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Abstract
Over one third of all known proteolytic enzymes are serine proteases. Among 
these, the trypsin-like serine proteases comprise one of the best characterized 
subfamilies due to their essential roles in blood coagulation, food digestion, fibri-
nolysis, or immunity. Trypsin-like serine proteases possess primary substrate 
specificity for basic amino acids. Most of the well-characterized trypsin-like pro-
teases such as trypsin, plasmin, or urokinase are soluble proteases that are 
secreted into the extracellular environment. At the turn of the millennium, a num-
ber of novel trypsin-like serine proteases have been identified that are anchored 
in the cell membrane, either by a transmembrane domain at the N- or C-terminus 
or via a glycosylphosphatidylinositol (GPI) linkage. Meanwhile more than 20 
membrane-anchored serine proteases (MASPs) have been identified in human 
and mouse, and some of them have emerged as key regulators of mammalian 
development and homeostasis. Thus, the MASP corin and TMPRSS6/matrip-
tase- 2 have been demonstrated to be the activators of the atrial natriuretic peptide 
(ANP) and key regulator of hepcidin expression, respectively. Furthermore, 
MASPs have been recognized as host cell factors activating respiratory viruses 
including influenza virus as well as severe acute respiratory syndrome (SARS) 
and Middle East respiratory syndrome (MERS) coronaviruses. In particular, 
transmembrane protease serine S1 member 2 (TMPRSS2) has been shown to be 
essential for proteolytic activation and consequently spread and pathogenesis of 
a number of influenza A viruses in mice and as a factor associated with severe 
influenza virus infection in humans.

This review gives an overview on the physiological functions of the fascinat-
ing and rapidly evolving group of MASPs and a summary of the current knowl-
edge on their role in proteolytic activation of viral fusion proteins.
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8.1  Introduction

The designation trypsin-like serine proteases has originally been used for a large 
group of soluble proteolytic enzymes, which are involved in digestion, blood coagu-
lation, fibrinolysis, and immunity. Analyses of vertebrate genomes at the turn of the 
millennium have identified a novel subfamily of trypsin-like serine proteases that 
are anchored in the cell membrane, either by a carboxy-terminal transmembrane 
domain (type I), an amino-terminal transmembrane domain (type II), or via a glyco-
sylphosphatidylinositol (GPI) linkage at the carboxy terminus. Over the past two 
decades, these membrane-anchored serine proteases (MASPs) have emerged as key 
regulators of mammalian development and homeostasis in processes such as epithe-
lial tight junction formation, skin development, epithelial sodium channel activa-
tion, cellular iron homeostasis, blood pressure, inner ear development, placental 
morphogenesis, neural tube closure, and male fertility. Moreover, dysregulated 
expression and/or activity of a number of MASPs is observed in many cancer tis-
sues. Within the past decade, MASPs expressed in the human airways have further-
more been identified as host cell factors that may support proteolytic activation and 
spread of respiratory viruses including influenza virus, human metapneumovirus, 
severe acute respiratory syndrome (SARS) , and Middle East respiratory syndrome  
(MERS) coronavirus (CoV).

The largest group of the MASPs is the family of type II transmembrane serine 
proteases (TTSPs) (Hooper et  al. 2001). To date, the TTSP family comprises 18 
known members in humans and 20 in mice. All members of the TTSP family share 
a common domain structure possessing a short N-terminal cytoplasmic domain, a 
transmembrane domain, a C-terminal serine protease domain, and a variable stem 
region that may contain 1–11 protein domains of 6 different types (Fig. 8.1). The 
most prominent member of the TTSP, enteropeptidase, has been identified over a 
century ago by Pavlov and coworkers due to its essential role in food digestion; 
however, only the cloning of the enteropeptidase cDNA in 1994 revealed the pres-
ence of a membrane anchor and explained its localization to the plasma membrane 
of duodenal cells. The modular structure of the enteropeptidase protein was found 
to be similar to that of a previously cloned protease, hepsin (Leytus et al. 1988).

The first of the GPI-anchored serine proteases identified was prostasin (Yu et al. 
1994; Chen et al. 2001a, b). A second human GPI-anchored serine protease, testisin, 
was identified in 1998/1999 (Inoue et al. 1998, Hooper et al. 1999). Tryptase gamma 
1 is the only type I transmembrane serine protease identified to date. Prostasin, tes-
tisin, and tryptase gamma 1 are composed of a single protease domain linked to a 
GPI anchor or a transmembrane domain at the C-terminus (Fig. 8.1).

MASPs belong to the chymotrypsin (S1)-like serine protease family (reviewed in 
Perona and Craik 1995 and Hooper et al. 2001). They are synthesized as inactive 
single- chain zymogens that are activated by cleavage following an arginine or lysine 
residue within a highly conserved activation motif preceding the catalytic domain. 
After activation, the catalytic domain remains linked to the membrane-anchored 
domains by a disulfide bond but can also be released as a soluble protease (Hooper 
et al. 2001). All MASPs have a highly conserved S1 serine protease domain that 
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Fig. 8.1 Domain structures of membrane-anchored serine proteases. HAT human airway trypsin- 
like protease; HATL HAT-like protease; AsP adrenal secretory serine protease; DESC1, differen-
tially expressed in squamous cell carcinoma; TMPRSS, transmembrane serine protease S1; MSPL/
MSPS mosaic serine protease large/short-form; GPI glycosylphosphatidylinositol; CUB Cls/Clr, 
urchin embryonic growth factor and bone morphogenetic protein-1; SEA sea urchin sperm protein, 
enterokinase, and agrin; LDLA low-density lipoprotein receptor A; MAM meprin, A5 antigen, and 
receptor protein phosphatase μ. Amino and carboxy termini are indicated by N and C, respectively. 
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contains the histidine, aspartate, and serine residues (catalytic triad) necessary for 
the catalytic activity (Fig. 8.2). In addition, all MASPs show a strong preference for 
cleavage of substrates after a basic residue (arginine or lysine) due to a negatively 
charged aspartate located at the bottom of the S1 pocket that is highly conserved in 
enzymes with trypsin-like activity (reviewed in Perona and Craik 1995 and Hooper 
et  al. 2001). Accordingly, autocatalytic activation of several TTSPs has been 
observed in vitro, suggesting that some of the TTSPs could function as initiators of 
proteolytic cascades (Hooper et al. 2001).

This review aims to give an overview on the physiological functions of this fas-
cinating and rapidly evolving group of enzymes and a summary of the current 
knowledge on their role in proteolytic activation of viral fusion proteins.

8.2  Type II Transmembrane Serine Proteases (TTSPs)

Based on the arrangements of their extracellular protein domain, the phylogenetic 
analysis of the serine protease domain, and the chromosomal arrangement of the 
cognate genes, human TTSPs are divided into four subfamilies: the HAT/DESC 
(human airway trypsin-like protease/differentially expressed in squamous cell car-
cinoma) family, the hepsin/TMPRSS (transmembrane protease/serine S1) family, 
the matriptase family, and the corin family (Szabo et  al. 2003) (Fig.  8.1). TTSP 
genes are found in all vertebrate genomes. There also exist two nonmammalian 
TTSPs in Drosophila, stubble-stubbloid (st-sb), and corin, indicating that the TTSP 
family may have originated from two ancestral genes, one giving rise to the HAT/
DESC family and one to the corin family (Appel et al. 1993; Bugge et al. 2009).

a b

Fig. 8.2 Crystal structure of the catalytic domain of human DESC1. (a) DESC1 (PDB: 2OQ5, 
Kyrieleis et  al. 2007) is shown in cartoon style. The residues of the catalytic triad (carbons in 
orange, nitrogen in blue, and oxygen in red) and of Asp189 (carbons in yellow) are shown as sticks. 
N-terminus and C-terminus are labeled. (b) DESC1 (ribbon style, orange) superimposed with the 
catalytic domains of human matriptase (blue, PDB: 1EAX, Friedrich et al. 2002), human entero-
peptidase (red, PDB: 1EKB, Lu et al. 1999), and human hepsin (green, PDB: 1P57, Somoza et al. 
2003). The residues of the active site of DESC1 and Asp189 are shown as sticks (carbons in 
orange, nitrogen in blue, and oxygen in red)

E. Böttcher-Friebertshäuser



157

8.2.1  HAT/DESC Family

The HAT/DESC family contains five human members: HAT, DESC1, HAT-like 1 
protease (HATL1), HATL4, and HATL5. In addition, HATL2 and HATL3 have 
been described in rodents (Table 8.1). The stem region of all HAT/DESC members 
is composed of a single SEA (sea urchin sperm protein, enterokinase, and agrin) 
domain. The genes encoding the HAT/DESC family members are all located in 
tandem on human chromosome 4 and mouse chromosome 5, respectively (Hobson 
et al. 2004). To date, the functional significance of the HAT/DESC1 family is largely 
unknown with HAT being the best studied exemption.

8.2.1.1  HAT: A Trypsin-Like Protease Associated  
with Airway Diseases

Human airway trypsin-like protease (HAT) was originally isolated from sputum of 
patients with chronic airway diseases as a soluble active protease with an apparent 
molecular mass of 27 kDa (Yoshinaga et  al. 1998). Subsequent cloning of HAT 
cDNA from human trachea cDNA revealed that it encodes for a protease of 417 
amino acids with a predicted molecular mass of 47 kDa that contains a transmem-
brane region near the N-terminus (Yamaoka et al. 1998). The HAT zymogen under-
goes autocatalytic activation in vitro (Kato et al. 2012). HAT has been shown to be 
expressed as an active protease on the cell surface of HAT-expressing Madin-Darby 
canine kidney (MDCK) cells (Böttcher-Friebertshäuser et al. 2010). Surface bioti-
nylation analysis showed that both the zymogen and the mature form of HAT are 
present on the cell surface, indicating that autoactivation might take place at the cell 
surface.

HAT is encoded by the TMPRSS11D gene, located on human chromosome 
4q13.2. The TMPRSS11D gene is the human ortholog of long splice variants of the 
airway trypsin-like protease from mouse (MAT1) and rat (RAT1) (Hansen et  al. 
2004). An alternatively spliced isoform of MAT1 and RAT1 has been identified in 
rat (RAT2) and mouse (MAT2), respectively. It is also known as adrenal secretory 
serine protease (AsP) and contains an N-terminal signal peptide instead of a trans-
membrane domain and a SEA domain (Fig. 8.1). There have been no reports of a 
short isoform of HAT in humans.

Within human tissues, HAT expression is prominent in the trachea and bronchi 
and was also detected in the gastrointestinal tract, the skin, and the brain (Sales et al. 
2011; Bertram et al. 2012). In the airway epithelium, HAT has been shown to be 
expressed at the apical membrane of ciliated cells, but not in goblet cells, submuco-
sal glands, and mast cells (Takahashi et al. 2001). A number of studies suggest a 
potential role for HAT in the pathophysiology of bronchial asthma and chronic 
bronchitis (Chokki et  al. 2004; Matsushima et  al. 2006; Yasuoka et  al. 1997; 
Yoshinaga et  al. 1998). Among other functions HAT has been shown to cleave 
fibrinogen, to modulate structure and functions of the urokinase-type plasminogen 
activator receptor (uPAR, CD87), and to activate the protease-activated receptor 2 
(PAR-2).  Protease-activated receptors (PARs) are a family of seven transmembrane 
domain G-protein-coupled receptors that are activated by serine proteases through 
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specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. 
Activated PAR-2 plays a pivotal role in cell adhesion and early inflammatory pro-
cesses and has been reported to mediate allergic airway inflammation of the mouse 
airways in vivo (Schmidlin et al. 2002). HAT has been described to increase mucin 
gene expression and to stimulate bronchial fibroblast proliferation in airway epithe-
lial cells through PAR-2-mediated signaling pathways (Yoshinaga et  al. 1998; 
Matsushima et al. 2006).

HAT expression has been shown to be deregulated in skin diseases such as pso-
riasis vulgaris. Higher expression of HAT was found in psoriatic epidermal lesions 
(Iwakiri et al. 2004). It has been reported that HAT might promote PAR-2-mediated 
interleukin 8 (IL-8) production to accumulate inflammatory cells in the epidermal 
layer of psoriasis vulgaris.

The physiological function of HAT in the airways and in the skin, however, 
remains unknown. Knockout of HAT/TMPRSS11D expression in mice does not 
affect development, postnatal growth, or long-term health (Sales et al. 2011), indicat-
ing that HAT/TMPRSS11D activity is dispensable or can be compensated by other 
proteases. A recent study found that HAT expression is lost during the dedifferentia-
tion of epithelial cells in high-grade tumors, a hallmark of squamous cell carcinogen-
esis (Duhaime et al. 2016). Therefore, HAT might act as an activator and initiator of 
a proteolytic cascade during terminal differentiation of squamous epithelia.

HAT and TMPRSS2 (see later chapter) were the first human proteases identified 
to cleave and activate the influenza A virus surface glycoprotein hemagglutinin 
(HA) with a monobasic cleavage site and to support multicycle replication and 
spread of the virus in cell culture (Böttcher et al. 2006). The role of HAT and other 
MASPs in activation of viral glycoproteins will be described in more detail at the 
end of this review and is summarized in Table 8.2.

Table 8.2 Proteolytic activation of viral glycoproteins by MASPs

Protease

Influenza virus 
hemagglutinin 
(HA)

Coronavirus 
spike 
protein S Other viruses References

HAT/
TMPRSS11D

Avian and 
mammalian 
IAV (R/K↓) 
(subtypes H1, 
H2, H3, H9, 
H11, H12)
IBV

SARS-CoV
MERS-CoV

n.d. Böttcher et al. (2006), 
Chaipan et al. (2009), 
Bertram et al. (2011), 
Böttcher- 
Friebertshäuser et al. 
(2012) and Galloway 
et al. (2013)

DESC1 IAV (subtypes 
H1, H2, H3, 
H17)

SARS-CoV
MERS-CoV

n.d. Zmora et al. (2014) 
and Hoffmann et al. 
(2016)

HATL1 n.d. SARS-CoV n.d. Kam et al. (2009)
HATL5 No No n.d. Bertram et al. (2010)
HATL4 No No n.d. Bertram et al. (2010)
Hepsin No n.d. Fusion protein F of 

subtype B avian 
metapneumovirus 
(RKKR↓)

Bertram et al. (2010) 
and Yun et al. (2016)
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Protease

Influenza virus 
hemagglutinin 
(HA)

Coronavirus 
spike 
protein S Other viruses References

TMPRSS2 Avian and 
mammalian 
IAV (R/K↓) 
(subtypes 
H1–H7, 
H9–H11, 
H11–H18)
IBV
Essential for 
proteolytic 
activation of 
H7N9 and 
H1N1 IAV in 
mice

SARS-CoV
MERS-CoV
Human 
CoV-229E
Porcine 
epidemic 
diarrhea 
virus

Fusion protein F of 
paramyxoviruses: 
human 
metapneumovirus; 
human 
parainfluenza 
viruses 1, 3, 4a, and 
4b; and Sendai virus

Böttcher et al. (2006), 
Shirogane et al. 
(2008), Matsuyama 
et al. (2010), 
Glowacka et al. 
(2011), Shirato et al. 
(2013), Shulla et al. 
(2011), Böttcher- 
Friebertshäuser et al. 
(2012), Abe et al. 
(2013), Bertram et al. 
(2013), Ferrara et al. 
(2013), Galloway 
et al. (2013), Gierer 
et al. (2013), Hatesuer 
et al. (2013), Tarnow 
et al. (2014) Sakai 
et al. (2014), 
Hoffmann et al. 
(2016) and Fan et al. 
(2017)

TMPRSS3 No No n.d. Bertram et al. (2010) 
and Zmora et al. 
(2014)

TMPRSS4 IAV (H1, H3) No: 
SARS-CoV

n.d. Chaipan et al. (2009) 
and Glowacka et al. 
(2011)

TMPRSS12 n.d. n.d. Fusion protein F of 
subtype B avian 
metapneumovirus 
(RKKR↓), no 
activation of F with 
RQSR↓ motif

Yun et al. (2016)

MSPL/
TMPRSS13

Highly 
pathogenic 
avian IAV of 
subtype H5N2  
(KKKR↓)
IAV (subtypes 
H1, H2, H3, 
H17 monobasic 
motifs)

SARS-CoV
MERS-CoV
Porcine 
epidemic 
diarrhea 
virus

n.d. Okumura et al. (2010), 
Zmora et al. (2014), 
Hoffmann et al. 
(2016) and Fan et al. 
(2017)

Matriptase IAV (subtype 
H9 with RSS/
RR↓ motif but 
not VSSR↓ 
motif, some 
H1N1 strains 
(IQSR↓))

n.d. n.d. Hamilton et al. (2012), 
Baron et al. (2013) 
and Beaulieu et al. 
(2013)

Matriptase-2 No n.d. n.d. Bertram et al. (2010)

(continued)

Table 8.2 (continued)
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8.2.1.2  DESC1 and TMPRSS11A/HATL1: Tumor Suppressors 
in Esophagus Cancer

DESC1 (differentially expressed in squamous cell carcinoma, also designated as 
transmembrane protease serine S1 family member 11E (TMPRSS11E)) is expressed 
in the human head, neck, skin, prostate, and testis. DESC1 was first identified as a 
gene downregulated in squamous cell carcinoma of the head and neck (Lang and 
Schuller 2001). Moreover, induction of normal keratinocyte differentiation by cal-
cium challenge was accompanied by an increase in DESC1 expression in  vitro 
(Sedghizadeh et  al. 2006). A recent study found that DESC1 sensitizes cells to 
apoptosis by downregulating the epidermal growth factor receptor (EGFR)/AKT 
pathway in esophageal squamous cell carcinoma (Ng et al. 2016). Protease activity 
was required for this function, suggesting that DESC1 cleaves EGFR, which subse-
quently leads to the downregulation of the AKT pathway. Moreover, DESC1 has 
been demonstrated to reduce tumor growth kinetics in an orthotopic nude mouse 
model for study of esophageal squamous cell carcinoma. Taken together, there is 
accumulating evidence suggesting the association of DESC1 downregulation with 
cancer development. However, its tumor suppressive role remains to be character-
ized in more detail in future studies. The crystal structure of the catalytic domain of 
DESC1 has been solved (Kyrieleis et al. 2007) and is shown in Fig. 8.2.

TMPRSS11A, also designated as HAT-like 1 protease (HATL1) and esopha-
geal carcinoma-related gene 1 (ECRG1), has been identified as a gene downregu-
lated in esophagus cancers (Li et  al. 2006). TMPRSS11A-specific mRNA is 
present in the eye, testis, glandular stomach, tongue, trachea, bladder, forestom-
ach, and skin of mice (Sales et al. 2011). Knockout of TMPRSS11A expression 

Table 8.2 (continued)

Protease

Influenza virus 
hemagglutinin 
(HA)

Coronavirus 
spike 
protein S Other viruses References

Matriptase-3 No No: 
SARS-CoV

n.d. Chaipan et al. (2009) 
and Glowacka et al. 
(2011)

Polyserase-1 No No n.d. Zmora et al. (2014)
Corin No No n.d. Bertram et al. (2010)
Prostasin No No n.d. Bertram et al. (2010), 

Böttcher- 
Friebertshäuser et al. 
(2010) and Zmora 
et al. (2014)

Testisin IAV (subtype 
H1, H3, H9)

n.d. n.d. E. Böttcher- 
Friebertshäuser, 
A. Arendt, 
unpublished data

IAV influenza A virus; IBV influenza B virus; HA hemagglutinin; S spike protein; F fusion protein; 
SARS severe acute respiratory syndrome; MERS Middle East respiratory syndrome; CoV corona-
virus; n.d. not determined. Amino acids are indicated as single-letter code. The cleavage site is 
indicated by an arrow

E. Böttcher-Friebertshäuser
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does not affect development, postnatal growth, or long-term health in mice (Sales 
et al. 2011). TMPRSS11A/ECRG1 is one among many tumor suppressor genes 
that may play a role in the initiation and development of esophageal squamous 
cell carcinoma (Netzel-Arnett et  al. 2003). Overexpression of TMPRSS11A/
ECRG1 has been shown to inhibit cell growth and to induce G1/S cell cycle 
arrest through upregulation of p15INK4b expression in esophageal cells in vitro 
(Zhao et al. 2004).

8.2.1.3  TMPRSS11F/HATL4 and TMPRSS11B/HATL5
There is little known about TMPRSS11F/HATL4 and TMPRSS11B/HATL5. 
TMPRSS11B/HATL5 expression has been detected in the cervix, esophagus, and 
oral cavity. It was found to be significantly decreased in squamous cell carcinomas 
of these tissues as compared to normal and tumor adjacent samples (Miller et al. 
2014), and thus it might have a similar physiological function like DESC1 and 
TMPRSS11A. TMPRSS11F/HATL4-specific mRNA was found to be present in the 
skin, esophagus, trachea, tongue, eye, bladder, testis, uterus, and stomach (Sales 
et al. 2011). Recently, TMPRSS11F-knockout mice were shown to be viable and 
fertile (Zhang et  al. 2017). Compared with wild-type controls, TMPRSS11F- 
deficient newborn mice had greater body fluid loss and higher mortality in a trans- 
epidermal body fluid loss test, indicating that TMPRSS11F/HATL4 is involved in 
epidermal barrier function to prevent body fluid loss.

8.2.2  Hepsin/TMPRSS Family

The hepsin/TMPRSS family comprises eight members: hepsin/TMPRSS1, 
TMPRSS2, TMPRSS3, TMPRSS4, spinesin/TMPRSS5, TMPRSS12, TMPRSS13/
MSPL (mosaic serine protease large-form), and enteropeptidase. All members of 
this family have a group A scavenger receptor domain in their stem region linked to 
the serine protease domain, preceded by a single LDLA (low-density lipoprotein 
receptor A) domain in TMPRSS2, TMPRSS3, TMPRSS4, and MSPL. Enteropeptidase 
is unique for this family, having multiple protein domains between the transmem-
brane domain and the catalytic domain, including a SEA domain, two CUB (C1s/
C1r, urchin epidermal growth factor and bone morphogenetic protein 1) domains, 
two LDLA domains, a MAM (meprin, A5 protein, tyrosine phosphatase μ) domain, 
and a group A scavenger receptor domain (Fig. 8.1).

8.2.2.1  Enteropeptidase: Activation of Pancreatic Hydrolases  
by Converting Trypsinogen to Trypsin

As already mentioned enteropeptidase, originally named enterokinase, has been 
discovered in 1899  in the laboratory of Ivan Pavlov as an activity of extracts of 
small intestinal mucosa that was able to activate hydrolytic enzymes in pancreatic 
fluid. In 1939, Moses Kunitz demonstrated that purified porcine enteropeptidase 
converts crystalline trypsinogen to trypsin (Kunitz 1939). In the 1970s, purification 
of enteropeptidase from porcine, bovine, and human intestine revealed that it 
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consists of a heavy chain (82–140 kDa) and a light chain (35–62 kDa) connected by 
a disulfide bond. Edman degradation of the amino-terminal sequence of the light 
chain of bovine enteropeptidase revealed its homology to other trypsin-like prote-
ases. However, only cloning of the enteropeptidase cDNA in 1994 revealed the pres-
ence of a membrane anchor near the amino-terminus and indicated that the active 
two-chain form is derived from a single-chain precursor (Kitamoto et al. 1994).

Enteropeptidase activity is almost exclusively localized to the duodenum. The 
enzyme is localized in the brush border of enterocytes and some goblet cells of the 
human duodenal mucosa and, at lower levels, in the mucosa of the proximal jeju-
num (Hermon-Taylor et  al. 1977; Yuan et  al. 1998). Enteropeptidase specifically 
cleaves trypsinogen at the activation site DDDDK↓I that is highly conserved among 
vertebrates (Zheng et al. 2009). Trypsin,  in turn, activates a number of pancreatic 
zymogens such as chymotrypsinogen, proelastase, procarboxypeptidases, and pro-
lipases in the lumen of the gut. Such unique sequence specificity is thought to pro-
vide an important mechanism to ensure that trypsinogen is activated only by 
enteropeptidase, but not by other proteases in pancreas, avoiding damage of the 
pancreas due to excess protease activities.

The cDNA sequences of enteropeptidase have been determined for several verte-
brate species including cattle, swine, mouse, Japanese rice fish (medaka), and man 
(Zheng et al. 2009). The amino acid sequences of the human and bovine protease 
are 82% identical. In humans, enteropeptidase is encoded by the PRSS7 gene local-
ized on chromosome 21q21 (Kitamoto et al. 1994, 1995). Enteropeptidase is syn-
thesized as a zymogen of 1019 amino acids, which requires activation by another 
protease at K784 within the activation site sequence ITPK↓IVGG. Trypsin and the 
protease duodenase that is secreted by Brunner’s glands of the proximal segment of 
duodenum have been shown to activate enteropeptidase (Zamolodchikova et  al. 
1997, 2000). However, duodenase is synthesized as a zymogen, too, and requires 
activation by another protease. Moreover, the measured rate of activation of purified 
bovine recombinant proenteropeptidase by duodenase was about 70-fold lower than 
that by trypsin (Zamolodchikova et al. 2000). Thus, the role for duodenase as pri-
mary activator of proenteropeptidase remains to be established.

The molecular basis of human enteropeptidase localization to the apical mem-
brane is not yet completely understood. The transmembrane domain anchors entero-
peptidase in the brush border of duodenal enterocytes. In addition, mucin-like 
repeats in the SEA domain and N-linked glycosylation of the catalytic domain have 
been found necessary for apical delivery in MDCK cells (Zheng and Sadler 2002; 
Zheng et al. 2009). In addition, enteropeptidase is present as a soluble form in the 
small intestinal lumen. Shedding may be due to the action of biliary or pancreatic 
proteases and possibly to local effects of gastrointestinal hormones (Götze et  al. 
1972). However, it remains unknown whether shedding of enteropeptidase plays a 
role in regulating its activity in the gut.

The enteropeptidase serine protease domain contains a basic tetrapeptide seg-
ment consisting of R/K96-R-R-K99, which is not conserved in other serine prote-
ases (Matsushima et al. 1994; Kitamoto et al. 1994; Yuan et al. 1998). Computer 
modeling suggested that this basic segment is located on the protein surface where 
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it might bind the acidic P2–P5 residues of trypsinogen activation sites. The crystal 
structure of the bovine enteropeptidase catalytic domain in complex with the inhibi-
tor V-(D)4-K-chloromethane confirmed this extended substrate binding exosite (Lu 
et al. 1999). The K99 residue was identified as major determinant for recognition of 
the P2 and P4 aspartate residues. It is conserved among enteropeptidases of many 
species. Substitution of the lysine by alanine prevented enteropeptidase from cleav-
ing trypsinogen (Lu et al. 1999). However, two-chain enteropeptidase cleaves tryp-
sinogen about 500-fold more rapidly than does the isolated light chain (Lu et al. 
1997), indicating that the heavy chain is necessary for optimal cleavage of 
trypsinogen.

The physiological importance of enteropeptidase is indicated by severe intestinal 
malabsorption in congenital deficiency of this enzyme. A number of cases of pri-
mary enterokinase deficiency have been reported since it was first described in 1969 
(Hadorn et al. 1969). Patients suffer from severe intestinal malabsorption with diar-
rhea, vomiting, and growth failure in early infancy. Nonsense or frameshift muta-
tions in the PRSS7 gene have been shown in patients (Holzinger et  al. 2002). 
Congenital enteropeptidase deficiency can be treated successfully by administration 
of pancreatic extract in early infancy (Zheng et al. 2009).

Because of its unique substrate specificity and protein stability, enteropeptidase 
is also of biotechnological interest. Introduction of the DDDDK↓I enterokinase rec-
ognition sequence is widely used as a tool to specifically cleave and activate recom-
binant proproteins or fusion proteins. More recently, enteropeptidase from the 
Japanese rice fish medaka has been cloned and characterized (Ogiwara and 
Takahashi 2007). The E173A mutant of medaka enteropeptidase showed an even 
stricter specificity for the DDDDK sequence compared to bovine enteropeptidase 
and may therefore provide the most appropriate protease to cleave recombinant pro-
teins containing the DDDDK motif.

8.2.2.2  TMPRSS2: Prostate Cancer Progression and Proteolytic 
Activation of Influenza A Viruses

TMPRSS2 cDNA was originally cloned by exon trapping when the transcription 
map of human chromosome 21 was developed (Paoloni-Giacobino et al. 1997). The 
human gene is mapped to 21q22.3 and encodes for a protein of 492 amino acids. 
Murine TMPRSS2 is also designated as epitheliasin and is encoded on chromosome 
16. The modular structure of TMPRSS2 is illustrated in Fig. 8.1.

TMPRSS2 is widely expressed in epithelial cells of the respiratory, gastrointes-
tinal, and urogenital tract with high expression levels in the prostate and colon 
(Bugge et  al. 2009; Bertram et  al. 2012). Immunohistochemical studies revealed 
that TMPRSS2 is also expressed in cardiac myocytes (Bertram et  al. 2012). 
TMPRSS2 is associated with prostate cancer. The protease has been shown to be 
overexpressed in prostate cancer tissue, and the TMPRSS2 level has been shown to 
be correlated with prostate cancer progression (Lucas et al. 2008, 2014; Chen et al. 
2010). Moreover, fusion of the androgen-regulated TMPRSS2 promoter to E26 
transformation-specific (ETS) transcription factor genes, particularly the ETS- 
regulated gene (ERG), resulting in overexpression of ERG is seen in nearly 50% of 
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patients and is used as a prognostic marker of prostate carcinogenesis (Tomlins 
et al. 2005; Gasi Tandefelt et al. 2014). The TMPRSS2 gene and the ERG gene are 
located approximately 3 Mb apart in the same relative orientation on chromosome 
21. However, the role of these gene fusions in the development and progression of 
prostate cancer is not understood in detail. The TMPRSS2 gene is furthermore 
flanked by the Mx1 (myxovirus resistance 1) gene, encoding a GTPase that is part 
of the antiviral response induced by type I and type III interferons (Paoloni- 
Giacobino et al. 1997; Verhelst et al. 2013).

TMPRSS2 promoted prostate cancer cell invasion and metastasis to distant 
organs in a mouse model of prostate carcinogenesis (Lucas et al. 2014). TMPRSS2 
has been shown to activate PAR-2 and hepatocyte growth factor (HGF)/c-Met sig-
naling pathways and to downregulate E-cadherin expression in prostate cancer cells 
(Wilson et al. 2005; Lucas et al. 2014; Leshem et al. 2011). More recently, TMPRSS2 
has been described to promote prostate cancer tumor growth and metastasis, via 
activation of the TTSP matriptase and degradation of extracellular matrix (ECM) 
laminin β1 and nidogen-1 in vitro and in a xenograft mouse model of prostate can-
cer (Ko et al. 2015). TMPRSS2 protein level was shown to correlate with increased 
levels of active matriptase as well as increased metastases (Ko et al. 2015).

The physiological role of TMPRSS2 is unknown so far. TMPRSS2-deficient 
mice lack a discernible phenotype (Kim et al. 2006). The protease has been shown 
to cleave the epithelial sodium channel (ENaC) in Xenopus oocytes in vitro and sug-
gested to be involved in regulation of the airway surface liquid (ASL) volume by 
proteolytic cleavage of ENaC (Donaldson et  al. 2002). Interestingly,  by using 
TMPRSS2-deficient mice, three recent studies identified TMPRSS2 as a host cell 
factor essential for activation and spread of H1N1 and H7N9 influenza A viruses in 
mice (see below). Intriguingly, knockout of TMPRSS2 expression protected mice 
from an otherwise lethal infection due to inhibition of activation of progeny virus 
and, thus, spread along the respiratory tract (Hatesuer et  al. 2013; Tarnow et  al. 
2014; Sakai et al. 2014).

TTSPs are believed to be situated at the cell surface, and shedding of TMPRSS2 
has been described from prostate and prostate cancer cells and from human nasal 
epithelial cells exposed to ozone in vitro (Afar et al. 2001; Kesic et al. 2012). Studies 
on the subcellular localization of influenza A virus HA cleavage by TMPRSS2 upon 
co-expression in MDCK cells, however, indicate that TMPRSS2 cleaves HA in the 
trans-Golgi network (TGN) or during its transport to the plasma membrane, where 
virus assembly and budding take place (Böttcher et al. 2009; Böttcher-Friebertshäuser 
et al. 2010, 2013) (see Sect. 8.5). In contrast, TMPRSS2 present on the cell surface 
and soluble TMPRSS2 shed from MDCK cells showed poor if any enzymatic activ-
ity and were not able to cleave HA (Böttcher-Friebertshäuser et al. 2010). The rea-
son for the lack of TMPRSS2 activity on the cell surface and in cell supernatants is 
unknown and might be related to the expression of protease inhibitors or missing 
cofactors. However, intracellular activation of HA by TMPRSS2 revealed that 
TTSPs may not only act as proteolytic enzymes on the cell surface but can process 
their substrates also (or already) in intracellular compartments.
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8.2.2.3  Dysregulation of TMPRSS3, TMPRSS5/Spinesin,  
and Hepsin Is Associated with Deafness

TMPRSS3 was first identified as a novel multi-domain serine protease overexpressed 
in ovarian cancers and therefore originally named tumor-associated differentially 
expressed gene 12 (TADG-12) (Underwood et al. 2000). Independently, mutations 
in the TMPRSS3 gene were associated with congenital and childhood onset autoso-
mal recessive deafness (Scott et al. 2001). This was the first description of a prote-
ase involved in hearing loss. The TMPRSS3 gene maps on chromosome 21 at q22 
and encodes for a protein of 454 amino acids with an overall domain structure simi-
lar to TMPRSS2 and TMPRSS4. TMPRSS3 is synthesized as a zymogen and 
undergoes autoactivation (Guipponi et al. 2002). RT-PCR analysis and RNA in situ 
hybridization experiments revealed expression of TMPRSS3 in the thymus, stom-
ach, testis, ovary, kidney, and eye and in a variety of inner ear tissues, including 
inner hair cells, stria vascularis, spiral ganglion neurons, modiolus, and organ of 
Corti (Scott et al. 2001; Guipponi et al. 2002, 2008).

A number of different mutations in the TMPRSS3 gene have been identified in 
patients with non-syndromic autosomal recessive deafness (DFNB8/10) (Scott et al. 
2001; Ben-Yosef et al. 2001; Masmoudi et al. 2001, Guipponi et al. 2008). Mutations 
occur in all functional domains and have been shown to disrupt the proteolytic 
activity of TMPRSS3, indicating that TMPRSS3 protease activity is critical during 
inner ear development (Guipponi et al. 2002; Wattenhofer et al. 2005). It remains to 
be elucidated how missense mutations in the LDLA and SRCR domains affect the 
proteolytic activity of TMPRSS3. Studies in a mouse model carrying a protein- 
truncating nonsense mutation in TMPRSS3, Y260X (X = stop codon), revealed that 
TMPRSS3 is essential for mouse cochlear hair cell survival at the onset of hearing 
(Fasquelle et  al. 2011). Mice expressing TMPRSS3-Y260X are completely deaf 
due to rapid and massive degeneration of hair cells. Moreover, loss of spiral gan-
glion neurons was observed in TMPRSS3-Y260X mice at the age of 4 months 
(Fasquelle et  al. 2011). Proteomic analyses revealed that TMPRSS3 deficiency 
leads to a decrease in the expression of Kcnma1 potassium channels in inner hair 
cells (Molina et al. 2013). However, it remains to be investigated in more detail how 
TMPRSS3 regulates the abundance of functional Kcnma1 channels expression in 
hair cells. A recent study by Li et al. demonstrated that knockdown of TMPRSS3 
inhibited cell viability of spiral ganglion neurons in vitro (Li et al. 2014). Moreover,  
they observed that microRNA miR-204 suppressed spiral ganglion neuron survival 
in vitro by targeting TMPRSS3 (Li et al. 2014). TMPRSS3 mRNA was found to 
have a putative miR-204 binding site within its 3′-UTR that is highly conserved 
among the vertebrates.

In addition to its role in hearing, TMPRSS3 was found to be overexpressed in 
pancreatic and ovarian cancer and to promote proliferation, invasion, and migration 
of ovarian cancer cells via activation of the ERK1/2 pathway in vitro (Wallrapp 
et al. 2000, Zhang et al. 2016).

Hepsin was identified in cDNA clones obtained from human liver and was the 
first serine protease characterized to contain a transmembrane domain 
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(Leytus et al. 1988). Hepsin is abundant in the liver. Other tissues such as kidney, 
pancreas, lung, stomach, prostate, and thyroid express low levels of hepsin mRNA 
(Tsuji et  al. 1991). The human hepsin gene has been localized to chromosome 
19q11-13.2. Hepsin consists of an N-terminal cytoplasmic domain, a transmem-
brane domain, and an extracellular portion composed of a SRCR domain and a 
C-terminal protease domain. The crystal structure of a soluble human hepsin that 
included the SRCR and protease domains has been solved (Somoza et al. 2003).

A number of potential hepsin substrates have been identified in vitro including 
blood clotting factors VII, IX, and XII, prourokinase, promatriptase, proprostasin, 
macrophage-stimulating protein (MSP), and laminin-332 (reviewed in Antalis et al. 
2011), suggesting that hepsin may play a role in blood coagulation and embryonic 
development. The evidence for these functions, however, remains inconclusive 
since hepsin-deficient mice are viable and fertile, and do not exhibit obvious defects 
in growth and blood coagulation (Wu et al. 1998; Brunati et al. 2015). Unexpectedly, 
a study by Guipponi et al. found that hepsin-deficient mice exhibited profound hear-
ing loss (Guipponi et al. 2007). Hepsin knockout mice have abnormal cochlea and 
reduced myelin protein expression in the auditory nerve (Guipponi et  al. 2007). 
Furthermore, low levels of plasma thyroxine, a thyroid secreted hormone important 
for cochlear development, have been found in hepsin-deficient mice (Hanifa et al. 
2010). The molecular mechanisms by which hepsin regulates normal hearing are 
not understood, and so far it is unknown if hearing loss in hepsin-knockout mice is 
a result of thyroid hormone deficiency.

Further studies of knockout mouse models of hepsin demonstrated that the pro-
tease activates pro-hepatocyte growth factor (pro-HGF) in the liver and is respon-
sible for cleavage and urinary secretion of uromodulin (Tamm-Horsfall protein) 
(Hsu et al. 2012; Brunati et al. 2015). It was proposed that HGF/c-Met signaling 
may regulate expression of connexins, gap junction proteins, in hepatocytes in mice. 
Loss of hepsin was found to increase expression of connexins, resulting in an expan-
sion of hepatocyte size and a concomitant narrowing of sinusoids. Interestingly, 
systemic delivery of tumor cells by tail-vein injection showed preferential coloniza-
tion of tumor cells in the liver of hepsin-deficient mice compared to wild-type mice. 
These data suggest that loss of hepsin enhances the colonization of liver by tumor 
cells, probably through increased retention of tumor cells because of narrower sinu-
soids related to enlarged hepatocytes.

Hepsin has been identified as one of the most upregulated genes in prostate can-
cer. Hepsin increases early in prostate cancer initiation, and its high levels are main-
tained throughout progression and metastasis and are indicative of poor outcome 
(Dhanasekaran et al. 2001; Stephan et al. 2004). Overexpression of hepsin has also 
been shown in many other cancers including breast, ovarian, and endometrial can-
cer (Murray et al. 2016).

Although a number of studies demonstrated that hepsin is involved in prostate 
cancer progression, little is known about the basis of its functions. Overexpression 
of hepsin in a mouse model of non-metastasizing prostate cancer caused disorgani-
zation and disruption of basement membrane and promoted primary prostate cancer 
progression and metastasis to the liver, lung, and bone (Klezovitch et  al. 2004). 
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Overexpression of hepsin also promoted ovarian tumor growth in a mouse model, 
and proteolytic activity of hepsin was shown to be necessary for promoting tumor 
progression (Miao et  al. 2008). Hepsin and HGF are present in desmosomes. 
Desmosome dissociation is known to be one of the first steps during HGF-induced 
epithelial-mesenchymal transition, indicating that increased levels of hepsin and its 
substrate HGF may play a role in ovarian cancer progression through their interac-
tion with desmosomes (Miao et al. 2008). At present, the mechanism of this interac-
tion and the functional importance of hepsin localization in the desmosomes warrant 
further investigation.

TMPRSS5/spinesin was cloned from a human spinal cord cDNA library 
(Yamaguchi et al. 2002). The human TMPRSS5 gene is located on chromosome 
11q23 and encodes a simple TTSP of 457 amino acids consisting of a short cyto-
plasmic domain, a transmembrane domain, a stem region containing a SRCR 
domain, and a C-terminal serine protease domain (Yamaguchi et al. 2002). Northern 
blot analyses and immunohistochemical staining revealed that TMPRSS5 is pre-
dominantly expressed in the brain and the spinal cord. Guipponi et al. demonstrated 
that TMPRSS5-specific mRNA is furthermore present in inner ear tissues and the 
testis of rats (Guipponi et al. 2008). A mutation screen in a cohort of ca. 360 spo-
radic deafness cases revealed three mutations in the TMPRSS5 gene (A317L, 
F369L, and Y438X). These TMPRSS5 mutants showed reduced (F369L) or no 
(A317S, Y438X) proteolytic activity in yeast-based protease assays, suggesting that 
impaired TMPRSS5 activity might cause hearing impairment. However, 
TMPRSS5/spinesin has not been characterized in more detail, and it remains to be 
investigated how it affects hearing and which role it may play in the central nervous 
system.

8.2.2.4  TMPRSS4: An Emerging Potential Therapeutic Target 
in Cancer

TMPRSS4 (also known as channel-activating protease 2 (CAP2)) was originally 
identified as a gene expressed in most pancreatic tumors but not in the healthy pan-
creas (Wallrapp et al. 2000). Meanwhile, TMPRSS4 has been shown to be highly 
expressed also in many other cancers including thyroid, colon, gastric, and lung 
cancers; association with poor prognosis has been consistently described (reviewed 
in Kim and Lee 2014; Tanabe and List 2017).

The TMPRSS4 gene is located on chromosome 11 at q23.3 and encodes a pro-
tein of ~437 amino acids. The domain structure of TMPRSS4 is similar to TMPRSS2 
and TMPRSS3. TMPRSS4 undergoes autoactivation in vitro (Antalis et al. 2011). 
The catalytic domain of TMPRSS4 can be released as an active form in cell culture 
(Min et al. 2014a). TMPRSS4 mRNA was detected in the bladder, esophagus, stom-
ach, small intestine, colon, kidney, larynx, trachea, bronchi, and lung (Wallrapp 
et al. 2000; Jung et al. 2008; Böttcher-Friebertshäuser unpublished data). In murine 
lung TMPRSS4 is expressed in type II pneumocytes (Kühn et al. 2016).

Overexpression of TMPRSS4 has been shown to promote invasion and metastasis 
of human tumor cells by facilitating epithelial-mesenchymal transition (EMT) (Kim 
et  al. 2010; Jung et  al. 2008; Cheng et  al. 2009). Knockdown of TMPRSS4 
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expression in lung and colon cancer cells by using siRNA reduced cell proliferation 
and invasion (Jung et al. 2008). A number of mechanisms, by which TMPRSS4 may 
modulate tumor cell proliferation and invasion, have been described in vitro. 
Overexpression of TMPRSS4  in colon cancer cells promoted EMT through the 
upregulation of integrin α5, thereby enhancing motility and invasiveness (Kim et al. 
2010). In addition, TMPRSS4 was shown to induce invasion through upregulation of 
both expression and activity of urokinase plasminogen activator (uPA) via activation 
of the transcription factors AP-1, Sp1, and Sp3 and via processing of pro-uPA precur-
sor into its active form in vitro (Min et al. 2014a, b). The serine protease uPA con-
verts inactive plasminogen to active plasmin, which in turn can degrade most 
extracellular proteins and activate MMPs. Moreover, uPA and its receptor, uPAR 
(CD87), interact with integrin coreceptors to activate intracellular signaling path-
ways for cell migration, invasion, proliferation, and survival (reviewed in Hildenbrand 
et al. 2008). It has been shown that TMPRSS4 can interact with uPAR (Min et al. 
2014b). Furthermore, TMPRSS4 has been shown to induce downregulation of 
E-cadherin, a well-known hallmark of EMT, via activation of transcriptional repres-
sors Sip1/Zeb2 (Jung et al. 2008). Increased TMPRSS4 expression in cancer could 
be partially due to epigenetic dysregulation. The TMPRSS4 promoter has been 
shown to be hypomethylated in hepatocellular carcinoma and non-small cell lung 
cancer (Stefanska et al. 2011; Villalba et al. 2016). Hypomethylation of TMPRSS4 
promoter was associated with worse prognosis in non-small cell lung cancer patients. 
Taken together, TMPRSS4 may be an important upstream regulator of the EMT and 
the invasiveness of cancer cells and a useful biomarker for the prognosis of certain 
types of cancers and could be employed for diagnostics and therapeutics.

Mice deficient in TMPRSS4 are viable, fertile, and do not show any obvious 
abnormalities (Keppner et al. 2015; Kühn et al. 2016). However, so far no cancer 
studies have been performed in TMPRSS4-deficient mice.  Like TMPRSS2, 
TMPRSS4 has been shown to be able to activate the epithelial sodium channel 
(ENaC) when co-expressed in Xenopus oocytes (Vuagniaux et al. 2002). TMPRSS4 
cleaves the gamma subunit of ENaC at a site distinct from the site that is processed 
by the GPI-anchored protease prostasin (cf. prostasin chapter). However, a recent 
study demonstrated that regulation of the ENaC-mediated sodium balance is not 
affected in TMPRSS4-deficient mice (Keppner et  al. 2015), indicating that 
TMPRSS4 is not crucial for processing of ENaC in vivo.

8.2.2.5  TMPRSS13/MSPL: Preferential Recognition of Paired Basic 
Residues at the Cleavage Site

TMPRSS13 (transmembrane protease, serine 13, also known as mosaic serine prote-
ase large-form (MSPL)) was isolated in 2001 from a human lung cDNA library. The 
human TMPRSS13 is located on chromosome 11q23.2. Alternatively spliced forms 
from this gene have been identified, one encoding a type II transmembrane protease 
(MSPL) and a second form encoding a protease without a transmembrane domain 
(mosaic serine protease short-form (MSPS) that comprises 581 and 537 amino acids, 
respectively (Kim et al. 2001). RT-PCR analysis revealed that TMPRSS13-specific 
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mRNA is present in various human tissues including lung, liver, kidney, spleen, pan-
creas, small intestine, prostate, and placenta (Kido et al. 2008).

The biological functions of TMPRSS13 are not well understood. TMPRSS13- 
deficient mice display abnormal skin development, leading to a compromised bar-
rier function (Madsen et  al. 2014). Interestingly, tight junction formation and 
profilaggrin processing were not affected in TMPRSS13-deficient mice. Thus, 
TMPRSS13 supports stratum corneum formation and epidermal barrier formation 
by a mechanism that is independent of both profilaggrin processing and tight junc-
tion formation (see below).

TMPRSS13 shows unique substrate specificity among TTSPs, with preferential 
recognition of paired basic residues (R/K at P1 and P2 positions) (Kido et al. 2008). 
TMPRSS13 also efficiently cleaved peptide substrates with K at position P4 that 
were not cleaved by furin and has been shown to activate the HA of highly patho-
genic avian influenza viruses of subtype H5N2 possessing this motif at the cleavage 
site (Okumura et al. 2010). TMPRSS13-specific mRNA was detected in the blood 
vessels, lungs, trachea, colon, small intestine, and kidney of chickens.

8.2.3  Matriptase Family

The matriptase family has four members: matriptase, matriptase-2, matriptase-3, 
and polyserase-1. The matriptases have a SEA domain, two CUB domains, and 
three or four LDLA domains in their stem region. Polyserase-1 is unique among 
serine proteases, having one enzymatically inactive and two active serine protease 
domains (Fig. 8.1).

8.2.3.1  Matriptase: Crucial Roles in Epidermal Differentiation 
and Tight Junction Formation

Matriptase (also known as membrane-type serine protease 1 (MT-SP1), epithin, sup-
pressor of tumorigenicity 14 (ST14), channel-activating protease 3 (CAP3)) was orig-
inally identified in 1993 as a new gelatinolytic activity in conditioned medium from 
cultured breast cancer cells (Shi et al. 1993). Matriptase is encoded by the ST14 gene 
located on human chromosome 11q24–25 and encodes a polypeptide of 855 amino 
acids with a molecular weight of 95 kDa (Lin et al. 1999). Orthologs of matriptase are 
present in all vertebrate genomes examined to date (review Miller and List 2013).

Matriptase shows the most ubiquitous expression pattern of TTSPs being 
expressed in epithelial cells of most embryonic and adult tissues (Miller and List 
2013). Matriptase has been shown to be required for postnatal survival in mice and 
has essential physiological functions in terminal differentiation of the oral and 
intestinal epithelium and the epidermis (List et al. 2002, 2003; Buzza et al. 2010). 
Mice deficient in matriptase die within 48 h after birth due to a severe dehydration 
resulting from an impaired epidermal barrier function. Matriptase is also critical for 
hair follicle growth and thymic development (List et al. 2002, 2003). Interestingly, 
it was observed that matriptase-deficient mice and mice deficient in expression of 
the GPI-anchored serine protease prostasin display identical epidermal phenotypes 
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and that prostasin zymogen activation by matriptase is a key function in epidermal 
development (List et al. 2002, 2003; Netzel-Arnett et al. 2006; Leyvraz et al. 2005; 
also see prostasin chapter). These observations led to the hypothesis that matriptase 
may be part of a matriptase-prostasin proteolytic cascade in the epidermis (Netzel- 
Arnett et  al. 2006). Moreover, this cascade has been shown to regulate different 
steps in terminal epidermal differentiation: tight junction formation, profilaggrin 
processing, epidermal lipid synthesis, and induction of desquamation through pro-
moting expression or activation of kallikrein-related peptidases (KLKs) (for review 
see Szabo and Bugge 2011). It remains to be analyzed in more detail which target 
substrates of the matriptase-prostasin proteolytic cascade are involved in the differ-
ent steps of epidermal differentiation. A number of studies during the last years, 
however, revealed that the matriptase-prostasin cascade is much more complex. 
While matriptase activates prostasin zymogen in the epidermis, prostasin is crucial 
for matriptase zymogen activation in the intestine and the placenta (Buzza et  al. 
2013; Szabo et al. 2016; cf. prostasin chapter).

Activity of matriptase during development is controlled by the transmembrane inhib-
itors hepatocyte growth factor activator inhibitor 1 (HAI-1) and HAI-2. Loss of HAI-1 
or HAI-2 in mice results in embryonic lethality (Szabo et al. 2009; Tanaka et al. 2005). 
HAI-1 is essential for placental differentiation and overall embryonic and postnatal sur-
vival in mice (Nagaike et al. 2008; Szabo et al. 2007; Tanaka et al. 2005). Loss of HAI-2 
is associated with defects in neural tube closure in mice (Szabo et  al. 2009, 2012). 
Remarkably, all developmental defects in HAI-1- or HAI- 2- deficient mice are rescued 
in whole or in part by reducing or eliminating the expression of matriptase (Szabo et al. 
2009, 2012). These observations indicate that matriptase is not essential for placental 
development in mice but that its activity in the placenta needs to be regulated.

Activation of the single-chain matriptase zymogen is very complex requiring two 
sequential proteolytic processing events and the transient interaction with its cog-
nate inhibitors HAI-1 and HAI-2 (Oberst et al. 2003, 2005; Nonboe et al. 2017). 
The first cleavage occurs after G149 in the SEA domain, releasing the enzyme from 
its transmembrane anchor. However, matriptase remains membrane-bound due to 
interactions with the cleaved domain and/or with HAI-1 and HAI-2. The second 
cleavage, which appears to be autocatalytic, occurs after R614 within the highly 
conserved R↓VVGG activation motif, converting the single-chain form into the 
active two-chain form. Co-expression of HAI-1 and HAI-2 has been shown to be 
necessary for matriptase expression, stability, and intracellular trafficking in vitro 
(Oberst et al. 2005; Larsen et al. 2013; Nonboe et al. 2017). Matriptase can be shed 
from the cell surface. Shed matriptase was identified originally in complex with an 
inhibitor HAI-I in human milk, and additional shed forms have been reported in 
conditioned media of cultured epithelial cell lines  (reviewed in List et al. 2006a).

Apart from its physiological roles, matriptase has been extensively studied in the 
context of tumor progression. Expression of matriptase is upregulated in a variety of 
epithelial cancers including breast, prostate, ovarian, cervical, gastric, colon, renal 
cell, esophageal, and oral squamous cell carcinoma (reviewed in Tanabe and List 
2017). List et al. demonstrated that matriptase causes strong proliferation of kerati-
nocytes and formation of squamous cell carcinomas when only modestly 
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overexpressed in the epidermis of transgenic mice (List et al. 2006b). Matriptase 
may promote tumor growth, invasion, and metastasis by converting pro-HGF and 
pro- uPA into its active forms, by degrading ECM components, or by activating 
PAR-2. Activation of matriptase by androgen-induced TMPRSS2 has been shown 
to promote prostate cancer tumor growth and metastasis in vitro and in a xenograft 
mouse model of prostate cancer (Ko et al. 2015).

Matriptase has furthermore been linked to other pathological processes. Impaired 
matriptase proteolytic activity due to mutations in the ST14 gene was linked to a 
rare form of skin disease named autosomal recessive ichthyosis syndrome with 
hypotrichosis (ARIH) (condition of sparse hair) (List et al. 2007; reviewed in Antalis 
et al. 2011). Hypomorphic mice with 100-fold reduced expression levels of matrip-
tase mRNA have been shown to phenocopy the key features of ARIH (List et al. 
2007). Moreover, expression of matriptase is elevated in osteoarthritis, and the pro-
tease was identified as initiator of cartilage matrix degradation in osteoarthritis 
(Milner et al. 2010). In contrast, matriptase expression is significantly downregu-
lated in intestinal tissues of patients with Crohn disease and ulcerative colitis 
(Netzel-Arnett et al. 2012).

8.2.3.2  TMPRSS6/Matriptase-2: Maintenance  
of Systemic Iron Homeostasis

TMPRSS6/matriptase-2 is composed of a transmembrane domain, followed by a 
SEA domain, two CUB domains, three LDLR, and a C-terminal trypsin-like serine 
protease domain (Wang et al. 2014). Matriptase-2 shares high structural and enzy-
matic similarities with matriptase, which contains four LDLR repeats instead of 
three. The matriptase-2 zymogen (90  kDa) undergoes autocatalytic cleavage at 
R567 within the R↓IVGG activation motif and remains membrane-anchored 
through a disulfide bond linking the pro- and catalytic domains (Stirnberg et  al. 
2010). Soluble forms of matriptase-2 were detected in the conditioned medium of 
transfected cells. Interestingly, shedding of matriptase-2 has been found to be due to 
cleavage at R404 and/or R437 within the second CUB domain and seems to be 
required for converting matriptase-2 into the active form via cleavage at R567. 
Activation of matriptase-2 was prevented in cells expressing matriptase-2 mutant 
R404E/R437E, which cannot be shed (Stirnberg et al. 2010).

TMPRSS6/matriptase-2 is expressed predominantly in the liver. TMPRSS6/
matriptase-2-specific mRNA has been also detected to a lower extent in the kidney, 
spleen, lung, brain, mammary gland, testis, and uterus (reviewed in Ramsay et al. 
2009; Wang et al. 2014).

TMPRSS6/matriptase-2 plays a key role in the maintenance of systemic iron 
homeostasis. Systemic iron homeostasis is maintained by regulating the iron absorp-
tion in the duodenum, by recycling of iron from senescent erythrocytes in macro-
phages, and by mobilizing stored iron in the liver. Increases in iron levels stimulate 
the production of the hepatic hormone hepcidin, which blocks iron export into the 
circulation by binding to and targeting the iron exporter ferroportin on the plasma 
membrane of duodenal enterocytes, macrophages, and hepatocytes for degradation. 
Hepcidin production is suppressed in the case of iron deficiency (reviewed in Ganz 
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and Nemeth 2012 and Wang et al. 2014). Therefore, hepcidin is a key regulator of 
intestinal iron absorption, plasma iron concentrations, and tissue iron distribution. 
Lack of hepcidin causes juvenile hemochromatosis, a particularly severe form of 
iron overload disorder. In contrast, inappropriately high levels of hepcidin cause 
chronic inhibition of iron absorption and consequent anemia (Ganz and Nemeth 
2012; Wang et al. 2014).

Mutations in the TMPRSS6 gene were found to cause increased hepcidin expres-
sion, which leads to iron-refractory iron-deficiency anemia (IRIDA) (Finberg et al. 
2008). Similar phenotypes were also observed in mouse models deficient in 
TMPRSS6/matriptase-2 expression or with expression of a truncated protease form 
that lacks the catalytic domain (Du et al. 2008). Thus, results in mice and humans 
indicated that TMPRSS6/matriptase-2 is required to sense iron deficiency in mam-
mals. Silvestri et al. demonstrated that TMPRSS6/matriptase-2 negatively regulates 
expression of hepcidin by cleaving the GPI-anchored protein hemojuvelin from the 
plasma membrane (Silvestri et al. 2008). Hemojuvelin is a coreceptor in the bone 
morphogenetic protein (BMP)/SMAD signaling pathway that upregulates hepcidin 
in response to increased iron (Babitt et al. 2006; Finberg et al. 2010). Cleavage of 
hemojuvelin by TMPRSS6/matriptase-2 downregulates BMP/SMAD signaling and 
inhibits hepcidin expression.

Studies have shown that TMPRSS6/matriptase-2 expression can be modulated 
by iron status. The underlying mechanism, however, is not fully understood. 
Beliveau et  al. found that TMPRSS6/matriptase-2 is constitutively internalized 
from the plasma membrane in cell culture due to motifs within its cytoplasmic tail 
(Béliveau et al. 2011). Internalized TMPRSS6/matriptase-2 was detected in LAMP- 
2- labeled vesicles, suggesting that the protease transits to lysosomes, where it is 
degraded. However, it is still not clear whether this mechanism of protein degrada-
tion regulates TMPRSS6/matriptase-2 expression depending on the iron status.

8.2.3.3  Matriptase-3
Matriptase-3 was identified by bioinformatic analysis in 2005 (Szabo et al. 2005). 
The TMPRSS7 gene encoding matriptase-3 is located on human chromosome 
3q13.2 and encodes a N-glycosylated TTSP of ca. 90 kDa expressed on the cell 
surface in vitro. Orthologs of the matriptase-3 gene are present in all vertebrates 
analyzed to date, including chimpanzee, dog, rodents, chicken, and fish (Szabo et al. 
2005). In human tissues, matriptase-3 mRNA has been detected in the testis, ovary, 
brain, salivary gland, lung, and trachea (Bugge et  al. 2009). The generation of 
matriptase- 3-deficient mice has not been reported so far, and the physiological sub-
strates and function of matriptase-3 are unknown.

8.2.3.4  Polyserase-1
Polyserase-1 (polyserine protease 1, also named TMPRSS9) is a unique TTSP with 
three tandem serine protease domains, of which two display catalytic activity (Cal 
et al. 2003). Polyserase-1 was originally cloned from human liver cDNA. The pro-
tease is widely expressed in mouse and human tissues. In addition, a shorter splice 
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variant, termed serase-1B, which contains only the first of the three serine protease 
domains of polyserase-1, has been described in mice and humans, with its highest 
expression detected in liver, small intestine, pancreas, testes, and peripheral blood 
CD14+ and CD8+ cells (Okumura et al. 2006). The putative functional advantages 
derived from the complex structural organization of polyserase-1 and its functional 
significance remain unknown in both normal and pathological conditions.

8.2.4  Corin Family

8.2.4.1  Corin: The Pro-Atrial Natriuretic Peptide (pro-ANP)  
Activating Enzyme

Corin is the only member of the corin family and has a complex stem region 
(Fig. 8.1). At the turn of the millennium, corin was identified as a serine protease in 
the heart and as the physiological activator of atrial natriuretic peptide (ANP), also 
called ANF (atrial natriuretic factor) (Yan et al. 1999, 2000). ANP is an important 
hormone that regulates blood pressure and cardiac function by promoting natriure-
sis, diuresis, and vasodilation (Li et al. 2017, review). In cardiomyocytes, ANP is 
synthesized as a precursor protein pro-ANP that is stored in intracellular granules 
and converted to active ANP by corin upon secretion in response to high blood vol-
ume or pressure.

The human corin gene (TMPRSS10) located on chromosome 4p12–13 consists 
of 22 exons and spans ca. 200 kb, making it one of the largest protease genes in the 
human genome. Human corin consists of 1042 amino acids and includes an 
N-terminal cytoplasmic tail, a transmembrane domain, and an extracellular region 
that contains two frizzled domains, eight LDLA repeats, a SRCR domain, and a 
C-terminal serine protease domain (Li et al. 2017). Corin is the only serine protease 
containing frizzled-like domains. Corin zymogen is activated by cleavage at a con-
served site between Arg801 and Ile802. In 2015, Chen et al. identified the propro-
tein convertase paired basic amino acid-cleaving enzyme 4 (PACE4), also designated 
as proprotein convertase subtilisin/kexin 6 (PCSK6), as the long-sought physiologi-
cal activator of corin (Chen et  al. 2015). Co-expression of PACE4 and corin 
enhanced corin activation in HEK293 cells. Moreover, knockout of PACE4 expres-
sion in mice led to impaired corin activation, decreased pro- ANP processing, and 
development of salt-sensitive hypertension.

Corin is extensively N-glycosylated (Liao et al. 2007; Gladysheva et al. 2008; 
Wang et al. 2015). Human corin has a predicted molecular mass of 116 kDa; how-
ever, native and recombinant corin appears as a protein of 200 kDa. Human and 
mouse corin have 19 and 16 predicted N-glycosylation sites in its extracellular 
domains, respectively. It has been shown that N-glycosylation at Asn697  in the 
SRCR domain and Asn1022 in the protease domain are required for corin cell sur-
face expression and zymogen activation.

Corin is primarily expressed in cardiomyocytes. Furthermore, corin has been 
detected in the kidney, blood, and urine. The protease is shed from the cell surface 
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of transient corin expressing HEK293 cells and from the surface of cardiomyocytes 
as three distinct soluble fragments of 180, 160, and 100 kDa, respectively, which 
represent activated two-chain forms linked by a disulfide bond containing the 
40 kDa catalytic domain (Jiang et al. 2011). The metalloproteinase ADAM10 was 
shown to cleave corin in its juxtamembrane region to release the 180-kDa fragment, 
corresponding to the nearly entire extracellular region. In contrast, the 160- and 
100-kDa fragments were generated by corin autocleavage at Arg164  in frizzled 
domain 1 and Arg427 in LDLA domain 5, respectively. Further studies revealed that 
the 180-kDa fragment exhibited the biological activity in processing pro-ANP, 
whereas the two other fragments had little activity (Li et al. 2017).

The presence of soluble corin in human blood indicates that shed corin can enter 
the circulation. Remarkably, corin remains active in the presence of human plasma, 
indicating that circulating protease inhibitors do not block corin activity. To date, no 
physiological corin inhibitors have been identified.

The importance of corin in regulating blood pressure has been shown in corin- 
deficient mice, which exhibited reduced sodium excretion and salt-sensitive hyperten-
sion due to impaired pro-ANP processing (Chan et al. 2005). Reduced corin expression 
has been detected in animal models of cardiomyopathies. Furthermore, decreased 
levels of circulating corin have been reported in patients with hypertension, pre-
eclampsia, and cardiovascular diseases including acute myocardial infarction, heart 
failure, and stroke. Mutations in the corin gene that result in defects in intracellular 
trafficking of the protease, cell surface expression, and zymogen activation have been 
found in these patients (reviewed in Li et al. 2017). Moreover, a PCSK6 mutation with 
impaired corin activation has been identified in a hypertensive patient (Chen et al. 
2015). Latest studies show that plasma corin concentrations provide a valuable prog-
nostic marker for risk stratification of patients with acute myocardial infarction (AMI) 
and low levels of circulating corin are related with poor clinical outcomes (Zhou et al. 
2016).

In addition to ANP, the mammalian natriuretic peptide family comprises two 
additional members: BNP (B-type or brain natriuretic peptide) and CNP (C-type 
natriuretic peptide). ANP and BNP are primarily expressed in the heart, while CNP 
is of endothelial origin and present in various tissues. pro-CNP is converted to active 
CNP by furin (Wu et al. 2003). It has been shown that both corin and furin cleave 
pro-BNP in vitro (Semenov et  al. 2010). However, pro-BNP processing was not 
abolished in corin-deficient mice, indicating that corin is not essential for pro-BNP 
cleavage in vivo (Chen et al. 2015).

Corin expression has also been detected in noncardiac tissues including kid-
ney and in human urine (Fang et  al. 2013). In rat models of kidney disease, 
reduced renal corin expression was associated with sodium retention (Polzin 
et  al. 2010). Latest studies show reduced urinary and renal corin levels in 
patients with chronic kidney disease (Fang et al. 2013). Further studies are nec-
essary to fully understand the role of corin in regulating renal function and 
sodium homeostasis.

Curiously, corin-deficient mice appear to have a lighter coat color (dirty blond), 
and this phenotype depends on the agouti gene (Enshell-Seijffers et al. 2008).
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In summary, corin is a key enzyme in the natriuretic peptide system, and corin 
defects may contribute to major diseases such as hypertension, heart failure, pre-
eclampsia, and kidney disease.

8.3  Type I Transmembrane Serine Proteases

8.3.1  Tryptase Gamma 1

Tryptase gamma 1 (also known as transmembrane tryptase (TMT) and protease 
serine member S31 (PRSS31)) was identified in 1999 as a tryptase present in human 
and mouse mast cells that differs from all other known tryptases, which are soluble 
proteases, by containing a C-terminal transmembrane domain (type I transmem-
brane serine protease) (Wong et  al. 1999). The physiological role(s) of tryptase 
gamma 1 are unknown. PRSS31-deficient mice exhibit no obvious developmental 
abnormalities but show markedly reduced experimental chronic obstructive pulmo-
nary disease (COPD) and colitis compared to wild-type littermates, indicating a role 
of tryptase gamma 1 in mast cell-dependent inflammatory diseases (Hansbro et al. 
2014).

8.4  GPI-Anchored Serine Proteases

8.4.1  Prostasin: Proteolytic and Non-Proteolytic Functions 
in Epithelial Development and Tissue Homeostasis

Prostasin was purified and characterized as an active soluble protease from human 
seminal fluid in 1994 (Yu et al. 1994). The protease is expressed in a variety of epi-
thelial tissues with high expression in the prostate, bronchus, lung, and kidney in 
mouse and human. Prostasin is also known as channel-activating protease (CAP)-1 
and was the first membrane serine protease found to activate the epithelial sodium 
channel (ENaC) (Vallet et al. 1997).

The PRSS8 gene encoding prostasin is conserved in all vertebrate species exam-
ined. In humans, the PRSS8 gene is located on chromosome 16p11.2 and encodes 
a protein of 343 amino acids. Prostasin is GPI-anchored in the cell surface and 
associates with lipid rafts (Chen et al. 2001b; Verghese et al. 2006). In polarized 
cells, prostasin is present on the apical membrane. Using substrate libraries, pros-
tasin was shown to have a preference for polybasic substrates with R/K in P4, 
H/K/R in P3, basic or large hydrophobic amino acids in P2, and R/K in P1 (Shipway 
et  al. 2004). No activity was seen with substrates containing isoleucine in P1′, 
providing an explanation for prostasin being not capable of undergoing autoactiva-
tion (Shipway et al. 2004). Prostasin zymogen conversion in the epidermis requires 
matriptase (Netzel-Arnett et al. 2006; cf. matriptase chapter). The crystal structure 
of the catalytic domain of prostasin has been solved (Rickert et al. 2008). Prostasin 
has been shown to be an essential regulator of the ENaC and thereby regulates the 
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homeostasis of extracellular fluid volume, blood pressure, and intestinal sodium 
and water absorption (Frateschi et al. 2012; Planès et al. 2010). Prostasin cleaves 
the ENaC gamma subunit at K186 within the cleavage motif RKRK↓ distal to a 
furin cleavage site at R144 (RKRR↓) (Bruns et  al. 2007). Dual cleavage of the 
gamma subunit releases a 43-amino acid inhibitory peptide and causes full activa-
tion of the channel, resulting in an increased cellular uptake of Na+. Studies show 
that prostasin is highly expressed in cystic fibrosis airways and is a strong basal 
activator of ENaC in cystic fibrosis airway epithelial cells (Donaldson et al. 2002; 
Tong et al. 2004). Increased levels of soluble prostasin are also found in urine of 
hypertensive patients (Narikiyo et al. 2002). Prostasin may be released from the 
cell surface by an endogenous GPI-specific phospholipase D1 or via cleavage in its 
C-terminal hydrophobic domain (Yu et  al. 1994; Verghese et  al. 2006). Soluble 
prostasin purified from human seminal fluid terminates at R323 (Yu et al. 1994). 
On the other hand, prostasin expression is reduced in a number of cancers includ-
ing prostate, breast, and colorectal cancers, and prostasin has been shown to inhibit 
prostate and breast cancer cell invasion in vitro (Chen et al. 2001a; Chen and Chai 
2002; Bao et al. 2016).

Prostasin-deficient mice display impaired epidermal barrier function, abnormal 
hair follicle maturation, impaired profilaggrin processing, defects in tight junction 
formation, and fatal dehydration (Leyvraz et al. 2005; Netzel-Arnett et al. 2006; 
Szabo et al. 2016). Moreover, constitutive knockout of prostasin leads to embryonic 
lethality due to placental insufficiency (Hummler et al. 2013). The identical pheno-
types of matriptase- and prostasin-deficient mice suggested that both proteases are 
components of one proteolytic cascade (reviewed in Netzel-Arnett et al. 2006; cf. 
matriptase chapter). This hypothesis, however, proved incompatible with studies 
demonstrating that prostasin acts upstream of matriptase in intestinal epithelial cells 
and in the placenta through matriptase zymogen activation (Buzza et  al. 2013; 
Szabo et al. 2016). Thus,  the prostasin-matriptase cascade turned out to be more 
complex than previously thought.

Paradoxically, a number of studies revealed that prostasin requires neither zymo-
gen conversion nor catalytic activity to execute its essential functions in the epider-
mal development (Peters et  al. 2014; Friis et  al. 2016). Already in 2006/2007, 
studies by Andreasen et al. and Bruns et al. reported that catalytically inactive pros-
tasin mutant S238A was able to activate ENaC in Xenopus oocytes in vitro, indicat-
ing that the catalytic activity of prostasin appears to be dispensable for cleavage of 
the ENaC gamma subunit (Andreasen et al. 2006; Bruns et al. 2007). But cell sur-
face expression of prostasin via the GPI anchor was essential for ENaC activation. 
More recent studies in mouse models expressing catalytically inactive prostasin 
mutant S238A or zymogen-locked mutant R44Q revealed that prostasin supports 
both epidermal development and long-term survival in a non-catalytic manner 
(Peters et al. 2014; Friis et al. 2016). In contrast, prostasin proteolytic activity was 
found to be crucial for matriptase zymogen activation in the placenta (Szabo et al. 
2016). In addition, mice expressing catalytically inactive or zymogen-locked pros-
tasin displayed impaired hair follicle development and delayed skin wound healing, 
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indicating that some of the physiological functions of prostasin require its proteo-
lytic activity. The V170D (low enzymatic activity) and the G54-P57 deletion muta-
tions of prostasin have been identified in mouse frizzy (fr) and rat hairless (frCR) 
animals, respectively, and have been proposed to be responsible for their skin phe-
notypes (Spacek et al. 2010; Szabo et al. 2012).

Taken together, prostasin is unique among trypsin-like proteases in that it has 
essential functions as an enzymatically active protease as well as an enzymatically 
inactive zymogen. The specific mechanism(s) by which catalytically inactive pros-
tasin supports epidermal development remain to be established. Matriptase and 
prostasin form a reciprocal zymogen activation complex in vitro that results in the 
formation of both active matriptase and active prostasin (Friis et al. 2013).

8.4.2  Testisin: Roles in Sperm Maturation and Motility

Testisin (also referred to as PRSS21, testicular protease 5 (TESP5), or eosinophil 
serine protease 1 (ESP-1)) is aberrantly expressed in male germ cells and sperm and 
is also expressed in microvascular endothelial cells and in eosinophils (Hooper et al. 
1999; Inoue et al. 1998; Aimes et al. 2003). The protease was originally cloned from 
human eosinophils and from HeLa cells (Inoue et al. 1998; Hooper et al. 1998). 
Testisin expression is lost in testicular germ cell tumors (Hooper et al. 1999) and is 
found overexpressed in ovarian tumors (Shigemasa et al. 2000). The testisin gene, 
PRSS21, is located on human chromosome 16p13.3. Several isoforms of human 
testisin have been identified that are generated by alternative pre-mRNA splicing 
(Hooper et al. 2000; Inoue et al. 1998).

Testisin is synthesized as a 43-kDa precursor in the testis, and the zymogen is 
converted into the 42- and 41-kDa active enzymes during sperm transport in the epi-
didymis (Honda et al. 2002). Testisin is anchored to the membrane via a GPI moiety 
at its carboxy terminus and is included into lipid rafts on the sperm membrane 
(Honda et al. 2002). Unlike other membrane-anchored serine proteases, testisin has 
not been found to be naturally shed from the plasma membrane, but the protease can 
be release from cells in vitro using exogenous bacterial phosphatidylinositol- specific 
phospholipase C (Honda et al. 2002).

Mammalian fertilization requires sperm to penetrate the cumulus matrix sur-
rounding the oocyte to reach the zona pellucida (ZP), binding and invasion of the 
ZP, and finally fusion of the sperm and oocyte plasma membranes. The serine 
protease acrosin has been long believed to participate in limited proteolysis of ZP, 
thus enabling sperm to penetrate the egg coat. However, acrosin-deficient mice 
were fully fertile, although they displayed delayed sperm penetration of the ZP at 
the early stage of fertilization in vitro (Baba et al. 1994), indicating that additional 
serine protease(s) play important roles in the regulation of male fertility. Mice 
deficient in testisin expression are fertile, too, but display deformed spermatozoa 
with an increased tendency toward decapitation and reduced motility (Netzel-
Arnett et al. 2009). Testisin was found to direct murine sperm cell maturation and 
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sperm- fertilizing ability during passage of spermatozoa through the epididymis to 
their site of temporary storage in the cauda (Netzel-Arnett et al. 2009). Combined 
knockout of acrosin and testisin in mice impairs fertility in vivo and causes com-
plete loss of fertilization ability in vitro, which suggests that sperm trypsin-like 
activity is indispensable for in vitro fertilization but not particularly for fertiliza-
tion in vivo in mice. Interestingly, these data suggest that the female reproductive 
tract partially compensates for the loss of the sperm function, presumably due to 
the presence of an acrosin-/testisin-like protease (Kawano et al. 2010; reviewed in 
Szabo and Bugge 2011).

Little is known regarding specific physiological substrates of testisin during epi-
didymal sperm maturation and initiation of sperm motility as well as during testicu-
lar and ovarian tumor formation and progression. Recently, testisin was shown to be 
capable of activating PAR-2 in vitro (Driesbaugh et al. 2015). PAR-2 activation has 
been associated with the regulation of sperm motility following trypsin activation 
(Miyata et al. 2012). However, activation of PAR-2 by testisin in vivo and a possible 
role in sperm motility remain to be demonstrated.

8.5  MASPs in Viral Infections

The majority of viral fusion proteins is synthesized as precursors and requires pro-
cessing by a host cell protease to trigger fusion of the viral lipid envelope and cel-
lular membranes in order to release the virus genome into the host cell. For a large 
number of viruses, cleavage of the fusion protein occurs either at a single arginine 
(R↓) by trypsin-like proteases or at a multibasic motif of the consensus sequence 
R-X-R/K-R↓ by ubiquitous expressed subtilisin-like proteases such as furin and 
proprotein convertase 5/6 (PC5/6) (see Chap. 9).

The first report of proteolytic activation of viral fusion proteins was published in 
1973 in a study using Sendai virus. It was demonstrated that the viral glycoprotein 
F is synthesized as an inactive precursor that is converted into its biological active 
form due to cleavage by a host cell protease and that F cleavage is a prerequisite for 
infectivity and multicycle virus replication (Homma and Ohuchi 1973; Scheid and 
Choppin 1974). In the following years, striking differences in glycoprotein activa-
tion have been observed with Newcastle disease virus and avian influenza viruses, 
which proved to be important determinants of the pathogenicity of these viruses 
(Nagai et al. 1976; Bosch et al. 1981). In 1992, the proprotein convertase furin was 
identified as protease that activates the hemagglutinin of the highly pathogenic 
avian influenza virus (HPAIV) strains at multibasic motifs (Stieneke-Gröber et al. 
1992; reviewed by W. Garten in another chapter of this book) (Fig. 8.3a, b). Furin 
which is expressed in all tissues is responsible for the systemic infection typical for 
these viruses. However, less was known about the identity of the protease(s) that 
support HA cleavage at a single arginine residue.
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Fig. 8.3 Activation of the envelope glycoprotein hemagglutinin HA of influenza A virus and spike 
protein S of CoV by host cell proteases. (a) Schematic illustration of the precursor proteins HA0 and S 
of influenza A virus and coronaviruses (CoVs), respectively, and cleavage sites (red arrows). HA0 is 
cleaved into HA1 and HA2; both subunits remain linked by a disulfide bond. HA0 of highly pathogenic 
avian influenza A viruses is activated at a multibasic cleavage site, while HA0 of low pathogenic avian 
influenza A viruses and mammalian influenza A viruses is cleaved at a single basic residue. CoV S pro-
tein is cleaved at two distinct sites at monobasic motifs or the minimal furin consensus motif RXXR. The 
S1 and S2 domains are not held by disulfide bonds but remain associated non-covalently (Millet and 
Whittaker 2015). FP, fusion peptide. TM, transmembrane domain. Basic amino acids crucial for cleavage 
by relevant proteases are written in bold letters. (b) Compartmentalization of activation of HA and S by 
host cell proteases. The envelope proteins HA and S mediate virus entry into cells through receptor bind-
ing and fusion of the viral envelope with host cell membranes. Fusion delivers the viral genome into the 
host cell and initiates viral replication and generation of progeny virions. Newly synthesized virions are 
finally released via budding at the plasma membrane (influenza A virus) or at the ER-Golgi intermediate 
compartment (ERGIC) and subsequent exocytosis of new virions at the cell surface (CoV). HA and S 
require cleavage by host cell proteases to gain their fusion capacity. In the case of influenza A virus, newly 
synthesized HA is cleaved during its transport to the plasma membrane by furin (multibasic cleavage site) 
or TMPRSS2 (monobasic cleavage site) in the trans-Golgi network (TGN) or at the cell surface by HAT 
during assembly and budding of progeny virus. Thus, virus containing cleaved HA is released from 
infected cells. HA can also be cleaved by HAT on the cell surface prior to entry into a new cell. In con-
trast, TMPRSS2 present on the cell surface does not support HA cleavage. It remains unclear whether 
HAT is enzymatically active within the cell and thus can cleave HA already during its transit to the 
plasma membrane. Most CoVs, including SARS- and human 229E-CoVs, are released with non-cleaved 
S from the infected cells, indicating that S is not activated during its transit through the exocytic pathway. 
Therefore, the S protein of CoV is activated upon entry into the host cell. Entry can take place via fusion 
at or close to the plasma membrane or in early endosomes (“early entry”) and may be pH-independent or 
via late fusion in late endosomes (“late entry”) in a low pH-dependent manner. Early or late fusion seems 
to be dependent on the protease(s) that cleave S at the S2’ site. Cleavage of S by furin and TTSPs is 
believed to support an early entry (e.g., MERS-CoV), whereas activation of S by cathepsins supports late 
entry via fusion in late endosomes (e.g., mouse hepatitis virus (MHV) A59) (Burkard et al. 2014; Millet 
and Whittaker 2015; Park et al. 2016). Newly synthesized S protein of some CoV, including MERS-CoV, 
has been reported to be cleaved by furin or TTSPs in the exocytic pathway, but the role of S cleavage in 
the secretory pathway for virus-cell and cell-cell fusion remains to be investigated in more detail. It also 
remains unknown whether furin and/or TTSPs such as TMPRSS2 are present as enzymatically active 
enzymes in the ERGIC and might cleave S in this compartment
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8.5.1  The Search for Virus-Activating Proteases  
in the Airway Epithelium

Human and mammalian influenza A and B viruses and low pathogenic avian influ-
enza A viruses (LPAIV) are activated at monobasic HA cleavage site motifs by 
trypsin in vitro (Klenk et al. 1975; Lazarowitz and Choppin 1975). A number of 
soluble trypsin-like proteases isolated from rat and swine lung, such as tryptase 
Clara, mini-plasmin, or tryptase TC30, as well as a blood clotting factor 
Xa-homologous protease in embryonated chicken eggs have also been found to acti-
vate HA of these viruses as described in a chapter by H. Kido in this book. However, 
the genetic identity is still unknown for many of these enzymes, and it remains 
unclear whether they play a role in in vivo infection. Relevant HA-activating prote-
ases in the human airways were unknown for a long time. Cleavage of HA by solu-
ble proteases such as trypsin in cell culture takes place outside the cells during 
assembly and budding of new virions when HA is present on the plasma membrane 
or after progeny virus is released from the infected cell. Thus, it was believed for a 
long time that HA with a monobasic cleavage site is activated extracellularly and, 
therefore, differs from HA of HPAIV, which is cleaved in the TGN by furin.
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In 2006, a number of proteases that possess trypsin-like activity were cloned 
from primary human tracheobronchial epithelial (HTBE) cells in search for human 
HA-activating proteases (Böttcher et al. 2006). Among a couple of candidates, the 
TTSPs HAT and TMPRSS2 were demonstrated to activate HA with monobasic 
cleavage site in vitro and thus were identified as the first human influenza virus- 
activating proteases in the respiratory tract (Böttcher et al. 2006) (Table 8.2).

Subsequently, HAT and TMPRSS2 were shown to activate also other respiratory 
viruses at monobasic cleavage site motifs in  vitro, such as human coronaviruses 
(CoVs) including SARS-CoV and MERS-CoV, the human metapneumovirus, and 
human parainfluenza viruses (Shirogane et al. 2008; Glowacka et al. 2011; Matsuyama 
et al. 2010; Shulla et al. 2011; Shirato et al. 2013; Millet and Whittaker 2015; Abe 
et al. 2013). In addition, further TTSPs were tested for their ability to activate viral 
fusion proteins, and TMPRSS4, DESC1, TMPRSS11A, MSPL/TMPRSS13, and 
matriptase have been found to activate influenza virus HA as well as SARS-CoV and 
MERS-CoV spike protein S in cell cultures (Table 8.2). Other TTSPs, such as hepsin, 
TMPRSS3, matriptase-2, matriptase-3, or corin, did not support proteolytic activation 
of influenza viruses or CoV in cell culture, demonstrating that only certain trypsin-
like proteases present in the airway epithelium support activation and spread of respi-
ratory viruses. TMPRSS2-homologous proteases have been identified in swine, 
chicken, and mouse and were shown to be capable of activating HA at a single argi-
nine, suggesting that homologous proteases are involved in HA cleavage in different 
host species (Bertram et al. 2012; Peitsch et al. 2014; Tarnow et al. 2014).

It has long been known that HAs with monobasic cleavage site differ in their 
sensitivity to host proteases. For instance, HAs of A/WSN/33 (H1N1), A/PR8/34 
(H1N1), A/Asia/1/57 (H2N2), and A/duck/Ukraine/1/63 (H3N8) are activated by 
trypsin, plasmin, kallikrein, and uPA in vitro, whereas HA of A/chicken/Germany/49 
(H10N7) is activated only by trypsin (Lazarowitz et  al. 1973; Scheiblauer et  al. 
1992). More recent studies on cleavage of human influenza A virus HA by kalli-
krein (KLK) 5 and 12 showed that H1 is cleaved by both KLK5 and KLK12 in vitro, 
whereas H2 and H3 are only cleaved by KLK12 and KLK5 , respectively (Hamilton 
and Whittaker 2013). Furthermore, the sensitivity of 16 HA subtypes to cleavage by 
TMPRSS2, HAT, and pancreatic trypsin was demonstrated to vary significantly 
among the different subtypes (Galloway et al. 2013; see also Chap. 1). Interestingly, 
studies in TMPRSS2-deficient mouse models demonstrated that differences in the 
sensitivity of HA to cleavage by host proteases may affect influenza virus spread 
and pathogenesis (Hatesuer et al. 2013; Tarnow et al. 2014; Sakai et al. 2014) (see 
below). The mechanisms underlying protease specificity of HA with monobasic 
cleavage site, however, are still unknown and may be related to the structure and 
exposure of the cleavage site loop or steric hindrance by adjacent carbohydrate moi-
eties (Kawaoka et al. 1984; Sakai et al. 2015).

8.5.2  Subcellular Localization and Time Point of Virus Activation 
by TTSPs

The identification of membrane-bound HA-activating proteases raised the question 
where in the host cell and at which step of the viral replication cycle the viral 
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glycoproteins are cleaved by TTSPs. The subcellular localization and enzymatic 
activity of HAT and TMPRSS2 in airway epithelial cells have not been investigated 
in more detail so far but have been studied in MDCK cells that proved to be a suitable 
model system (Böttcher et al. 2009). Interestingly,  it was demonstrated that activa-
tion of influenza virus HA by HAT and TMPRSS2 differs in subcellular localization 
and can take place at different steps of the viral life cycle (Böttcher et  al. 2009; 
Böttcher-Friebertshäuser et al. 2010, 2013; Fig. 8.3b). Incubation of HAT-expressing 
MDCK cells with fluorogenic peptides to measure the protease activity on the cell 
surface revealed that HAT is present as an enzymatically active protease on the cell 
surface. In addition, it was shown that HAT is capable of cleaving newly synthesized 
HA0, probably during assembly and budding of new virions on the plasma mem-
brane, as well as HA0 of incoming influenza virus at the stage of entry during attach-
ment to a new host cell. In contrast, only poor if any enzymatic activity of TMPRSS2 
was measured on the surface of TMPRSS2-expressing MDCK cells, and the cells 
were not able to support activation of incoming influenza virions containing HA0, 
although TMPRSS2 was present as both zymogen and mature form on the surface of 
MDCK cells (Böttcher-Friebertshäuser et al. 2010). Cleavage of HA was found to 
take place intracellularly during its transport through the secretory pathway to the 
plasma membrane (Fig. 8.3b). Immunofluorescence studies of transient TMPRSS2 
expression in mammalian cells revealed that the protease accumulates in the TGN, 
where it co-localizes with furin, suggesting that HA cleavage by TMPRSS2 and furin 
occurs in the same cellular compartment (Böttcher-Friebertshäuser et  al. 2013). 
These data were in agreement with earlier studies by Zhirnov et al. that showed that 
cleavage of HA in human respiratory or intestinal epithelial cells occurs intracellu-
larly and is performed by cell-associated proteases (Zhirnov et al. 2002; Zhirnov and 
Klenk 2003). These studies provided further evidence that cleavage of influenza 
virus HA can occur at different steps of the viral life cycle: during transport of HA 
along the secretory pathway to the cell surface, on the plasma membrane during 
assembly and budding, and late in infection upon entry into new cells (Boycott et al. 
1994; Zhirnov et al. 2002; Böttcher-Friebertshäuser et al. 2010). However, shedding 
of TTSPs may be enhanced under stress, and soluble forms might contribute to virus 
activation under such conditions. For example, enhanced shedding of TMPRSS2 and 
HAT from human nasal epithelial cells and hence enhanced influenza virus replica-
tion have been observed upon exposure to ozone in vitro (Kesic et al. 2012).

Studies on proteolytic activation of the spike protein S of human CoV including 
SARS-CoV and MERS-CoV by HAT and TMPRSS2 revealed also that viruses 
may have different options to be activated by host cell proteases during the viral 
replication cycle (Fig. 8.3b). CoV S proteins possess two distinct cleavage sites, 
S1/S2 and S2’, and can be cleaved by a number of proteases, including furin, 
cathepsin L, and trypsin, and trypsin-like proteases such as the TTSP HAT, 
TMPRSS2, DESC1, and MSPL (reviewed in Millet and Whittaker 2015, and Chap. 
4 this book; see also Fig. 8.3). Cleavage of S by cathepsins occurs in late endo-
somes or lysosomes and is pH dependent, whereas activation by TTSPs may 
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support cathepsin- and low pH- independent CoV entry via fusion in early endo-
somes in vitro (Burkard et al. 2014; Millet and Whittaker 2015; Park et al. 2016). 
Both HAT and TMPRSS2 are believed to cleave S at or close to the cell surface (for 
review see Chap. 4). It remains to be investigated whether TMPRSS2 and/or HAT 
are present (and active) in endosomes. It further remains to be investigated why 
TMPRSS2 may cleave CoV S but not influenza virus HA at the cell surface. For 
some CoV, receptor binding has been shown to be required for proteolytic activa-
tion of S. Treatment of SARS-CoV particles with trypsin prior to binding to its 
receptor angiotensin I-converting enzyme 2 (ACE2) inactivates the virions in vitro, 
whereas SARS-CoV particles bound to its receptor are activated by trypsin for 
membrane fusion (cf. Chap. 4). Moreover, TMPRSS2 has been shown to cleave 
ACE2 and thereby to increase SARS-CoV S uptake into ACE2-expressing cells 
in  vitro (Heurich et  al. 2014). Thus, receptor binding of S or interactions of 
TMPRSS2 and ACE2 might trigger S cleavage by TMPRSS2 at the plasma mem-
brane. In general, CoV are believed to be proteolytically activated upon entry into 
cells, but newly synthesized S may also be activated prior to virus release from the 
infected cell (Fig. 8.3b). The subcellular compartmentalization of S cleavage dur-
ing its transit through the exocytic pathway and/or virus assembly and budding at 
the ER-Golgi intermediate compartment (ERGIC) (reviewed in Ujike and Taguchi 
2015), however, are not understood in detail.

8.5.3  Identification of TMPRSS2 as Host Cell Factor Essential 
for Influenza A Virus Activation and Spread in Mice

In three recent independent studies, TMPRSS2 was identified as the solely 
HA-activating protease and as a host cell factor essential for spread and pneumot-
ropism of human H1N1 and H7N9 influenza A viruses in mice (Hatesuer et al. 
2013; Tarnow et al. 2014; Sakai et al. 2014). Intriguingly, knockout of TMPRSS2 
expression prevented virus activation and consequently spread into the lungs and 
thereby protected the animals from influenza pathogenesis, whereas wild-type lit-
termates succumbed to severe infection. These studies also revealed that other 
TTSPs that activate H1N1 virus in vitro, such as HAT/TMPRSS11D, TMPRSS4, 
DESC1, or MSPL, do not support HA activation in mice in  vivo. For HAT/
TMPRSS11D, this can be explained by the fact that the protease is expressed in 
the upper airways, trachea, and bronchi of mice, but is not present in the lungs 
and, thus, cannot support influenza virus pneumotropism (Sales et  al. 2011; 
Tarnow et al. 2014). The same is probably true for DESC1. However, TMPRSS4 
and MSPL/TMPRSS13 are present in lung tissue (Kühn et al. 2016; Kim et al. 
2001), and it remains unclear why both proteases do not support activation of 
H1N1 and H7N9 influenza virus in the airways of TMPRSS2-deficient mice. 
Noteworthy, replication of human H3N2 influenza A virus and influenza B virus 
(IBV) was almost independent of TMPRSS2 expression in mice, indicating that 
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H3 and IBV HA can be activated by additional host proteases in contrast to H1 
and H7 (Tarnow et al. 2014; Sakai et al. 2016). In a recent study, knockout of both 
TMPRSS4 and TMPRSS2 caused reduced body weight loss and mortality upon 
H3N2 influenza A virus infection in mice in comparison with wild-type animals, 
indicating that both proteases contribute to activation of H3N2 virus in mice 
(Kühn et al. 2016). Nonetheless, H3N2 influenza A virus was still proteolytically 
activated in TMPRSS2-TMPRSS4-knockout mice and caused severe disease with 
30% mortality, indicating that another H3-cleaving protease(s) is present in 
murine airways. MSPL/TMPRSS13 might be a potential candidate.

Taken together, these studies demonstrated for the first time that expression 
of the appropriate HA cleaving protease along the respiratory tract is essential 
for influenza virus pneumotropism and pathogenicity in a mammalian host. In 
addition, TMPRSS2 emerged as a potential drug target for influenza treatment. 
It will be very interesting to analyze the role of TMPRSS2 and further TTSPs in 
activation and pathogenicity of other respiratory viruses including SARS-CoV 
and MERS-CoV and human parainfluenza viruses using suitable mouse models. 
Interestingly, a single nucleotide polymorphism in the TMPRSS2 gene that 
results in higher TMPRSS2 expression has been associated with increased sus-
ceptibility to H1N1 and H7N9 influenza virus and higher risk of severe infec-
tion, suggesting that TMPRSS2 may play a crucial role in influenza virus 
activation also in humans (Cheng et  al. 2015). This view is supported by the 
observation that knockdown of TMPRSS2 expression in the human airway epi-
thelial cell line Calu-3 strongly suppressed activation and multicycle replication 
of human H1N1 influenza A viruses (Böttcher-Friebertshäuser et  al. 2011). 
Interestingly, knockdown of TMPRSS2 also strongly suppressed H3N2 virus 
replication in Calu-3 cells, suggesting that the differences in protease specificity 
of influenza virus HA observed in mice might be less pronounced in humans. 
However, further studies are needed to understand the role of TMPRSS2  in 
influenza virus activation in humans.

8.5.4  Activation of Viral Fusion Proteins with Di-/Multibasic 
Cleavage Site Motifs by TTSPs

Other TTSPs have been found to activate viral fusion proteins at di- or multibasic 
amino acid motif. MSPL/TMPRSS13 and the hepsin-related protease TMPRSS12 
were able to activate avian H5N2 influenza virus and avian metapneumovirus, 
respectively, at multibasic cleavage site motifs (Okumura et  al. 2010; Yun et  al. 
2016). This may be relevant particularly for unusual di- or multibasic cleavage site 
motifs that are not cleaved by furin. H9N2 viruses in Asia and the Middle East have 
acquired dibasic cleavage site motif R-S-S/R-R that are not activated by furin. A 
study demonstrated that H9 with R-S-S/R-R at the cleavage site can be activated by 
matriptase in addition to TMPRSS2 and HAT in vitro (Baron et al. 2013). Matriptase 
is widely expressed in multiple epithelial tissues and, therefore, may affect H9N2 
virus spread, tissue tropism, and pathogenicity. Nephrotropism of H9N2 virus has 
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been described in chickens, and matriptase has been suggested to contribute to 
H9N2 virus replication in the kidney of chickens (Baron et al. 2013). Some H9N2 
isolates have been reported to cause lethal infections in mice with virus replication 
in the lung and brain (Guo et al. 2000; Li et al. 2012).

 Concluding Remarks and Key Research Questions
Described for the first time two decades ago, a number of MASPs have already 
been established as important regulators in mammalian physiology. However, for 
many MASPs the physiological functions and/or substrates are not fully charac-
terized or still unknown at all. The TTSP TMPRSS2 was identified as influenza 
A virus- activating protease in human airway cells and in mice and as host cell 
factor essential for pneumotropism and pathogenesis of certain influenza A virus 
strains infecting humans in mice. The role of TMPRSS2 in activation of further 
respiratory viruses in vivo remains to be investigated, and its important role in 
influenza virus activation in humans needs to be demonstrated. As mentioned 
above, a number of TTSPs that have been shown to activate HA in vitro and to 
be present in the respiratory tract, including TMPRSS4 and TMPRSS13, were 
not able to compensate for the lack of TMPRSS2 expression in influenza virus 
activation in mice. Thus, if there is some redundancy among MASPs in process-
ing of physiological substrates, and this is very likely, it is not the case for cleav-
age of HA. The underlying reasons are unclear so far. Detailed information on 
the substrate specificity of TMPRSS2 or TMPRSS4 is missing due to the lack of 
suitable systems for expression and purification of these proteases and available 
structural information of the protease domains. To date, the crystal structure of 
the protease domain has been solved for hepsin, DESC1, enteropeptidase, mat-
riptase, and prostasin. Moreover, differences in (1) subcellular compartmental-
ization and activity, (2) expression levels, and/or (3) distribution in different 
airway cell types of TMPRSS2 in comparison with other TTSPs might account 
for the observed differences in activation of influenza A viruses. In particular, the 
compartmentalization of MASP activity should be investigated in more detail in 
future studies. MASPs are predicted to act as active enzymes on the cell surface, 
but studies on activation of influenza A virus HA by TMPRSS2 showed that 
cleavage takes place intracellularly, probably in the TGN. Thus, some MASPs 
may process their substrates already (or even exclusively) in intracellular com-
partments. Expression and enzymatic activity of MASPs in endosomes and lyso-
somes have not been studied so far but may play a role in processing of both 
physiological substrates and viral fusion proteins. Furthermore, the role of solu-
ble MASP activity due to shedding of the catalytic domain is poorly 
understood.

Dysregulated MASP activities are associated with a number of pathophysio-
logical processes, and specific inhibitors may provide promising pharmaceutical 
tools for the treatment of cancer, iron overload, or respiratory diseases. Potent 
inhibitors for some MASPs have already been developed (for review see 
Steinmetzer and Hardes, this book), but no inhibitor of host proteases has been 
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approved for the treatment of virus infections to date. The development of highly 
selective MASP inhibitors is hampered by the lack of available crystal structures 
of the catalytic domain as well as knowledge on the role of the different domains 
of the stem region in substrate specificity, protease conformation, and protein-
protein interactions. It remains to be analyzed whether some TTSPs are upregu-
lated during virus infection and thereby may support enhanced virus activation 
and/or organ tropism. Moreover, it will be interesting to analyze whether dys-
regulation of MASPs contributes to the susceptibility to virus infection.

The protection of TMPRSS2 knockout mice from influenza A virus pathogen-
esis strikingly demonstrated the crucial role of virus activation for viral spread in 
the host. However, we are just beginning to understand in more detail which 
roles MASPs may play in virus activation, spread, and organ tropism on one 
hand and whether the physiological functions of these enzymes can be sup-
pressed or compensated during an acute virus infection in order to block virus 
multiplication by using protease inhibitors on the other hand.
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