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Abstract

Background

Cardiovascular disease is a leading cause of death in general population and the second

leading cause of mortality and morbidity in cancer survivors after recurrent malignancy in

the United States. The growing awareness of cancer therapy–related cardiac dysfunction

(CTRCD) has led to an emerging field of cardio-oncology; yet, there is limited knowledge on

how to predict which patients will experience adverse cardiac outcomes. We aimed to per-

form unbiased cardiac risk stratification for cancer patients using our large-scale, institu-

tional electronic medical records.

Methods and findings

We built a large longitudinal (up to 22 years’ follow-up from March 1997 to January 2019)

cardio-oncology cohort having 4,632 cancer patients in Cleveland Clinic with 5 diagnosed

cardiac outcomes: atrial fibrillation, coronary artery disease, heart failure, myocardial infarc-

tion, and stroke. The entire population includes 84% white Americans and 11% black Ameri-

cans, and 59% females versus 41% males, with median age of 63 (interquartile range [IQR]:

54 to 71) years old.

We utilized a topology-based K-means clustering approach for unbiased patient–patient

network analyses of data from general demographics, echocardiogram (over 25,000), lab

testing, and cardiac factors (cardiac). We performed hazard ratio (HR) and Kaplan–Meier

analyses to identify clinically actionable variables. All confounding factors were adjusted by
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Cox regression models. We performed random-split and time-split training-test validation for

our model.

We identified 4 clinically relevant subgroups that are significantly correlated with inci-

dence of cardiac outcomes and mortality. Among the 4 subgroups, subgroup I (n = 625) has

the highest risk of de novo CTRCD (28%) with an HR of 3.05 (95% confidence interval (CI)

2.51 to 3.72). Patients in subgroup IV (n = 1,250) had the worst survival probability (HR

4.32, 95% CI 3.82 to 4.88). From longitudinal patient–patient network analyses, the patients

in subgroup I had a higher percentage of de novo CTRCD and a worse mortality within 5

years after the initiation of cancer therapies compared to long-time exposure (6 to 20 years).

Using clinical variable network analyses, we identified that serum levels of NT-proB-type

Natriuretic Peptide (NT-proBNP) and Troponin T are significantly correlated with patient’s

mortality (NT-proBNP > 900 pg/mL versus NT-proBNP = 0 to 125 pg/mL, HR = 2.95, 95% CI

2.28 to 3.82, p < 0.001; Troponin T > 0.05 μg/L versus Troponin T� 0.01 μg/L, HR = 2.08,

95% CI 1.83 to 2.34, p < 0.001). Study limitations include lack of independent cardio-oncol-

ogy cohorts from different healthcare systems to evaluate the generalizability of the models.

Meanwhile, the confounding factors, such as multiple medication usages, may influence the

findings.

Conclusions

In this study, we demonstrated that the patient–patient network clustering methodology is

clinically intuitive, and it allows more rapid identification of cancer survivors that are at

greater risk of cardiac dysfunction. We believed that this study holds great promise for iden-

tifying novel cardiac risk subgroups and clinically actionable variables for the development

of precision cardio-oncology.

Author summary

Why was this study done?

• An increasing number of oncology patients are facing cancer therapy–related cardiac

dysfunction (CTRCD) risk, leading to the emerging field of cardio-oncology (also

known as onco-cardiology); however, there are limited clinical guidelines in terms of

how to prevent and treat for the new cardiotoxicity among cancer survivors.

• Development of novel clinical tools would offer unique opportunities for precision car-

dio-oncology by utilizing the large-scale, longitudinal patient data from healthcare

systems.

What did the researchers do and find?

• We developed a longitudinal patient–patient network clustering methodology for car-

diac risk stratification in cancer patients during anticancer therapies.
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• We identified 4 clinically relevant subgroups that are statistically significantly correlated

with incidence of cardiac outcomes and all-cause mortality.

• Using longitudinal patient–patient network analyses (over 20 years’ follow-up), we

showed crucial roles of early cardiovascular care in improving quality of life of cancer

survivors and reducing incidence of CTRCD.

• We identified multiple clinically relevant predictors (including Troponin T and NT-

proB-type Natriuretic Peptide (NT-proBNP)) that are significantly correlated with inci-

dence of cardiac outcomes and patients’ mortality, which offers actionable biomarkers

for rapid risk assessment of cardiac dysfunction during cardio-oncology clinical

practices.

What do these findings mean?

• Our findings suggest that an unbiased, systems-based network analysis of large-scale,

longitudinal patient data is more interpretable, visualizing the decision boundary to car-

diac risk stratification for patients before, during, and after cancer treatment.

• Troponin T and NT-proBNP offer clinically actionable biomarkers for cardiac risk strat-

ification in cardio-oncology clinical practices. Extended independent cohort validations

are needed before the predictors are introduced to clinical implementation.

Introduction

The improvement in early detection and effective oncological treatment has led to an increased

number of cancer survivors in the United States [1]. This number is estimated to increase

from 16.9 million in 2019 to 22.1 million by 2030 [2]. However, improved survival from cancer

leads to greater risk from other life-threatening conditions and, in particular, cardiovascular

disease (CVD), which is the second leading cause of mortality and morbidity in cancer survi-

vors [1,3]. The increased risk of CVD in cancer survivors is in part associated with cancer ther-

apy–related cardiac dysfunction (CTRCD) [4], including radiotherapy [5], cytotoxic

chemotherapy [6], targeted therapies [7–9], and immunotherapy [10–12]. For example, doxo-

rubicin is the first-line anticancer drug for multiple malignancies; however, doxorubicin has

adverse short- and long-term cardiovascular effects including heart failure [13], cardiomyopa-

thy [14], and left ventricular dysfunction [15,16].

The growing awareness of CTRCD has led to the emerging field of cardio-oncology [17].

However, there are limited guidelines in terms of how to assess for, prevent, and treat CTRCD

in cancer survivors due to lack of predictive and prognostic assays. Echocardiogram is the

most utilized clinical test to assess for CTRCD. The American Society of Echocardiography

(ASE) have defined cardiac dysfunction as a reduction in left ventricular ejection fraction

(LVEF) >10% below the lower limit of normal [18]. However, traditional echocardiogram

approaches alone have limitations including high false positive rates [19]. Additionally, it is

already late for intervention when decreased LVEF is recognized, as only 42% patients have

partial or full recovery in left ventricular function [20]. Next-generation machine learning

technologies can harness the power of large-scale clinical data and offer new possibilities to
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predict which patients are at risk and allow for early intervention to prevent risk of CVD. Pre-

viously, Samad and colleagues built supervised machine learning models from echocardio-

gram data and clinical data to predict patient survival [21]. However, traditional “black box”

machine learning methods and statistical risk models have various limitations, reducing their

ability to predict clinical outcomes in new scenarios from heterogeneous patients [22–24].

Recent advances in artificial intelligence [25] and network science technologies [26–29]

offer valuable and increasingly useful network tools for deep phenotyping of patient heteroge-

neities as seen in patients who developed stroke [30], pulmonary vascular disease [31], as well

as those seen in cardio-oncology [10,32–34]. In this study, we utilized a clinically actionable

network-based methodology (called patient–patient similarity network-based risk assessment

of CVD or psnCVD) for unbiased cardiac risk stratification for cancer patients with CTRCD

using large-scale, longitudinal, heterogeneous patient data, including demographics, echocar-

diogram, laboratory testing, and cardiac factors. With the aid of psnCVD, patients of unknown

status can be classified based on their similarity to patients with known status, offering preci-

sion medicine approaches to identify patients that are highly sensitive to CTRCD (and allow-

ing more rapid identification of patients that are at greater risk of CTRCD). Compared to

traditional supervised risk methods, we hypothesized that our unsupervised psnCVD can

leverage heterogeneous patient data and generate interpretable models to visualize the decision

boundary in cardiac risk stratification of cancer patients with CTRCD.

Methods

Study population and clinical variables

All adult patients with cancer referred to the cardio-oncology service at the Cleveland Clinic

from March 1997 up to January 2019. Our retrospective study has not prespecified analysis

plan. However, the patient pool in this study represents oncology patients seen by oncology

specialists at our institution undergoing cancer treatments and referred for cardiology evalua-

tion/testing based upon cardiac risk factor profile or cardiac comorbidity. Once patients were

identified, patient information was collected. This study was reviewed and approved by the

Institutional Review Board. In addition, this study is reported as per the STARD 2015 report-

ing guideline for diagnostic accuracy studies (S1 Checklist).

Comprehensive clinical information was collected using the institutional electronic medical

records (EMR) database by International Classification of Diseases (ICD 9/10) codes after can-

cer diagnosis. This cohort of patients is seen at Cleveland Clinic and regularly followed up.

Although a minority of cases moved to another institution, the EMR at Cleveland Clinic is

part of the Care Everywhere Network, which is used in 373 institutions across 48 states in the

US. This allowed us to collect the details of visits from any such institution and therefore ana-

lyze relevant outcomes for these patients. For each patient, 112 clinical variables commonly

collected during cardio-oncology clinical practices were used in this study (S1 Table): (a) 43

general demographics; (b) 24 lab testing variables; (c) 7 cardiac variables; and (d) 38 echocar-

diogram variables. Echocardiogram clinical variables were generated from a total of 23,451

sequential echocardiograms. Detailed clinical characteristics of the entire cohort used are pro-

vided in Table 1.

Outcomes

All-cause mortality with up to 20 years’ follow-up data (1997 to 2019, median with interquar-

tile range (IQR) were 5.02 [2.39 to 8.01]) was used as the primary outcome. Cardiac outcomes

defined by ICD 9/10 codes were manually checked through looking at patient charts on Epic

for accuracy, including atrial fibrillation (AF), coronary artery disease (CAD), heart failure
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(HF), myocardial infarction (MI), and stroke. According to the diagnosis date of these 5 car-

diac outcomes, we identified the cardiac events diagnosed before cancer therapy as preexisting

cardiac events, and those after cancer therapy as de novo CTRCD. All diagnoses defined by

ICD 9/10 codes were further confirmed by manual review of all medical records.

Preprocessing and imputation of clinical variables

Since our echocardiogram and partial general demographics data were longitudinal, for each

variable, we extracted several features: maximum of all follow-ups, minimum of all follow-ups,

slope of the variable versus time of all follow-ups, maximum increase within 3 months, and

Table 1. Baseline characteristics and clinical outcomes.

Baseline characteristics of the entire cohort (n = 4,632)

Age (year)

Median (IQR) 63 (54–71)

Race

White Americans 3,910 84%

Black Americans 516 11%

Other and unknown 206 5%

Sex

Female 2,739 59%

Male 1,893 41%

BMI (kg/m2)

Median (IQR) 27 (23–32)

�30 1,610 35%

<25 1,645 36%

25–29.9 1,377 30%

Tobacco 2,317 50%

Family history 1,654 36%

Comorbidities

Hypertension 2,622 57%

Hyperlipidemia 2,010 43%

Diabetes 1,039 22%

Malignancy

Hematologic cancer 1,822 39%

Solid tumor cancer 2,810 61%

Clinical endpoints

Mortality (all cause) 1,799 39%

Mortality (in hospital) 486 10%

Cardiac events 1,670 36%

Pre-existing 784 17%

De novo CTRCD 886 19%

The cohort has 4,632 patients in total. Data for continuous variables were presented as median (IQR), and data for

categorical variables were presented as number of percentages, n (%). Cardiac events: 5 hospital diagnosed outcomes

by ICD 9/10 codes, including AF, CAD, HF, MI, and stroke. De novo CTRCD: The patient has at least one type of

cardiac events diagnosed after cancer therapy.

AFAU : AnabbreviationlisthasbeencompiledforthoseusedinTable1:Pleaseverifythatallentriesarecorrect:, atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; CTRCD, cancer therapy–related cardiac

dysfunction; HF, heart failure; IQR, interquartile range; MI, myocardial infarction.

https://doi.org/10.1371/journal.pmed.1003736.t001
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maximum decrease within 3 months. In total, we obtained 112 variables (including the derived

ones). A detailed description for all the variables can be found in the supplemental methods

section (S1 Table). In this study, 4,632 patients were kept for downstream analysis. Missing

values were imputed using the mean method, followed by z-score scaling (Fig 1).

Fig 1. Overall study design. The overall study design included 4 steps: (A) data preprocessing; (B) PPN construction

and visualization; (C) clinical validation using cardiac outcomes and survival analysis; and (D) clinical variable

interpretation. The data preprocessing includes outlier removal, feature scaling by z-score method, and missing data

imputation. With the preprocessed patient-clinical variable matrix, we used cosine measure as the similarity metrics for

generating a patient–patient similarity network. Then, we performed K-means clustering to layout patients to different

subgroups based on the cosine measure (see Methods). Patients with similar clinical characteristics are grouped in the

same cluster and are visualized through a specific subgroup to form the final PPN. After the patient network

construction and visualization, we used 2 clinical outcomes, mortality and CTRCD to evaluate performance of network-

based clustering. Finally, we performed the clinical variable network analysis to enhance clinical interpretation of each

risk subgroups with CTRCD. CTRCDAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 6:Pleaseverifythatallentriesarecorrect:, cancer therapy–related cardiac dysfunction; PPN, patient–patient network.

https://doi.org/10.1371/journal.pmed.1003736.g001
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Construction of a patient–patient similarity matrix

For the construction of the patient–patient network, we computed the cosine similarity for all

pairs of patients (Fig 1). The cosine similarity of patient A and B was calculated as:

cosineAB ¼
Pn

i¼1
AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Ai

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Bi
2

p ð1Þ

where n = 112, and Ai and Bi indicate the ith variable of patient A and B, respectively. A cosine

cutoff was used to determine if 2 patients should be connected in the network for

visualization.

Network clustering

To identify patient subgroups, we clustered the 4,632 patients using their cosine similarity net-

work profiles by K-means clustering analysis (Fig 1). We first tried to use the elbow method

[35] to determine the number of clusters. We tested the range of 3 to 20 of the sum of squared

error (SSE):

SSE ¼
Pn

i¼1
ðXi �

�XÞ2 ð2Þ

where Xi indicates each patient, and �X is the average of the patients within the cluster. How-

ever, SSE was decreasing smoothly as the number of clusters increase. Therefore, we per-

formed the survival analysis and cardiovascular outcome analyses for different number of

clusters to identify the best K value. In this study, we chose the best cluster number (K = 4)

using subject matter expertise based on a combination of factors (log-rank p< 0.05; S1 Fig

and S2 Table): (i) significantly distinguishable survival rate and cardiovascular outcome by

Kaplan–Meier (KM) estimator with log-rank test; and (ii) the highest number of clusters to

identify more new patient subgroups. For each cluster, we computed the ratio of patients with

CVD and the p-value using a χ2 test.

Considering that the K-means clustering has a stochastic component, which may result in

different clusters being produced from the same input data, we computed the adjusted rand

index (ARI) and adjusted mutual information (AMI) to validate the clustering stability

[36,37]. For both metrics, a value of 1 indicates perfect agreement, while randomly assigned

clusters have scores around 0. Following the workflow (S2A Fig), we performed 100 K-means

clustering experiments using different random initial states. Among the 100 random experi-

ments, 99 showed high ARI and AMI scores for the clusters, indicating robustness of the clus-

tering results (S2B Fig).

Network visualization

To better visualize the patient–patient networks, we computed the network density at different

cutoff values and selected the cutoff that resulted in the lowest network density [38,39]. Net-

work density is defined as the ratio of the number of actual links and the number of all possible

links from all the patients. The number of all possible links is calculated as n × (n − 1) / 2,

where n is the number of patients in the network. Using this method, we tested the cutoffs in

an increment of 0.05 and identified that the lowest network density (0.24%; S3 Fig) was

achieved when the cutoff was 0.65. Finally, all patient pairs with cosine similarity >0.62 were

considered connected in the network to retain more patients for the network visualization and

obtain a lower network density. In addition to cosine similarity, we also tested Pearson correla-

tion coefficient (PCC), but this latter measure was not able to yield more distinguishable
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clusters (S4 Fig). The density minimization procedure was used to optimize a network layout,

which does not have a direct impact to improve performance of patient network clustering.

The patient network with each cluster indicated by a color was visualized using Cytoscape

v3.7.1 [40].

Variable network construction

In order to understand the differences among the patient subgroups in terms of the clinical

variables, we constructed a clinical variable network for each patient subgroup. For each clus-

ter, PCC values of all pairs of noncategorical variables using their distribution in the patients

within a specific subgroup were calculated. For the derived echocardiogram variables, the

maximum absolute PCC was used to represent the correlations between these variables and

other non-echocardiogram variables. However, there were a limited number of variables; the

network density−based PCC cutoff selection strategy resulted in very sparse networks with too

few variables present in the network. Therefore, we adopted a top K percent strategy that uses

the K% connections with the highest PCC for the construction of the network. To determine

which K to use, we test the following percentages: 5%, 10%, 15%, and 20% (S5 Fig). For exam-

ple, using top 5%, all variable pairs with |PCC| greater than the absolute PCC at the top 5%

were connected. Too few clinical variables were still present in the network when 5% and 10%

were used. When 20% was used, we found an increasing number of correlations with nonsig-

nificant p-values (p> 0.05). Therefore, 15% was used for the final clinical variable network

analysis. At this cutoff, the highest p-value among all the correlations in all clusters was 0.008.

Network analysis

We utilized the Python 3.7 package NetworkX [41] to investigate the properties of the clinical var-

iable networks and used 2 approaches for evaluation. For clinical variable evaluation, we used

node degrees and betweenness centrality to rank the variables in the networks. We then checked

whether some clinical variables (nodes) were important to the network. We used a complete link-

age hierarchical clustering algorithm to cluster the variables across four subgroups.

Statistical analysis

The KM method was used to estimate probabilities of overall survival of the 4 subgroups. The

survival rate was calculated from the cancer start date to death (all-cause), and log-rank test

was used for comparison among different subgroups with Benjamini and Hochberg (BH)

adjustment [42]. All the survival analyses were performed using the Survival and Survminer

packages in R v3.6.0 (https://www.r-project.org). Statistical tests for assessing cardiac outcome

enrichment across different subgroups through χ2 were performed by SciPy v1.2.1 (https://

docs.scipy.org/doc/scipy/reference/index.html). The Kolmogorov–Smirnov (KS) test was used

to assess continuous variable comparisons, and one-way ANOVA was used to compare the dif-

ference of clinical variables among 4 subgroups. p< 0.05 was considered statistically signifi-

cant. All confounding factors (including age, sex, tumor types, tumor stages, disease

comorbidities [e.g., hypertension and diabetes], and medications) were adjusted by Cox

regression models.

Results

Cohort description

The study cohort contains 4,632 cancer patients with at least 2 follow-up visits from March

1997 to January 2019 at the Cleveland Clinic (Table 1). In addition to the clinical data from
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each patient, data from a total of 23,451 echocardiograms were collected (including baseline

and longitudinal follow-up studies). The overall population are 59% females and 41% males,

among which 39% were diagnosed with a hematologic cancer, and 61% with solid tumors at

their initial cancer diagnosis (Table 1). The median age is 63 (IQR: 54 to 71) years old for the

overall population. Median body mass index (BMI) is 27 kg/m2 (IQR: 23 to 32 kg/m2), and

there were 1,610 (35%) patients with BMI�30 kg/m2 (in obese range). Overall, 1,799 (39%)

patients died during the study period, and 486 (10%) patients died in hospital.

In this study, we used 5 types of cardiovascular events defined by ICD 9/10 codes and man-

ually checked by looking at patient charts on Epic for accuracy, including AF, CAD, HF, MI,

and stroke. In total, 1,670 (36%) of patients have at least one type of diagnosed cardiac event.

Specifically, 784 (17%) patients had preexisting cardiac events before cancer therapy, while 886

(19%) patients developed de novo CTRCD. The de novo CTRCD is defined as diagnosed car-

diovascular events (AF, CAD, HF, MI, or stroke) after cancer therapy. This number is consis-

tent to the previous research in breast cancer populations, in which 18% of patients were

resulted from cardiac dysfunction receiving doxorubicin and trastuzumab [43].

Network-based discovery of novel cardiac risk subgroups

Using the framework of psnCVD (Fig 1), we identified 4 subgroups (clusters; Fig 2) that had

the most distinct survival rate among the overall cohort. Among 4 subgroups, orangeAU : PerPLOSstyle; italicsshouldnotbeusedforemphasisofwords:Therefore; italicizedwordslikeorange; green; blue; purple; etc:havebeenchangedtoregulartextthroughoutthearticle:Pleaseconfirmthatthischangeisvalid:subgroup

(C1, n = 625; S3 Table) and green subgroup (C3, n = 949; S4 Table) were most significantly

enriched with CTRCD: 51% (95% confidence interval [CI] 47% to 54%, p< 0.001, χ2 test) of

patients in orange subgroup (28% de novo CTRCD) and 46% (95% CI 43% to 49%, p< 0.001,

χ2 test) of patients in green subgroups (24% de novo CTRCD), respectively. Blue subgroup

(C2) was the largest subgroup in the patient–patient network (1,808 patients; S5 Table), while

the CTRCD percentage was only 24%, indicating the lowest CTRCD risk subgroup. In purple

subgroup (C4, n = 1,250; S6 Table), 39% of cancer patients had CTRCD.

To better evaluate the clinical relevance of patient–patient networks, we performed KM anal-

ysis to estimate cumulative hazard of de novo CTRCD and survival rate across 4 network-pre-

dicted subgroups (Fig 2B and 2C). A higher cumulative hazard of de novo CTRCD indicates a

higher incidence of CTRCD after cancer therapy initiation. The cumulative hazard of de novo

CTRCD gradually increases from blue, purple, green, to orange subgroups (log-rank, p< 0.001;

Fig 2B), and the hazard ratios (HRs) show the same trend as well (Fig 2D). Among 4 subgroups,

orange subgroup has the highest risk of de novo CTRCD (Fig 2D) with an HR of 3.05 (95% CI

2.51 to 3.72, p< 0.001). Conversely, blue subgroup has the lowest CTRCD risk (Fig 2B).

To further test the performance of the risk stratification on each of cardiovascular events,

we computed the cumulative hazard and percentage of HF, AF, CAD, MI, and stroke across 4

subgroups (S6 Fig). To be specific, the orange subgroup (C1) has the highest cumulative haz-

ard of de novo HF and AF (log-rank, p< 0.001; S6A Fig), while the blue subgroup (C2, lowest

CTRCD and mortality rate subgroup) has lowest cumulative hazard of de novo HF, AF, CAD,

and MI (log-rank, p< 0.001; S6A Fig). Yet, the cumulative hazard of de novo stroke is slightly

separated across 4 subgroups (log-rank, p = 0.055). We found that with the increased cumula-

tive hazard of HF, the percentage of HF from blue, pink, green, to orange were elevated (S6B

and S6C Fig). To be specific, 19.5% of preexisting and de novo HF patients were in orange

subgroup (C1, highest CTRCD subgroup; S6B Fig), which is significantly higher than 13.7% of

green subgroup (orange 95% CI 16.4% to 22.6% versus green 95% CI 11.5% to 15.9%,

p = 0.011, χ2 test). We also found that the cumulative hazard of de novo CAD was not signifi-

cant between orange and green subgroup (S6A Fig). However, the green subgroup had highest

percentage of CAD (16.3%), and the percentage of preexisting CAD was 10.6% (S6B Fig).
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We next turned to analyze overall survival rate across 4 subgroups. With the de novo

CTRCD risk increasing from blue, green, to orange subgroups, the survival probability

dropped significantly (log-rank, p< 0.001; Fig 2C). Specifically, the patients in blue subgroup

have the lowest risk of de novo CTRCD and the best survival. Patients in purple subgroup had

the second lowest risk of de novo CTRCD (log-rank, p< 0.001; Fig 2B and 2D) but the worst

survival probability (HR 4.32, 95% CI 3.82 to 4.88; Fig 2D). Thus, patients within purple sub-

group represented a relatively intermediate CTRCD risk but the worst mortality subgroup.

Among 4 network-predicted subgroups, we found that patients within purple subgroup are

heterogeneously distributed across other subgroups (Fig 2A). Patients within purple subgroup

had a moderate risk of de novo CTRCD (Fig 2B), while it was enriched by the worst mortality

rate (Fig 2C). One possible explanation is that tumor types or tumor stages may influence the

mortality. We therefore estimated the HRs of mortality across different tumor types and

tumor stages. Cox regression analysis showed that the increased mortality in the purple sub-

group was significantly associated with the late tumor stages (HR = 2.07, 95% CI 1.50 to 2.85,

p< 0.001; S7 Fig). However, the different tumor types and tumor stages do not influence the

total performance of our network method. The survival and cumulative hazard of de novo

CTRCD showed the same results with or without the features of tumor types, tumor stages,

and treatment types (Fig 2B and 2C, S8 Fig).

In addition to K-means clustering on patient–patient similarity networks, we tested perfor-

mance of K-means clustering using the raw clinical variables for all patients. We found that

the 2 cardiac-risk subgroups (the orange subgroup and green subgroup; S9 Fig) identified

from K-means clustering using the raw clinical variables are not significantly associated with

survival and cardiovascular outcomes. Altogether, the psnCVD framework offers a network-

based methodology for patient clustering, outperforming that of traditional K-means cluster-

ing from raw clinical variables (S9 Fig).

Longitudinal patient–patient network analysis

To further explore network characteristics associated with CTRCD, we performed longitudinal

patient–patient network analyses over patient’s morbidity and mortality with over 20 years’

follow-up data. We tracked the distribution of de novo CTRCD and mortality for all patients

across 4 subgroups. Specifically, we inspected 4 consecutive time periods after cancer therapy

initiation based on over 20 years’ follow-up from our institutional EMRs. From the distribu-

tion of de novo CTRCD and mortality, cancer patients with de novo CTRCD were enriched in

orange and green subgroups across multiple time points (Fig 3). However, patients in sub-

groups purple and orange show the worse mortality within 10 years of cancer therapy initia-

tion (Fig 3), consistent with survival analysis in the combined patient cohort (Fig 2C). From

the temporal distribution of de novo CTRCD, the patients in orange subgroup had a higher

Fig 2. A discovered patient–patient similarity network. (A) A patient–patient network colorized by 4 clusters (subgroups). In

total, 3,131 patients were shown. A total of 15,698 edges with cosine>0.62 were illustrated. The cosine cutoff was selected based

upon the network density (S2 Fig). A gradient of red color was used to highlight CTRCD outcomes among different patient

subgroups, whereby dense red saturation means more enriched outcomes of CTRCD. The network was visualized using Cytoscape v

3.7.1. (B) Cumulative hazard of de novo CTRCD (the patient has at least one type of cardiac event diagnosed after cancer therapy)

and (C) KM curves to estimate all survival probability across 4 subgroups are shown. The log-rank test with the BH adjustment was

used for comparing the cumulative hazard of de novo CTRCD and survival rate among 4 subgroups. The shadow represents 95%

CI. (D) The effects of 4 subgroups with risk of de novo CTRCD and all-cause mortality were estimated with HRs (and 95% CI), and

the Wald χ2 test was used to evaluate the subgroups with statistically significant coefficients. Orange subgroup: C1, intermediate

survival and the highest de novo CTRCD risk; blue subgroup: best survival and the lowest de novo CTRCD risk; green subgroup:

intermediate survival and intermediate de novo CTRCD risk; purple subgroup: the worst survival and intermediate de novo

CTRCD risk. BH, Benjamini and Hochberg; CI, confidence interval; CTRCD, cancer therapy–related cardiac dysfunction; CVD,

cardiovascular disease; HR, hazard ratio; KM, Kaplan–Meier.

https://doi.org/10.1371/journal.pmed.1003736.g002
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percentage of de novo CTRCD during the cancer therapy initiation of 0 to 1 year and 2 to 5

years in comparison to long-term exposure (6 to 20 years) (0 to 1 year 10.2% 95% CI 7.8% to

12.6%, 2 to 5 years 11.4% 95% CI 8.8% to 13.8%, 6 to 10 years 4.6% 95% CI 2.9% to 6.2%, and

11 to 20 years 2.2% 95% CI 1.1% to 3.4%, p< 0.001; Fig 3), suggesting acute cardiotoxicity

[44,45]. In addition, we found the worst mortality after the cancer therapy initiation of 2 to 5

years (Fig 3), indicating important roles of early cardiac care in improving of cancer patients’

survival. For example, 29.2% patients died in purple subgroup during years 2 to 5 in compari-

son to years 6 to 10 (10.8%) and years 11 to 20 (4.3%) (Fig 3).

We further calculated the incidence of 5 types of de novo CTRCD events from chemother-

apy initiation date from 1 to 20 years (S7 Table). We found that 32% (1-year incidence is

6.11%) of de novo CTRCD events were diagnosed in the first year after chemotherapy, espe-

cially for 35% of HF events (1-year incidence is 2.05%) and 36% of AF (incidence is 2.12%) (S7

Table and S10 Fig). Notably, the 5-year incidence of all 5 de novo cardiovascular events are

13.49% (S7 Table), and 71% of cardiovascular events were diagnosed in the first 5 years (S10

Fig) during the 20-year follow-up window, further suggesting acute cardio-toxicity and impor-

tance of long-term cardiac care for cancer survivors.

Network-based discovery of clinically actionable variables

We further performed clinical variable–variable network analyses to identify actionable bio-

markers for characterization of de novo CTRCD outcomes and mortality rate. Clinical vari-

ables were divided into 4 categories: cardiac, echocardiogram, lab testing, and general

demographics. A key finding is that cardiac variables (including Troponin T and NT-proB-

type Natriuretic Peptide [NT-proBNP]) have a stronger connectivity in the highest de novo

CTRCD risk subgroup (orange) compared to the lowest risk subgroup (blue) (Figs 4 and 5A).

Troponin T [46] and NT-proBNP [47] are 2 well-established cardiac biomarkers for risk

assessment of heart disease. Troponin T and NT-proBNP have a stronger betweenness central-

ity in the highest de novo CTRCD risk subgroup (orange) compared to the other 3 clinical var-

iable networks (S11A Fig). Creatinine is another clinical variable with a strong connectivity

and centrality in the orange subgroup compared to other 3 subgroups (Figs 4 and 5A). Mean-

while, creatinine is highly connected with Troponin T and NT-proBNP in orange, green, and

purple subgroups (Fig 4). In contrast, creatinine loses connectivity with Troponin T or NT-

proBNP in the blue subgroup. These observations suggest a clinical role of creatinine in risk

assessment of CTRCD.

Next, we inspected levels of network-predicted biomarkers (Fig 5A) in patient data (S8

Table). We found that patients had an elevated serum Troponin T (orange mean = 0.15 μg/L

95% CI 0.10 to 0.20 μg/L versus blue mean = 0.03 μg/L 95% CI 0.01 to 0.02 μg/L, p< 0.001, KS

test; Fig 5B) and an elevated serum creatinine (orange mean = 1.08 mg/dL 95% CI 1.01 to 1.34

mg/dL versus blue mean = 0.84 mg/dL 95% CI 0.83 to 0.85 mg/dL, p< 0.001, KS test; Fig 5B)

level in the orange subgroup compared to the lowest CTRCD risk subgroup (blue), consistent

with the clinical variable network analysis (Fig 4). We found significant changes for several

echocardiogram parameters (including LVEF, end-diastolic volumeAU : PleasenotethatEDVandESVinthesentenceWefoundsignificantchangesforseveralechocardiogramparametersðincludingLVEF:::havebeendefinedasend � diastolicvolumeandend � systolicvolume; respectively:Pleasecorrectifnecessary:(EDV), and end-systolic

volume (ESV)) in orange subgroup compared to blue and purple subgroups (p< 0.001, KS

test; Fig 5B and S11B Fig, S8 and S9 Tables). As expected, several general demographic vari-

ables, including BMI and body surface area (BSA), were significantly elevated in orange and

green subgroups compared to blue and purple subgroups (p< 0.001, KS test; Fig 5B and S11B

Fig, S8 and S9 Tables). One key finding is that an elevated serum level of NT-proBNP

(p< 0.001, KS test; Fig 5B, S8 and S9 Tables) and Troponin T (p< 0.001, KS test; Fig 5B, S8

and S9 Tables) is observed in both orange (the highest CTRCD risk) and purple subgroups
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(the worst mortality) compared to blue subgroup. Importantly, serum levels of NT-proBNP and

Troponin T are significantly correlated with patient’s mortality (p< 0.001, log-rank test; Fig 6).

The HR was 2.95 (95% CI 2.28 to 3.82, p< 0.001) between NT-proBNP > 900 pg/mL and NT-

proBNP = 0 to 125 pg/mL. The HR was 2.08 (95% CI 1.83 to 2.34, p< 0.001) between Troponin

T> 0.05 μg/L versus Troponin T� 0.01 μg/L. In summary, combining clinical variable net-

work analyses and survival analysis revealed that Troponin T and NT-proBNP offer potential

actionable biomarkers for cardiac risk assessment of patients during cancer treatment.

To further confirm the significance of the network-discovered variables, we next turned to

perform Cox regression–based HR analyses. Firstly, we computed the PCC among all 112 fea-

tures to test the collinearity of paired features (S10 Table). As shown in S12 Fig, approximate

95% variable–variable pairs have |PCC| values less than 0.25, suggesting overall low collinearity

of the variables. We performed Cox regression model analyses for 22 selected clinical variables

having the most connectivity (degree > 10) in the clinical variable network (Fig 4). As shown

in Fig 5, the HR analysis is consistent with network-based findings that NT-proBNP and Tro-

ponin T are 2 clinically actionable biomarkers for cardiac risk assessment of cancer treatments.

To be specific, NT-proBNP and Troponin T are significantly associated with increased risk of

de novo CTRCD in orange subgroup (C1; NT-proBNP, HR = 1.36, 95%CI 1.08 to 1.72,

p = 0.010; Troponin T, HR = 1.139 95%CI 1.00 to 1.30, p = 0.049; S11 Table). Meanwhile, the

decreased LVEF (parameter from echocardiogram) is significantly associated with increased

risk of de novo CTRCD in orange subgroup (HR = 0.96, 95%CI 0.93 to 0.98, p = 0.003; S11

Table). Altogether, these HR analyses further confirmed network-based findings.

Validation of model generalizability

Since our patient clustering method in this study is unsupervised, the common train-test eval-

uation strategy used in supervised machine learning cannot be applied here directly. We per-

formed random-split and time-split training-test validation strategies to evaluate the

generalizability of our psnCVD models. In the time-split, the set with earlier time was regarded

as the training set, while in random-split, all patients were randomly split to 2 equally sized

training versus test sets by 3 random experiments. We fitted the K-means model on the train-

ing set and used the model to predict the clusters for the test set. The detailed diagram of the

new experiments is illustrated in S13 Fig. We found that survival and cumulative hazard of de

novo CTRCD were significantly distinguishable across 4 subgroups in test sets for both time-

split (S14 Fig) and random-split experiments (S15 Fig). We further performed time-depen-

dent area under the receiver operating characteristic curve (AUROC) analysis [48–50]. We

found that our psnCVD models can further improve performance of the Cox models (S16

Fig). Altogether, these observations revealed a strong generalizability of psnCVD models, sug-

gesting its potential implications for cardio-oncology patients. Yet, further external validation

using independent cohorts from different healthcare systems are highly warranted.

Discussion

In this study, we proposed a clinically relevant, network-based methodology, psnCVD, for car-

diac risk stratification by incorporating large-scale, longitudinal patients’ clinical and

Fig 3. Longitudinal patient–patient network analysis. The patient–patient network colorized by cluster numbers with red to blue gradual heat map

indicating the de novo CTRCD (left) and mortality (right) distribution in the network. A gradient of red to blue color was used to highlight de novo CTRCD

and mortality outcomes among the different patient subgroups (whereby dense red saturation means more enriched outcomes for the patients in that area

of the network, and more blue saturation low density of outcomes) across 4 different time points. The right bar plot shows the percentage of de novo

CTRCD outcome and mortality across 4 subgroups (Fig 2) during 4 consecutive time periods after cancer therapy initiation. Color key for 4 patient

subgroups is consistent with Fig 2. CTRCD, cancer therapy–related cardiac dysfunction.

https://doi.org/10.1371/journal.pmed.1003736.g003
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Fig 4. Clinical variable networks across 4 patient clusters. (A) Clinical variable–variable networks across 4 patient subgroups: Orange subgroup: C1,

intermediate survival and the highest de novo CTRCD risk; blue subgroup: best survival and the lowest de novo CTRCD risk; green subgroup: intermediate

survival and intermediate de novo CTRCD risk; purple subgroup: the worst survival and intermediate de novo CTRCD risk. Top 15% of PCC value was used for

the final cutoff for each network. At this cutoff, the highest p-value among all the correlations in all clusters was p = 0.008 (see Methods). Variables were colored

by 4 categories of clinical variables: cardiac (red), echocardiogram (blue), lab testing (green), and general demographics (gray). Size of node indicates the degree

(connectivity). Size of edges indicates the PCC value in the clinical variable network. (B) De novo CTRCD and mortality risk are presented for each subgroup.

The abbreviations for all variables are provided in S1 Table. CTRCD, cancer therapy–related cardiac dysfunction; NT-proBNP, NT-proB-type Natriuretic

Peptide; PCC, Pearson correlation coefficient.

https://doi.org/10.1371/journal.pmed.1003736.g004
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Fig 5. Network and clinical characteristics of variables across patient subgroups. (A) Degree distribution of clinical variables across 4 patient subgroup-specific clinical

variable networks. The gradient bar shows the degree (connectivity) range. The 4 colored dendrogram indicated 4 types of clinical variables (consistent with Fig 4A). The

red asterisk highlights the network-identified biomarkers for CTRCD. (B) Lab testing values for 6 selected clinical variables across different patient subgroups. The vertical

bar denotes the 25% to 75% range, and the thick horizontal lines in each bean plot represent the average value. The black asterisk (�) denotes statistically significantly

clinical variables in a specific patient subgroup compared to the C2 subgroup (baseline; Fig 2). p-value was computed by KS test. All statistical data are provided in S8

Table. BMI, body mass index; CTRCD, cancer therapy–related cardiac dysfunction; EDV, end-diastolic volume; KS, Kolmogorov–Smirnov; LVEF, left ventricular ejection

fraction; NT-proBNP, NT-proB-type Natriuretic Peptide.

https://doi.org/10.1371/journal.pmed.1003736.g005
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echocardiographic data. Using psnCVD, we performed unbiased, network-based analyses of

4,632 cancer patients with 5 diagnosed cardiac outcomes. We identified 4 clinically relevant

subgroups of patients using topology-based K-means clustering, including the highest cardio-

vascular risk group (Fig 2B) and the worst mortality group (Fig 2C). Importantly, these net-

work-predicted subgroups are significantly correlated with the risk of cardiac dysfunction in

cancer survivors during anticancer therapies.

Using longitudinal (up to 20 years’ follow-up patient data) patient–patient network analy-

sis, we found that cancer patients have a higher morbidity and mortality within 5 years after

the initiation of cancer therapies, indicating acute cardiotoxicity [51]. However, cancer

patients have overall low 5-year survival, and the number of patients followed after 10 years is

low in our current cohort. Independent cohort validations using EMR-derived time-series

patient databases with a longer follow-up time are warranted.

Compared to traditional machine learning–based approaches, network-based approaches

are more interpretable, visualizing the decision boundary in the context of topology-based

patient–patient networks based on several recent patient network studies [31,52,53]. Previous

studies have used unsupervised machine learning method for patient clustering; however, the

clinical variables in most published approaches lack clinical interpretation [52]. Using clinical

variable network analysis, we found that Troponin-T and NT-proBNP offer potential predic-

tors for assessment of cardiovascular risk in cancer patients (Figs 4–6). Our network finding is

consistent with a recent meta-analysis that assessment of troponin levels may offer clinical

benefits for cancer patients with CTRCD [54]. In addition to cancer-associated cardiotoxicity,

CVD is a risk factor for new onset cancer [55]. In clinical variable network-based analysis, we

found that cancer patients with the elevated levels of NT-proBNP and Troponin-T had a

Fig 6. KM analysis of NT-proBNP and Troponin T in cancer patients. The threshold of different NT-proBNP (pg/mL) and Troponin T (μg/L)

levels were used based on published clinical guidelines. The log-rank test with the BH adjustment [42] was used for survival comparisons among

3 groups. The shadow represents 95% CIs. p-value was computed by log-rank test. BH, Benjamini and Hochberg; CI, confidence interval; KM,

Kaplan–Meier; NT-proBNP, NT-proB-type Natriuretic Peptide.

https://doi.org/10.1371/journal.pmed.1003736.g006
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worse survival (Fig 6), further supporting the potential roles of cardiac biomarkers involved in

cancer survival. In addition to NT-proBNP and Troponin-T, several lab testing variables, such

as sodium and potassium, have high connectivity in patients within the worst mortality sub-

group (purple), revealing potential prognostic markers in cancer patients with cardiovascular

events (Fig 5, S11B Fig). Altogether, assessment of troponin levels or other serum markers

may qualify as a screening test to identify patients who require referral to cardio-oncology

units and benefit from preventive strategies of cardiovascular risk. Further independent valida-

tion and clinical trials are warranted before used as biomarkers in clinics.

We acknowledge several limitations. We used the ICD 9/10 codes to define 5 types of car-

diovascular events before and after cancer treatments. The accuracy of ICD 9/10 codes may

influence possible false positive findings during cardiovascular outcome validations. Risk esti-

mates may have been subject to bias within individuals because of variability in patient referral

pattern, clinical volume, and threshold for hospitalization in the EMR database. Patient–

patient similarity may be nonlinear, which cannot be measured by a linear measure. In this

study, we adjusted various confounding factors, including age, cardiac risk factors (diabetes

and hypertension), family history, and others based on our sizeable efforts. Yet, other possible

confounding factors, including disease comorbidities, multiple medication usages (such as

combination regimens among radiotherapy, chemotherapy, and targeted therapy), and others,

may influence our findings. Although we found that other confounding factors, such as tumor

stages, tumor type, and anticancer medications, have minor impacts on patient network-based

findings (Fig 2, S8 Fig), further confounding factor adjustment tested in other independent

cohorts are needed in the future. To inspect influence of heterogeneities of anticancer medica-

tions, we rebuilt a patient–patient network using a subpopulation of patients (n = 1,252) who

received chemotherapy only (S17A Fig). Utilizing psnCVD framework, we identified 3 clini-

cally relevant subgroups in this small, homogeneous population: Cardiovascular outcomes

(p< 0.001, log-rank test; S17B Fig) and patient survival rate (p< 0.001, log-rank test; S17C

Fig) are highly correlated with patient subgroups as well. In this study, we used a K-means

clustering approach that may overfit for network-based patient clustering [56]. We observed

high overall performance (S13–S15 Figs) and a strong generalizability (S16 Fig) of psnCVD

models using random-split and time-split training-test validation strategies. In addition,

psnCVD models improve the performance of the Cox proportional hazard models during

time-dependent AUROC analysis [48–50]. These observations indicate a strong generalizabil-

ity of our psnCVD methodology. However, additional prospective studies in different health-

care systems and EMR databases are highly warranted to validate the generalizability of

psnCVD models before clinical use. Finally, the development of an online risk calculator by

integrating all patient–patient network models would provide useful tools for cardiac risk

assessment during cardio-oncology clinical practices. For example, to permit an unbiased risk

stratification for new individuals, the clinical variables of individuals can be collected by

research electronic data capture (REDCap) tools during the cardio-oncology practices. The

cluster of a new patient will be predicted based on the collected clinical variables using our

psnCVD models [26,29].

In summary, this study implies that an unbiased, systems-based network analysis of large-

scale, longitudinal patient data is more interpretable, visualizing the decision boundary to car-

diac risk stratification for patients before, during, and after cancer treatment. Importantly, the

network methodologies will excel at integrating heterogeneous patient data and generating

interpretable, clinical insights of models. From a translational perspective, if broadly applied,

the network tools developed here hold great promise for identifying novel cardiac risk sub-

groups and clinically actionable biomarkers for rapid development of precision cardio-

oncology.
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Supporting information

S1 Checklist. STARD Checklist.

(PDF)

S1 Fig. KM curves to estimate the survival and cardiovascular outcome for different num-

ber of clusters. The number of clusters represents different K values ranging from 3 to 10 in

K-means clustering. The log-rank test was used to evaluate the statistical significance. All pair-

wise p-values between the subgroups for each K value were summarized in S2 Table. CVDAU : AbbreviationlistshavebeencompiledforthoseusedinS1; S2; S4 � S11; andS12 � S17Figs:Pleaseverifythatallentriesarecorrect:, car-

diovascular disease; KM, Kaplan–Meier.

(PDF)

S2 Fig. Clustering stability test. (A) The workflow of K-means clustering stability test. (B)

The ARI and AMI among the 100 repeats showed high stability of the clustering results. The

averages and standard deviations are shown in the bar plot. AMI, adjusted mutual informa-

tion; ARI, adjusted rand index.

(PDF)

S3 Fig. Network density–based cosine cutoff selection. The network density at different cut-

off values and selected the cutoff that resulted in the lowest network density. Network density

is defined as the ratio of the number of actual links and the number of all possible links from

all the patients.

(PDF)

S4 Fig. PCC as patient similarity metric. (A) Patient–patient network colorized by 4 cluster

numbers. All edges have PCC< 0.65 for the patient pairs. All data preprocessing and PCC cut-

off selection were same with the method cosine similarity calculation. The network was visual-

ized using Cytoscape v 3.7.1. (B) KM curves to estimate the all-cause survival probability in the

4 subgroups. The log-rank test was used to evaluate the statistical significance. KM, Kaplan–

Meier; PCC, Pearson correlation coefficient.

(PDF)

S5 Fig. Variable network PCC cutoff selection. 5%, 10%, 15%, and 20% were used to test the

K% connections with the highest PCC for the construction of the network. PCC, Pearson cor-

relation coefficient.

(PDF)

S6 Fig. Efficacy of the risk stratification on each CVD outcomes. (A) Cumulative hazard of

5 de novo CVD events across 4 subgroups are shown. The log-rank test with the BH adjust-

ment was used for comparing the cumulative hazard among 4 subgroups. The shadow repre-

sents 95% CI. (B) The percentage of 5 CVD events across 4 subgroups. (C) The percentage of 5

de novo CVD events (the patient has at least one type of cardiac event diagnosed after cancer

therapy) across 4 subgroups. AF, atrial fibrillation; BH, Benjamini and Hochberg; CAD, coro-

nary artery disease; CI, confidence interval; CVD, cardiovascular disease; HF, heart failure;

MI, myocardial infarction.

(PDF)

S7 Fig. HR of mortality across 4 subgroups. HRs (and 95% CI) of CTRCD, cancer type, and

cancer stage aim to mortality outcome. The Wald χ2 test was used to evaluate the variables

with statistically significant coefficients. CI, confidence interval; CTRCD, cancer therapy–

related cardiac dysfunction; CVD, cardiovascular disease; HR, hazard ratio.

(PDF)
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S8 Fig. Outcome validation for risk stratification model on the clinically derived variables

plus cancer type, cancer stage, and treatment type. (A) KM curves to estimate all survival

probability and (B) cumulative hazard of de novo CTRCD (the patient has at least one type of

cardiac event diagnosed after cancer therapy) across 4 subgroups are shown. The log-rank test

with the BH adjustment was used for comparing the cumulative hazard among 4 subgroups.

The shadow represents 95% CI. BH, Benjamini and Hochberg; CI, confidence interval;

CTRCD, cancer therapy–related cardiac dysfunction; KM, Kaplan–Meier.

(PDF)

S9 Fig. Outcome validation for K-means clustering directly on the clinically derived vari-

ables for 4,632 patients. (A) KM curves to estimate all survival probability across 4 subgroups

are shown and (B) cumulative hazard of de novo CTRCD (the patient has at least one type of

cardiac event diagnosed after cancer therapy). The log-rank test with the BH adjustment was

used for comparing the cumulative hazard among 4 subgroups. The shadow represents 95%

CI. BH, Benjamini and Hochberg; CI, confidence interval; CTRCD, cancer therapy–related

cardiac dysfunction; KM, Kaplan–Meier.

(PDF)

S10 Fig. Cumulative percentage of 5 de novo CTRCD events from chemotherapy initiation

1 year, 5 years, 10 years, and 20 years. AF, atrial fibrillation; CAD, coronary artery disease;

CTRCD, cancer therapy–related cardiac dysfunction; HF, heart failure; MI, myocardial infarc-

tion.

(PDF)

S11 Fig. Betweenness centrality of the variables. (A) Betweenness centrality of clinical vari-

ables across 4 patient subgroup-specific clinical variable network. The gradient bar shows the

centrality range. (B) Lab testing values for 4 selected clinical variables across different patient

subgroups. The vertical bar denotes the 25% to 75% range, and the thick horizontal lines in

each bean plot represent the average value. The black asterisk (�) denotes statistically signifi-

cantly clinical variables in specific patient subgroup compared to the C2 subgroup. p-value

was computed by KS test. All statistical data are provided in S8 Table. BSA, body surface area;

ESV, end-systolic volume; KS, Kolmogorov–Smirnov.

(PDF)

S12 Fig. Pairwise Pearson correlations among the used 112 clinical variables. The gradient

red color denotes positive correlation, and gradient blue color denotes negative correlation.

The order of labels in heatmap were followed by 4 variable categories. Due to the space limita-

tion, the labels in heatmap show one name in every 3 names. The full correlation matrix of 112

variables were showed in S10 Table, and the order of variable labels were the same with the

label ranked in the heatmap.

(PDF)

S13 Fig. The workflow of the train-test validation strategy to evaluate the generalizability

of psnCVD models. All patients were split randomly or by time to training and test sets. We

computed the cosine similarity matrix for patients in the training set (blue matrix) and for

patients in the test set (green matrix) against the training set. Next, the K-means clustering was

performed on the training set and was used to predict both the training and test sets. The pre-

dicted clusters were evaluated for the survival and de novo CTRCD risk for both the training

and test sets. CTRCD, cancer therapy–related cardiac dysfunction; psnCVD, patient–patient

similarity network-based risk assessment of CVD.

(PDF)
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S14 Fig. Evaluation of the generalizability of psnCVD models using time-split cohorts.

Patients were split by their cancer diagnosis time to 3 training set/test set pairs: 50% versus

50%, 60% versus 40%, and 80% versus 20%, respectively. The survival probability and cumula-

tive hazard of de novo CTRCD of the training sets and test sets were evaluated. Log-rank tests

show statistically significant difference in survival probability and cumulative hazard of de

novo CTRCD for the patient groups in the test sets. CTRCD, cancer therapy–related cardiac

dysfunction; psnCVD, patient–patient similarity network-based risk assessment of CVD.

(PDF)

S15 Fig. Evaluation of the generalizability of psnCVD models using randomly split

cohorts. The survival probability and cumulative hazard of de novo CTRCD of the training set

(50%) and test set (50%) were evaluated in 3 independent random experiments. Log-rank tests

show statistically significant difference in survival probability and cumulative hazard of de

novo CTRCD for the patient groups in the test sets. CTRCD, cancer therapy–related cardiac

dysfunction; psnCVD, patient–patient similarity network-based risk assessment of CVD.

(PDF)

S16 Fig. Time-dependent AUROC analysis of Cox proportional hazard models using the

entire cohort (A) and individual patient subgroups identified by psnCVD models (B–E).

The overall performance of Cox proportional hazards model using the entire cohort (A) and

individual patient subgroups (B–E). For each subplot, all patients (A) or patients in individual

subgroups (B–E) were randomly split to training (50%) and test (50%) set. The clusters for the

patients in the test set were predicted based on the model fitted on the training set. Time-

dependent AUROC was used to evaluate the model performance of the test sets. AUROC, area

under the receiver operating characteristic curve; psnCVD, patient–patient similarity net-

work-based risk assessment of CVD.

(PDF)

S17 Fig. Methodology application in chemotherapy population. (A) Patient–patient net-

work colorized by 3 cluster numbers. Patient–patient network using a subpopulation of

patients (n = 1,252) who received chemotherapy only. Using cosine < 0.55 as a cutoff, 3 clus-

ters were identified: cluster 1a (n = 502), cluster 2a (n = 474), and cluster 3a (n = 275). The net-

work was visualized using Cytoscape v3.7.1. (B) Cumulative hazard of de novo CTRCD in the

3 subgroups. The log-rank test was used to evaluate the statistical significance. (C) KM curves

to estimate the all-cause survival probability in the 3 subgroups. CTRCD, cancer therapy–

related cardiac dysfunction; KM, Kaplan–Meier.

(PDF)

S1 Table. The full information of 112 clinical variables used in this study.

(XLSX)

S2 Table. Summary of survival and cardiovascular outcome validations across different

number of clusters.

(XLSX)

S3 Table. Baseline characters and clinical outcomes of orange (C1) subgroup.

(XLSX)

S4 Table. Baseline characters and clinical outcomes of green (C3) subgroup.

(XLSX)

S5 Table. Baseline characters and clinical outcomes of blue (C2) subgroup.

(XLSX)
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S6 Table. Baseline characters and clinical outcomes of purple (C4) subgroup.

(XLSX)

S7 Table. The incidence of 5 de novo cardiovascular outcomes from cancer therapy initia-

tion across 20 years.

(XLSX)

S8 Table. Statistics analysis of clinical variable across 4 subgroups.

(XLSX)

S9 Table. Summary of clinically actionable variables.

(XLSX)

S10 Table. The correlation matrix for 112 clinical variables.

(XLSX)

S11 Table. The hazard ratio analysis for the selected clinical variables.

(XLSX)
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