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Accurately estimating daily mean ecosystem respiration rate (Re) is important for understanding how ecosystem carbon budgets
will respond to climate change. Usually, daily mean Re is represented by measurement using static chamber on alpine meadow
ecosystems from 9:00 to 11:00 h a.m. local time directly. In the present study, however, we found that the calculated daily mean Re
from 9:00 to 11:00 h a.m. local time was significantly higher than that from 0:00 to 23:30 h local time in an alpine meadow site,
which might be caused by special climate condition on the Qinghai-Tibetan Plateau. Our results indicated that the calculated daily
mean Re from 9:00 to 11:00 h a.m. local time cannot be used to represent daily mean Re directly.

1. Introduction

Great concerns over global warming and climate change have
been proposed for improving the accuracy in estimating
carbon flux in terrestrial ecosystems [1–3]. Static chamber
method has widely been applied to measure ecosystem res-
piration in different ecosystems [4–6]. This method requires
manual operation, therefore, it is a common practice to
measure respirations of a period in a day to represent daily
mean value, for example, 06:00–11:00 h a.m. [7], 9:00–11:00 h
a.m. [8], and 14:00–16:00 h p.m [9]. Re measured between
9:00 and 11:00 h a.m. local time has been used to represent
the daily mean value for the alpine meadow ecosystems on
the Qinghai-Tibetan Plateau [10–15] and other ecosystems
[8, 16, 17]. However, it is unknown whether this method
is valid on the Qinghai-Tibetan Plateau, which has unique
climate condition [18].Therefore, in this study, we carried out
round-the-clock field observation of ecosystem respiration
per half-hour using an automated soil CO

2
flux system to test

this method.
The field measurement was carried out in an alpine

meadow at 3,887m a.s.l. in Shule River Basin at the southeast
45 km far away Suli county (98∘1833.2 E, 38∘2513.5 N),

the western part of Qilian Mountain, which is on the north-
east edge of the Qinghai-Tibetan Plateau, Qinghai Province,
China. The climate belongs to continental climate and is
mainly controlled by westerly winds, with annual average
precipitation being 200–400mm, of which nearly 90% falls
in the growing season (May–September), and the annual
mean temperature ranged from −4.0 to −19.4∘C [19]. Soils are
classified as felty soils [20]. The study site, ∼100 × 100m2,
has been fenced in 2010 to exclude the grazing activities
of sheep and yaks. The dominant vegetations are Kobresia
capillifolia and Carex moorcroftii. The permafrost type is
transition according to the classified method by Cheng and
Wang [21]. Three 2 × 2m2 plots were set up randomly for the
measurement of ecosystem respiration, and all the selected
plots were expected to be less in spatial heterogeneity by
visual inspection of the vegetation. Half-hour Re values were
measured every 3 to 15 days depending onweather conditions
during the whole growing season (May–September) in 2012
using an automated soil CO

2
flux system (LI-8150, LI-COR

Biosciences, Lincoln, NE, USA) equipped with LI-COR-
8100-104 long-term chamber.Three polyvinyl chloride collars
20 cm in diameter and 12 cm in height were used formeasure-
ments. Collars were inserted into soil at 8-9 cm. To reduce
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Figure 1: Diurnal variations of ecosystem respiration rate (𝜇moLm−2 s−1) and soil temperature at 5 cm depth (∘C) during the grown season
fromMay to September.

a disturbance-induced CO
2
efflux, all collars were installed

24 h prior to the first measurement. Soil temperature at 5 cm
and moisture at 7 cm below soil surface were measured at
each chamber simultaneously while Re was measured. To
eliminate artifacts due to the Venturi effect [22], we excluded
measured values of Re when wind speed exceeded 7.5m s−1
according to Xu et al. [23]. Data of the half-hour wind speed
was derived from the meteorological stations in our study
site for the period of May to September, 2012. However, our
exclusion can maintain the reliability of values because field
observation supplied enough data for estimating daily mean
Re.

The maximum and minimum Re values of ecosystem
respiration occurred at 12:00 to 16:00 h p.m. and 4:00 to 8:00 h
a.m. local time, respectively (Figure 1), which corresponded
well with the diurnal pattern of soil temperatures. Although
the daily mean Re from 9:00 to 11:00 h a.m. local time was
strongly correlated with that from 0:00 to 23:30 h (Figure 2),
the calculated daily mean values of Re from 9:00 to 11:00 h
a.m. local time were significantly higher than those from 0:00
to 23:00 h for both conditions with and without exclusion of
wind effects (Table 1). Comparedwith dailymean values from
0:00 to 23:00 h, the Re values from 9:00 to 11:00 h a.m. local
time were 23.90%/24.08% greater than the daily mean values
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Table 1: Daily mean values of Re calculated from 9:00 to 11:00 h a.m. local time and from 0:00 to 23:00 h before and after exclusion of the
effect of wind.

Date Before exclusion of the effect of wind After exclusion of the effect of wind
0:00–23:30 9:00–11:00 Overestimate (%) 0:00–23:30 9:00–11:00 Overestimation (%)

22-May 1.09 1.32 21.13 1.15 1.25 9.09
02-Jun 1.33 2.09 57.69 1.32 2.09 58.13
14-Jun 2.09 2.54 21.94 2.11 2.54 20.71
20-Jun 2.86 3.72 30.23 2.86 3.72 30.23
05-Jul 2.39 3.65 53.05 2.46 3.65 48.55
17-Jul 2.19 2.52 15.07 2.19 2.52 15.07
21-Jul 2.65 2.88 8.42 2.65 2.88 8.42
24-Jul 2.68 3.46 28.96 2.72 3.46 27.09
03-Aug 5.63 6.20 10.18 5.35 6.20 15.85
19-Aug 2.87 3.63 26.58 2.86 3.63 27.14
23-Aug 2.93 3.56 21.54 2.93 3.56 21.54
03-Sep 2.21 2.71 22.91 2.21 2.71 22.91
Mean 2.58 3.19 23.90 2.57 3.19 24.08
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Figure 2: Relationships between the daily mean values of Re
(𝜇moLm−2 s−1) calculated from 0:00–23:00 h local time and the Re
estimated by 9:00–11:00 h a.m. local time; all the measurements for
three chambers for all the sampling dates were pooled together,
𝑛 = 36.

before/after exclusion the effects of wind during the whole
growing season (Table 1).

Our results are consistent with Cao et al. [24] and Zhang
et al. [25], whose results showed that diurnal variations of
soil respiration on the alpine meadow presented significant
single peak dynamics with the maximum value in 12:00–
16:00 h p.m. local time and theminimumvalue in 4:00–8:00 h
a.m. local time by using static chamber. However, our results
are inconsistent with Tang et al. [26] and Li et al. [27], who
have demonstrated that CO

2
fluxes measured at 9:00–11:00 h

a.m. local time were close to daily means in subtropical forest
ecosystem in southern China and in cropland ecosystem on
the Loess Plateau in northern China. Those correlations that
existed in forest and cropland ecosystems were associated

with relatively low range of soil temperature and flat daily
curves of CO

2
fluxes during daytime and nighttime [28].

In the present study, daily mean Re calculated from 9:00
to 11:00 h a.m. local time was significantly higher than 0:00
to 23:30 h local time, which might be caused by special
climate conditions on the Qinghai-Tibetan Plateau. The
solar radiation can penetrate thin atmosphere easily to heat
land surface, the soil temperature increases quickly after
sunrise; the upward land surface longwave radiation can also
dissipate quickly due to thin atmosphere, and surface soil
temperature decreases quickly in the afternoon (Figure 3).
Stronger diurnal variation of Re was apparent in this alpine
meadow ecosystem, it is possible that daily mean Re will
be overestimated if it is represented by Re of any period
during daytime. To improve the accuracy in estimation of
carbon budget, hence, automated continuous all-day field
observation for Re initiated here will provide more definitive
studies [29, 30]. Compared with static chamber, automated
soil CO

2
flux system can measure wide temporal variability

in ecosystem respiration with the range from half-hour to
seasonal and even to interannual [31]. An alternative way is
to calculate the ratios of instant Re from 9:00–11:00 a.m. local
time to the daily mean Re and then to use these ratios to
calculate daily mean Re [32].
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Figure 3: Comparison between 3-day daily mean diurnal soil temperature (solid line, 5 cm) and the corresponding sinusoidal temperature
(dashed line) with the same daily range for May (a), June (b), July (c), and August (d).
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