoms, b = 1.42 Å
is the C–C bond length, and signs ± represents conduction (+) and hole (−) bands,
respectively. Meanwhile, the corresponding spinor-type Bloch wave functions are found
to be

φ
(c,v)
pz ,k (r) =

1√
2

[
U(1)

k (r)∓ eiθk U(2)
k (r)

]
, (42)

where as shown in Equation (20), U(1)
k (r) and U(2)

k (r) are two sublattice Bloch functions
built from the superposition of the periodic 2pz orbitals, Ref. [59] and θk = tan−1(ky/kx)
is the angle between the wave vector k and x-axis. As in Equation (22), we can further
express the 2pz atomic orbital by means of a generalized hydrogen-like wave function,
given by [60]

ψpz(r) = C0 r cos θ e−Z∗r/2a0 , (43)

where C0 is a normalization factor, a0 the Bohr radius, and an effective nucleus charge
number Z∗ is 3.18.

In particular, the structure factor introduced in Equation (38) can be calculated explic-
itly as

F (s)
k′ , k(q) = δk′ , k+q

∫
d2r [Φ(s)

k+q(r)]
∗ exp(iq · r)Φ(s)

k (r)

≈ δk′ , k+q 〈φ
(s)
pz , k+q(r) | exp(iq · r) | φ(s)

pz , k(r)〉 , (44)

where s = c, v for Bloch wave function. Moreover, the Bloch-function structure factor in
Equation (44) takes the form [60]

〈φ(s)
pz , k+q(r) | exp(iq · r) | φ(s)

pz , k(r)〉

=
1

NA + NB
∑

R=RA ,RB

〈ψpz(r− R) | exp[iq · (r− R)] |ψpz(r− R)〉 1
2

[
1± γ(k + q) γ∗(k)
|γ(k + q) γ(k)|

]
, (45)

where tight-binding function ψpz(r) is given by Equation (43), and the signs (±) correspond
to conduction (+) and valence (−) bands, respectively [59].

For intrinsic graphene, we have chemical potential µe = µh = 0 [61]. However, there
is still a finite intrinsic areal density ni ≈ (π/6) (kBT/h̄vF)

2 due to thermal excitation of
electrons and holes at finite temperatures T. In fact, we find f e

k = f h
k = 1/2 at the K valley

or k = 0. Here, the calculated CDD rates from Equations (34) and (40), respectively, for
electrons ∆e(k) and holes ∆h(k) are presented in Figure 9a at T = 77 K and in Figure 9b at
T = 300 K. Since f e,h

k ∼ exp(−εe,h
k /kBT) as εe,h

k � kBT, the thermal occupations of electron
and hole states will be limited mostly to wave numbers close to the K valley due to their
lower kinetic energies εe,h

k around k = 0, as seen in Figure 6.
The Coulomb diagonal-dephasing rates ∆e,h(k) presented in Figure 9a,b quantifies

an amplitude-decay process of induced electron-hole optical coherence with wave vector
k by an optical field towards the state before external perturbation. Furthermore, the
Coulomb off-diagonal-dephasing rates Λe,h(k, q) reveals deformations of induced optical-
polarization waves with different wave vectors k + q [8].

Considering the fact that major occupations of electrons and holes are accumulated
around k = 0, we have f e,h

k ≈ 0 only if k is large. As a result, we find from Equation (34)
that f e

k1−q f e
k+q (1− f e

k1
) � 1 at k = 0 since we require 1− f e

k1
≈ 1 for large k1, f e

k+q ≈ 1
for small q, and f e

k1−q ≈ 1 for both large q and k1, which, however, cannot be satisfied
simultaneously. Similar conclusion can also be drawn for the second term in Equation (34),
where we find f e

k1−q f h
−(k−q) (1− f e

k1
)� 1. Combining these two facts together, we expect

that a dip will occur at k = 0 for the Coulomb diagonal-dephasing rate ∆e(k), as seen
in Figure 9a. Moreover, the observed anisotropic energy dispersion in Figure 6a along the
K-M and K-Γ directions directly leads to a staircase-like feature in Figure 9a for both ∆e(k)
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and ∆h(k). As temperature T is raised from 77 K in Figure 9a to 300 K in Figure 9b, the
thermally-excited areal densities of electrons and holes are increased with T2; therefore,
the Coulomb interaction (∝ T4) between electrons and holes, as well as the Coulomb
interaction among electrons or holes, will be enhanced greatly. Consequently, we find that
both ∆e(k) and ∆h(k) are enhanced by a factor of 2.4, in addition to amplified depth of
the dip at k = 0. Furthermore, different structural factors in Equation (39), corresponding
to ± signs for conduction and valence bands, give rise to a slightly larger value of ∆h(k)
in comparison with that of ∆e(k), as well as different dispersion features around the K
valley for ∆e(k) and ∆h(k). These two computed Coulomb diagonal-dephasing rates can
be physically applied to the spectral [32] and polarization [1,36] functions in order to study
transport and optical properties of graphene material.

Figure 9. Calculated Coulomb diagonal-dephasing rates ∆e,h(k) for electrons (e, blue solid curves) from Equation (34) and
∆h(k) for holes (h, red dashed curves) from Equation (40) as functions of wave number k (with respect to k = 0 at the K
valley) at temperatures T = 77 K in (a) and T = 300 K in (b), where εr = 2.4 and Γe = Γh = 0.01 meV are assumed.

6. Carrier Energy-Relaxation Rate in Doped Graphene

In condensed-matter physics, the microscopic energy-relaxation time usually refers
to a measure of the time it requires for one electron in the system to be significantly
affected by the presence of other electrons, lattice vibrations, and randomly-distributed
ionized impurity atoms in the system through an either scattering-in or scattering-out
process mediated by electron-electron, electron-phonon and electron-impurity interactions,
respectively. Since the microscopic energy-relaxation time is assigned to a specific electronic
state, we are able to define a thermally-averaged energy-relaxation time through the
diagonal density-matrix elements of electrons for all electronic states. In this way, one
can reveal unique temperature dependence of this macroscopic energy-relaxation time
and utilize it for simplifying the well-known Boltzmann transport equation within the
relaxation-time approximation [44].

By going beyond the intrinsic graphene samples, we would like to investigate further
the impurity scattering of electrons in extrinsic (or doped) graphene materials. In parallel
with the discussion on scattering rates in Section 5, we present here the calculations for
intraband-scattering of electrons by randomly-distributed impurities. Results for intraband-
scattering of holes can be obtained in a similar way.

By using the detailed-balance condition, the microscopic energy-relaxation time τrel(k)
of electrons in the presence of randomly-distributed ionized impurities can be calculated
according to [44]

1
τrel(k)

=Win(k) +Wout(k) , (46)
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where the scattering-in rate for electrons in the final |k〉 state is

Win(k) =
4πnim

h̄A ∑
q 6=0

{∣∣∣Uim
k, k−q(q)

∣∣∣2 f e
k−q L0(ε

e
k − εe

k−q, Γe)

+
∣∣∣Uim

k, k+q(q)
∣∣∣2 f e

k+q L0(ε
e
k − εe

k+q, Γe)

}
, (47)

whereas the scattering-out rate for electrons in the initial |k〉 state takes the form

Wout(k) =
4πnim

h̄A ∑
q 6=0

{∣∣∣Uim
k+q, k(q)

∣∣∣2(1− f e
k+q)L0(ε

e
k+q − εe

k, Γe)

+
∣∣∣Uim

k−q, k(q)
∣∣∣2(1− f e

k−q)L0(ε
e
k−q − εe

k, Γe)

}
. (48)

Here, nim represents the areal density of ionized impurity atoms in the crystal, and
|Uim

k, k′(q)|
2 comes from the randomly-impurity scattering of electron in the second-order

Born approximation [48,62]. Explicitly, the random impurity-interaction matrix elements
are calculated as

∣∣∣Uim
k, k′(q)

∣∣∣2 = Z∗2|uc(q)|2
∣∣∣∣∫ d2r [Φ(c)

k (r)]∗ exp(iq · r)Φ(c)
k′ (r)

∣∣∣∣2 = Z∗2|uc(q)|2
∣∣∣F (c)

k, k′(q)
∣∣∣2 , (49)

where Z∗ is the charge number of ionized impurity atoms.
Substituting Equation (49) back into Equation (47), we obtain

W in
k =

4πnimZ∗2

h̄A ∑
q 6=0

{
f e
k−q L0(ε

e
k − εe

k−q, Γe) |uc(q)|2
∣∣∣F (c)

k, k−q(q)
∣∣∣2

+ f e
k+q L0(ε

e
k − εe

k+q, Γe) |uc(q)|2
∣∣∣F (c)

k, k+q(q)
∣∣∣2} , (50)

Wout
k =

4πnimZ∗2

h̄A ∑
q 6=0

{
(1− f e

k+q)L0(ε
e
k+q − εe

k, Γe) |uc(q)|2
∣∣∣F (c)

k+q, k(q)
∣∣∣2

+ (1− f e
k−q)L0(ε

e
k−q − εe

k, Γe) |uc(q)|2
∣∣∣F (c)

k−q, k(q)
∣∣∣2} . (51)

Using the inverse microscopic energy-relaxation time in Equation (46), we can further
calculate the macroscopic thermally-averaged energy-relaxation time τrel(T) as a function
of temperature T, yielding [44]

1
τrel(T)

=
4

neA∑
k

[
1

τrel(k)

]
f e
k . (52)

Actually, the results in Equation (46) and in Equations (50)–(52) demonstrate the
approach for relating the computed tight-binding wave functions and band structures to
graphene transport properties described by a many-body scattering theory. This calculated
relaxation time in Equation (52) can be employed for building up different orders of
moment equations [63] based on semi-classical Boltzmann transport equation [6] under the
relaxation-time approximation [44]. Here, the zeroth-order moment equation [63] grantees
the conservation of conduction electrons and allows us to find the chemical potential of
electrons, as in Equation (35), for given areal doping density and temperature. Moreover,
the first-order moment equation [63] makes it possible to find transport mobility and
conductivity [64] for bias-field driven conduction electrons.

For doped graphene, we have Fermi energy EF = h̄vF
√

πn0 at low temperatures,
Ref. [61] where n0 represents the areal electron density from doping, i.e., n0 = nim for
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completely ionized doping atoms. For low temperatures with kBT � EF, we have
f e
k = Θ(EF − εe

k) or f e
k = Θ(kF − k), where Θ(x) is a unity step function and kF =

√
πn0 is

the Fermi wave number.
Physically, the Coulomb diagonal-dephasing rates Γ(k) = ∆e(k) + ∆h(k) in Figure 9

describes a decay process of induced electron-hole optical coherence, which is induced
by an optical field over time, towards the state before perturbation. On the other hand,
the electron energy-relaxation rate 1/τrel(T), determined by Equations (46) and (52), re-
flects the time, which is a quantum-statistical average over all occupied states of elec-
trons, needed for recovering from a non-equilibrium-state occupation after an external
perturbation to an initial thermal-equilibrium-state occupation before external perturba-
tion via an elastic electron-impurity scattering process. Therefore, these two rates, as
shown by Figures 9 and 10, respectively, represent two fundamentally different micro-
scopic physics mechanisms.

Figure 10. Calculated average energy-relaxation rate 1/τrel(T) from Equation (52) as a function of
temperature T due to elastic scattering of doped electrons with impurities in graphene material,
where εr = 2.4, Γe = Γh = 0.01 meV, Z∗ = 1, doped electron areal density n0 = 1× 1011 cm−2, and
impurity areal density nim = n0 are assumed.

As seen from Figure 10, we find the electron energy-relaxation rate 1/τrel(T) reduces
with increasing temperature T due to enhanced screening effect on Coulomb interaction
uc(q) between two electrons or the rising of q0 in Equation (37) with T, which implies
that we have to wait a longer time τrel(T) for our system returning to its initial thermal-
equilibrium state at an elevated temperature. Furthermore, using the second-order Boltz-
mann moment equation [44], we would emphasize that this average energy-relaxation
time τrel(T), as determined from Equations (46) and (52), is directly associated with the
mobility of transport electrons limited by elastic scattering from existence of impurities in
the system.

7. Conclusions and Remarks

In conclusion, by introducing a generalized first-principles quantum-kinetic model
coupled self-consistently with Maxwell and Boltzmann transport equations, we demon-
strate the importance to incorporate inputs from first-principles band-structure computa-
tions for accurately describing non-equilibrium optical and transport properties of electrons
in graphene. Generally speaking, the physical properties of an active material in a device are
determined by both underlined band structures of involved materials and non-equilibrium
responses to various external impulses.
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In this study, we initialize with the tight-binding model for investigating band struc-
tures of solid covalent crystals by means of localized Wannier orbital functions, and further
parameterize the hopping integrals in the tight-binding model for different covalent bonds.
After that, we apply the general tight-binding-model formalism to graphene in order to
acquire both band structures and wave functions of electrons within the whole first Bril-
louin zone of two-dimensional materials. For illustrating their significance, we utilize them
to explore the intrinsic electron-hole Coulomb diagonal-dephasing rates used for spectral
and polarization functions of graphene materials, and meanwhile, the energy-relaxation
rate from extrinsic elastic scattering by impurities for transport mobility of doped electrons
in graphene.

Theoretically, our current theory is capable of first-principles calculations of ultra-fast
dynamics for non-thermal photo-generated electron-hole pairs. Simultaneously, this a
theory also enables to describe electromagnetic, optical and electrical properties of semi-
conductor materials all together, as well as their interplay. Technologically, in combination
with first-principles band-structure computations, the numerical output of current first-
principles dynamics model can be used as an input for material optical and transport
properties and put into a next-step simulation software, such as COMSOL Multiphysics,
for a target device. Consequently, device characteristics can be predicted accurately for
numerical bottom-up design and engineering.
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