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ARTICLE

Electronic Health Record Phenotypes for Precision
Medicine: Perspectives and Caveats From Treatment
of Breast Cancer at a Single Institution

Matthew K. Breitenstein1,2,∗, Hongfang Liu3, Kara N. Maxwell4, Jyotishman Pathak5 and Rui Zhang6,7

Precision medicine is at the forefront of biomedical research. Cancer registries provide rich perspectives and electronic health
records (EHRs) are commonly utilized to gather additional clinical data elements needed for translational research. However,
manual annotation is resource-intense and not readily scalable. Informatics-based phenotyping presents an ideal solution, but
perspectives obtained can be impacted by both data source and algorithm selection. We derived breast cancer (BC) receptor
status phenotypes from structured and unstructured EHR data using rule-based algorithms, including natural language pro-
cessing (NLP). Overall, the use of NLP increased BC receptor status coverage by 39.2% from 69.1% with structured medication
information alone. Using all available EHR data, estrogen receptor-positive BC cases were ascertained with high precision (P
= 0.976) and recall (R = 0.987) compared with gold standard chart-reviewed patients. However, status negation (R = 0.591)
decreased 40.2% when relying on structured medications alone. Using multiple EHR data types (and thorough understanding
of the perspectives offered) are necessary to derive robust EHR-based precision medicine phenotypes.
Clin Transl Sci (2018) 11, 85–92; doi:10.1111/cts.12514.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔ Targeted therapeutics are routinely prescribed in cer-
tain diseases, including breast cancer. However, knowledge
regarding optimal ascertainment of precision medicine
phenotypes using electronic health record (EHR) data is
limited.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔ As we pursue multi-institution biobank studies to
advance translational science and develop precision
medicine knowledge, we increasingly rely on EHRs
to annotate necessary clinical phenotypes. This study
addresses important considerations regarding develop-
ment of robust EHR-based precision medicine phenotypes
needed for translational science and precision medicine
Research.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
✔ In addition to the nuanced perspectives offered by struc-
tured and unstructured data sources, this study articulates
necessary considerations for robust phenotyping in the pre-
cision medicine era.
HOW THIS MIGHT CHANGE CLINICAL PHARMACOL-
OGY OR TRANSLATIONAL SCIENCE
✔ This study demonstrates how EHR phenotyping might
empower translational science. Potential research appli-
cations include: human genetics, epidemiology, heath
outcomes and utilization, quality improvement, and phar-
macoepidemiology, to name a few. In the future, poten-
tial for clinical pharmacology practice implementation
exists. However, enhancements and thorough validation
are required first.

Advancements in our understanding of breast cancer (BC)
provide powerful personalized treatment opportunities not
readily available in all cancer types. At present, we com-
monly define molecular subtypes (estrogen receptor (ER),
progesterone receptor (PR), or human epidermal growth
factor receptor2 (HER2) overexpression) as positive (+) or
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negative (–) receptor status in BC patients. Negative status
of the molecular subtypes ER, PR, and HER2 are charac-
terized as triple-negative breast cancer (TNBC). Standard
treatment in the neoadjuvant, adjuvant, and metastatic
settings is guided by expression of hormone receptors
(typically ER) and HER2.1 Generally, endocrine therapy
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is prescribed for ER+ (PR+ or –) patients, Her2 directed
therapy for Her2+ patients, and chemotherapy alone for
patients with TNBC.2 Utilization of targeted therapies, in
part, have achieved great reductions in BC mortality, with 5-
year overall survival rates approaching 90% in all-comer BC
patients and 99% in ER-positive localized, node-negative
cases.3

Cancer registries provide a wealth of cancer-specific infor-
mation (e.g., stage, lymph node involvement); augmenting
cancer registries with electronic health record (EHR) data to
gain additional perspectives is an exciting frontier in cancer
control research.4 While the structure, depth, and longitu-
dinal nature of EHR data present considerable strengths
and opportunities, EHR-based phenotypes have potential
to provide an incomplete (or inaccurate) perspective. Histor-
ically, development of EHR-based phenotyping algorithms
has focused on maximizing ascertainment of true case or
control disease status. While this approach facilitated the
development of reproducible and portable phenotypes,5 a
limited focus was placed on identifying granular phenotype
perspectives beyond high-level true case or control status.
Applications of rule-based natural language processing
(NLP) have effectively annotated breast cancer clinical
data elements from pathology reports.6 Further, machine
learning-enhanced NLP has shown that annotation, includ-
ing BC receptor status, of pathology notes can be developed
with limited supervision using only a few training notes.7

However, critical phenotype considerations remain unclear.
These include: treatment perspectives contained across
multiple EHR data sources, ascertaining negation of recep-
tor status by evaluating surrounding contextual features
contained within the clinical dialogs, and the impact of alter-
native EHR data source perspectives. With the advancement
of precision medicine, disease phenotypes8 are becoming
increasingly complex—ensuring robust EHR perspectives
from multiple data sources develops increasing importance.
A thorough understanding of the nuances needed for EHR
phenotyping in the era of precision medicine is critical to
advance translational science.
In our study, we sought to understand the caveats and data

considerations for creating robust precision medicine phe-
notypes of BC subtypes (e.g., ER, PR, HER2, and TN sta-
tus) from multiple EHR perspectives. We posit that a “pre-
cision medicine phenotype” (PMP) represents perspectives
based on molecular subtypes or targeted therapeutic utiliza-
tion for cancer patients. Further, data sources and extraction
techniques utilized are likely to have a pronounced impact
on the perspective of the PMP. We aim to understand the
different combinations of clinical data sources and informat-
ics approaches necessary, including developed NLP infras-
tructure, to establish a robust BC PMP. We evaluate PMP
perspectives by i) clinical data source coverage, and ii) per-
formance relative to a baseline of expert-ascertained recep-
tor status. Finally, we highlight caveats and potential biases
regarding cancer PMPs.

METHODS
Patient subgroups and data extraction
Female patients with newly diagnosed BC between 1998 and
2011 were selected for inclusion in this study under minimal

risk IRB 15–003347. Cancer registry data were linked with
local EHR data for these BC patients (n = 13,162) at the
Mayo Clinic, Rochester, Minnesota. Patients with localized
BC with more than one primary tumor (bilateral or ipsilateral
disease) and ductal carcinoma in situ (DCIS) were excluded.
Patients not treated at the Mayo Clinic and seen for sec-
ond opinions only were excluded. A combined study design,
high-level pseudo code, and study nomenclature is included
for reference (Figure 1). A subset of patients, encompass-
ing our “Gold Standard Cohort,” were selected at random
for manual chart review (in addition to EHR phenotyping) to
ascertain receptor status. The Gold Standard Cohort was
then randomly split into approximately equal-sized “training”
and “testing” subgroups for use in algorithm development
and evaluation of performance. Receptor status was initially
identified by multiple reviewers and confirmed by a single
expert. BC-specific information was ascertained from the
Mayo Clinic Tumor Registry, a hospital-based cancer registry
manually curated by the Mayo Clinic Cancer Center. Struc-
tured and unstructured (i.e., clinical notes) EHR data aug-
mented the cancer registry to ascertain BC receptor status.
Specifically, rule-based informatics phenotyping methodolo-
gies were utilized to extract structured clinical data from
the enterprise data trust (EDT),9 a local data warehouse,
and unstructured clinical and pathology notes as free text
from the local EHR. Phenotyping details are described in-
depth below. PMPs of receptor status were compared by
perspective of prescribed medications, clinical narratives, or
both.

Prescribed medication perspective
The prescribed medication perspective focused on identify-
ing receptor status based on targeted medication utilization.
Our corpus of prescribed medication data was gathered
from structured medication orders in EDT9 and clinical
notes. The medication extraction and normalization sys-
tem MedXN10 was linked to a copy of the EHR to extract
medication prescription information contained within clinical
notes. Receptor status was ascertained from prescribed
medication by brand and generic drug names, hand-curated
by experts, targeting that specific receptor. ER+ patients
were identified by prescriptions for antiestrogen therapy,
aromatase inhibitors (AIs), or selective estrogen response
modulators (SERMs). AIs included exemestane (Aromasin),
anastrozole (Arimidex), or letrozole (Femara) prescrip-
tions. SERM prescriptions included: tamoxifen (Nolvadex,
Soltamox) or raloxifene (Evista, Keoxifene). HER2-positive
patients are commonly prescribed trastuzumab (Herceptin)
and were identified accordingly. Using these perspectives,
a patient was classified as positive for one or more receptor
status if corresponding neoadjuvant or adjuvant thera-
pies were prescribed. Similarly, patients were classified
as negative for a particular receptor status if medication
prescription information was available for a patient, but no
prescriptions for a corresponding targeted therapy were
identified.

Clinical narrative perspective
The clinical narrative perspective focused on elucidating
BC receptor status based on the unstructured text dialog
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Figure 1 Overview of cohorts and pseudo code. A series of steps were taken to develop the breast cancer precision medicine phenotype;
these included: 1) Data preprocessing, where data were extracted from both structured and unstructured (i.e., free text notes) electronic
health record (EHR) data sources and linked with cancer registry data; 2) Ascertainment of receptor status frommultiple EHR perspectives,
initiated with extraction of necessary data features and subsequently attributed via a series of rules; 3) Development of a Gold Standard
Cohort, consisting of patients manually chart reviewed and annotated for receptor status, to evaluate performance of the EHR rule-based
algorithm; and 4) Perspectives and methodologies utilized to evaluate performance of the EHR rule-based algorithm.

contained within the patient’s EHR. Specifically, clinical diag-
nosis of receptor status was ascertained from the clinical
narrative, clinical notes, and pathology reports, via a series
of rule-based NLP algorithms as follows: Pattern-based
information extraction functionality was utilized to extract
receptor information from the clinical narrative using the
open-source pipeline MedTagger.11,12 Development of the
NLP algorithm included training and testing phases. Again,
to ensure adequate power for each subtype, the “training”
subgroup included approximately half of the total (n =
871) patients within the Gold Standard Cohort. The training
subgroup included 10,182 (median: 18; range: 1–290) clin-
ical notes and 9,077 (median: 20; range: 2–113) pathology
reports. Training of the algorithm initiated using full receptor
names (i.e., estrogen, progesterone, epidermal growth factor
receptor 2) and standard abbreviations (e.g., ER, PR, HER2).
Training results were recursively compared with the Gold
Standard Cohort training subgroup to identify the most
appropriate regular expression patterns. Algorithm training
ceased when further manipulation of regular expression
patterns did not improve the recall (i.e., sensitivity), or true
negative rate (i.e., specificity). Following generation of the
trained NLP algorithm, additions were made to accommo-
date negation (i.e., surrounding text that designates the
opposite of the object) of the receptor status.
Many instances of receptor status-positive or -negative

were identified per patient following deployment of the NLP

BC receptor status algorithm. Commonly, a patient would
have some level of “chatter” between individual receptor
status-positive or -negative. Eventually, this chatter would
resolve into a definitive clinical diagnosis. Anecdotally, chat-
ter within clinical notes was an artifact of the diagnostic pro-
cess and not necessarily reflective of clinical disagreement.
For example, chatter may reflect discordance in receptor
status between the diagnostic biopsy and the final surgi-
cal specimen. Following optimization, we applied a minimum
threshold of 60% agreement of receptor status-positive or -
negative to resolve individual receptor statuses and minimize
false-negative or false-positive receptor status ascertain-
ment. Patients below this threshold were designated as non-
resolvable (or “nr”), requiring manual chart review to resolve
and removed from our analysis.

Evaluation
The Gold Standard Cohort “testing” subgroup was uti-
lized to elucidate algorithm performance by clinical data
source. Comparisons of performance were made between
the Observation Cohort and the Gold Standard Cohort test-
ing subgroup. Performancewas evaluated by phenotype per-
spectives of individual and combinations of EHR clinical data
sources. A family of measures characterized performance,
including: precision (P), recall (R), and harmonic mean of pre-
cision and recall (F1 score).13

www.cts-journal.com
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Table 1 Gold Standard Cohort receptor status

ER PR HER2 TNBC

Cohort N (+) (–) na (+) (–) na (+) (–) na yes no na

Gold standard 871 751 113 7 678 187 6 116 453 302 44 682 145

Training 436 379 54 3 345 90 1 64 216 156 20 346 70

Validation 435 372 59 4 333 97 5 52 237 146 24 336 75

ER = estrogen receptor, PR = progesterone receptor, HER2 = human epidermal growth factor receptor, TN = triple negative, (+) = status positive, (–) = status
negative, na = not available.

RESULTS
Gold Standard Cohort
Overall, within the Gold Standard Cohort receptor status was
unavailable for a proportion of patients during manual chart
review (Table 1). Likely a reflection of clinical practice stan-
dards at this facility, only a small minority of patients were
missing data for ER and PR, with the missing percentage
varying little over time. The majority of absent data was for
HER2 status, consistent with the clinically heterogeneous
adoption of HER2-directed therapy14 over the course of the
study period (1998–2011). As expected for this study period,
HER2 status was unavailable for the majority of patients
(75.1%). A detailed list of receptor status coverage ascer-
tained for the Gold Standard Cohort can be found in Table 1.

Observation cohort
After removing patients contained within the Gold Standard
Cohort, our “Observation Cohort” consisted of patients (n =
12,291) who were phenotyped using EHR data and did not
undergomanual review. Themedian age at BC diagnosis was
57 years (range 18–98); 37.9% of the patients were Stage III–
IV. Patient records were utilized to evaluate two fundamen-
tals of EHR phenotyping: i) data reliability via clinical attribute
coverage of a patient cohort by EHR perspectives, and ii) per-
formancemeasurement (precision, recall, and F1 score) of the
EHR perspectives. Coverage and performance are important
characteristics of robust precision phenotypes: development
of approaches that maximize data ascertainment and return
accurate, reliable predictions are imperative.

Coverage by clinical data source
In our application, cohort coverage refers to patients within
the Observation Cohort having sufficient EHR data to
ascertain a phenotype via the specified EHR perspective
(i.e., some level of necessary data elements were present).
Similarly, individual receptor status coverage (e.g., ER, PR,
HER2, and TNBC) represents the ability to ascertain positive
or negative status for that particular receptor status via
an EHR perspective. Observation Cohort coverage (i.e.,
available EHR data) ranged from 63–92% (Table 2) by
individual data sources. First, within the prescribed med-
ications perspective, Observation Cohort coverage based
on structured data alone was unexpectedly low, at 69.1%,
potentially an artifact of legacy system integration. Inclusion
of clinical notes to EDT, prescribed medications perspec-
tives increased Observation Cohort coverage to 77.1%
from 69.1%. Second, the clinical narrative perspective,
ascertained via the rule-based NLP algorithm using both
clinical and pathology notes, increased Observation Cohort
coverage to 92.1% (�30% increase when compared with

a baseline of structured medication information alone of
69.1%). When all data sources were utilized, representing
the combined prescribed medication and clinical narrative
perspectives, Observation Cohort coverage exceeded 96%.

The following observations and posited justifications were
ascertained from the coverage analysis (Table 2): i) Overall,
ER+ feature coverage was low (between 42.6% and 45.6%)
for prescribed medications perspectives, the maximum abil-
ity to identify positive cases, while having a concerning 69.1–
77.1% data source coverage. Approximately 70% of women
diagnosed with BC are known to be ER+.3 Alternatively, our
developed NLP methodology identified between 68.8% and
74.5% women as being ER+. Further, utilizing all EHR data
sources (including prescribed medications and clinical narra-
tive perspectives) we identified 73.8% of our cohort as being
ER+, with 96.2% EHR data source coverage. ii) PR was not
resolvable via prescribed medication perspective: Treatment
decisions are typically made by ER status alone. The devel-
oped NLP methodology was needed to identify PR+ cases
from the clinical narrative perspective, where between 52%
to 64% were identified as PR-positive. iii) The clinical narra-
tive perspective was needed to resolve HER2 status: HER2
status had satisfactory coverage utilizing our developed NLP
methodology within clinical or pathology note clinical nar-
ratives, implying the signal was contained within the EHR.
However, medication order data sources were ineffective at
identifying HER2 status, suggestive of potential nomencla-
ture (e.g., combination therapy acronyms) or data source
(e.g., intravenous vs. oral delivery route) issues. Further, iv)
TNBC was unreliable due to poor coverage: Reliable TNBC
status could only be ascertained from clinical narrative per-
spectives, potentially due to the limited reliability of status
negation by the medication orders data sources. We iden-
tified between 5.9% and 8.4% of patients as TNBC utilizing
NLP to ascertain receptor status directly from the clinical nar-
rative, which is close to the anticipated TNBC prevalence. v)
Overall, alternative perspectives helped resolve our PMPs.
For individual receptor status coverage, alternative perspec-
tives, or combinations of perspectives helped to resolve pre-
cision phenotypes. vi) The ability to disambiguate between
sparse EHR data and lack of prescription is critical when
assigning a targeted therapy status based on prescribed
therapeutics. In future work, inverse weighting by measures
of data sparseness are recommended.

Performance evaluation in Gold Standard Cohort
For algorithm performance, receptor status phenotype pre-
cision measures were higher in clinical narrative perspective
and lower in the prescribed medication perspective (Table 3).
We found ER status to be a reliable precision medicine

Clinical and Translational Science
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Table 2 Coverage of individual EHR data sources and phenotypes

Prescribed medications perspective Clinical narrative perspective

Receptor status
Data

source EDT
Clinical
notes

EDT or
clinical
notes

Clinical
notes

Pathology
notes

Clinical or
pathology

All EHR
perspective

Observation Cohort coverage n 8,826 8,078 9,851 11,287 10,236 11,766 12,291

% 69.1% 63.3% 77.1% 88.4% 80.2% 92.1% 96.2%

ER feature coverage (+) n 3,761 3,507 4,491 8,305 7,045 8,771 9,069

% 42.6% 43.4% 45.6% 73.6% 68.8% 74.5% 73.8%

(–) n 5,065 4,571 5,360 2,214 1,921 2,374 2,241

% 57.4% 56.6% 54.4% 19.6% 18.8% 20.2% 18.2%

nr n 0 0 0 768 1,270 621 981

% 0.0% 0.0% 0.0% 6.8% 12.4% 5.3% 8.0%

PR feature coverage (+) n — — — 7,205 5,341 7,531 7,531

% — — — 63.8% 52.2% 64.0% 61.3%

(–) n — — — 3,030 2,728 3,255 3,255

% — — — 26.8% 26.7% 27.7% 26.5%

nr n 8,826 8,078 9,851 1,052 2,167 980 1,505

% 100.0% 100.0% 100.0% 9.3% 21.2% 8.3% 12.2%

HER2 feature coverage (+) n 6 121 121 1,611 1,438 1,770 1,786

% 0.1% 1.5% 1.2% 14.3% 14.0% 15.0% 14.5%

(–) n 8,820 7,957 9,730 5,398 4,589 5,903 5,897

% 99.9% 98.5% 98.8% 47.8% 44.8% 50.2% 48.0%

nr n 0 0 0 4,278 4,209 4,093 4,608

% 0.0% 0.0% 0.0% 37.9% 41.1% 34.8% 37.5%

TNBC feature coverage yes n 0 0 0 1,014 606 1,102 1,035

% 0.0% 0.0% 0.0% 9.0% 5.9% 9.4% 8.4%

no n 3,763 3,556 4,538 7,162 5,415 7,582 9,876

% 42.6% 44.0% 46.1% 63.5% 52.9% 64.4% 80.4%

nr n 5,063 4,522 5,313 3,111 4,215 3,082 1,380

% 57.4% 56.0% 53.9% 27.6% 41.2% 26.2% 11.2%

Receptor status phenotype coverage by clinical data source Note: total cohort size n = 12,770; cohort coverage refers to coverage of that clinical data source
out of the total cohort size. ER = estrogen receptor, PR = progesterone receptor, HER2 = human epidermal growth factor receptor 2, TNBC = triple negative, nr
= true missing or unable to resolve status; % of patients with relevant EHR data source coverage for individual receptor status phenotypes.

phenotype when all data sources were utilized in our Gold
Standard Cohort: Ascertainment of ER+ status using all
available data sources was excellent (P = 0.98, R = 0.99, F
= 0.98) and provided very high coverage (96.2%). However,
negation performance was noticeably lower (P = 0.97, R =
0.61, F = 0.75) for prescribed medications as opposed to
clinical narrative (P = 0.99, R = 0.98, F = 0.99) perspectives.
Further, we found PR precision medicine phenotypes to be
reliable when NLP of clinical narratives was utilized: Using
the perspective of the clinical narrative, PR performance
was very high (P = 0.99, R = 0.94, F = 0.96). An important
note: While coverage may be conditionally independent
of performance, specifically precision, increases in overall
cohort coverage are linked to increased R and F scores (i.e.,
the ability to negate an individual receptor status).
While HER2 (P = 0.70, R = 0.67, F = 0.68) and TNBC

(P = 0.72, R = 0.68, F = 0.70) status performances were
acceptable, they remained noticeably poorer than ER or PR
status. Related, we found the HER2 precision medicine phe-
notype to be unreliable and complicated by both defining
and resolving applicable synonyms. Reducing the observa-
tion period, controlling for potential bias due to treatment
advancements, to contain the years 2008 through 2011,

only slightly enhanced algorithm performance (P = 0.58,
R = 0.78, F = 0.67 and P = 0.75, R = 0.86, F = 0.80).
The many combinations and synonyms for HER2 status
(e.g., HER2/neu, HER2) complicated training. Complications
and data quality issues arising from lack of standardization
are likely to be encountered with other precision medicine
therapeutic targets, data sources, and synonymous naming
conventions.
PR and TNBC status could not be ascertained utilizing

medication orders due to low coverage. However, NLP could
identify most cases of either status from clinical notes. To
control for potential confounding by indication (antiestrogen
therapies target reactions relevant to both ER and PR sta-
tus) during performance evaluation, we collapsed ER and PR
status within the Gold Standard Cohort. While ER+ receptor
status had a very high predictive power utilizing medication
orders, the recall and the harmonic mean (F1 score) remained
extremely poor. Further complicating these efforts was the
limited cohort coverage (77%) encountered via medication
orders. Negation of any receptor status remained poor; neg-
ative receptor status was not reliably ascertained utilizing
medication orders. Due to the likely nonrandom gaps in cov-
erage, strong potential exists to introduce sampling bias.

www.cts-journal.com
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Table 3 Receptor status phenotype performance compared within manual chart reviewed Gold Standard Cohort—testing subset

Prescribed medications Clinical narratives

Receptor status EDT Clinical notes
EDT or

clinical notes Clinical Pathology
Clinical or
pathology

All EHR
sources

n 374 335 374 377 360 377 435

Coverage 86.0% 77.0% 86.0% 86.7% 82.8% 86.7% 100%

ER P 0.9849 0.9702 0.9710 0.9877 0.9861 0.9877 0.9758

R 0.5909 0.5909 0.6091 0.9786 0.9100 0.9847 0.9877

F 0.7386 0.7345 0.7486 0.9831 0.9465 0.9862 0.9818

PR P — — — 0.9784 0.9730 0.9857 0.9857

R — — — 0.9347 0.7780 0.9418 0.9418

F — — — 0.9561 0.8657 0.9632 0.9632

HER2 P 0.0000 1.0000 1.0000 0.7750 0.4583 0.6977 0.6977

R 0.0000 0.0294 0.0222 0.6889 0.5116 0.6667 0.6667

F 0.0000 0.0571 0.0435 0.7294 0.4835 0.6818 0.6818

TN P — — — 0.6522 0.8462 0.7000 0.7222

R — — — 0.7895 0.5790 0.7368 0.6842

F — — — 0.7143 0.6875 0.7180 0.7027

All comparisons made to “gold standard” validation cohort (n= 435); P= precision, R= recall, F= F1 score (harmonic mean of precision and recall; ER = estrogen
receptor, PR = progesterone receptor, HER2 = human epidermal growth factor receptor 2, TN = triple negative. PR and TN are blank because they cannot be
directly inferred from a prescribed medications perspective.

Future work should include evaluations of data source cov-
erage and density to control for these potential biases.

DISCUSSION

As precision medicine matures, incorporating EHR-driven
precision medicine phenotypes into clinical pharmacology
research endeavors will become increasingly important. Fur-
ther, the need for informatics phenotyping approaches to
develop PMPs will continue to grow.
Precision medicine treatment opportunities for BC are

relatively advanced compared with other cancer sites, with
mature utilization of targeted therapies. However, other
cancer types, including diffuse large B-cell lymphoma, non-
small cell lung cancer, and multiple myeloma, are rapidly
increasing targeted therapy offerings. Further, potential to
target alterations in select cancer pathways with thera-
peutics, regardless of the cancer type, remain on the near
horizon.15 The clinical reality of precision medicine will
become increasingly complex, requiring disciplined applica-
tion of informatics approaches to ascertain robust precision
phenotypes. While we demonstrated potential utility as a
research application, rigorous evaluation and expert clinician
input is needed prior to implementation considerations for
clinical practice applications.

Caveats of precision medicine phenotypes
While related, the concepts molecular subtype, receptor sta-
tus, and precision phenotype referenced throughout this
article have nuanced differences. Molecular subtype refers
to altered (i.e., increased) molecular expression of a vari-
ant or wildtype gene product of known etiological signifi-
cance. In BC, immunohistochemistry staining of a biopsy is
performed and a pathologist establishes receptor status in
accordance with the established clinical guideline.16 While
receptor status and treatment with the corresponding tar-
geted therapy are typically congruent, in some instances a

patient may be positive (or borderline) for multiple recep-
tors types. When ambiguity exists, a tumor board, consist-
ing of relevant oncology expertise, will convene to develop a
diagnosis and assign a corresponding treatment plan. How-
ever, these nuances are likely to be unclear, or lost as noise,
from the perspective of naïve phenotyping algorithm. In these
instances, the precision phenotypemight represent either the
most clinically relevant receptor status/molecular subtype or
to which targeted therapy was first prescribed, or potentially
something more nuanced in between. Anecdotally, we iden-
tified a certain level of “noise,” occurring primarily during the
diagnostic process, while training the NLP algorithm within
the clinical narrative. Our rule-based approach was itera-
tively validated to resolve receptor status variation across the
clinical dialog data sources at the specified threshold. While
validated in our algorithm for appropriateness, inappropri-
ate selection of this threshold could potentially impact the
receptor status phenotype and introduce bias—validation is
required prior to adjustments. Appropriate representation of
the varying EHR perspectives (and corresponding source
data integrity) is a critical design consideration. Related,
more comprehensive incorporation of clinical acronyms for
combination therapies also holds potential to enhance these
perspectives.17

Insights from our BC precision medicine phenotype
In our study, clinical or pathology notes alone or together
provided the broadest cohort coverage and clinical notes
alone provided the most precise measure of receptor sta-
tus. The pathology note data source outperformed the clini-
cal note data source for TNBC status. Utilizing all EHR data
sources provided the largest cohort coverage. High coverage
was accompanied by some of the highest individual recep-
tor status performance by every clinical data source. Aug-
menting structured EHR data with NLP increased coverage
and performance for BC PMP for both case identification
and negation at our institution. We increased data coverage
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whenNLP of EHR notes augmented the structured EHR data.
Structured data alone might be insufficient to ascertain a
robust precision medicine phenotype when complete patient
data coverage is unavailable. Overall, our NLP approaches
increased coverage, with comparable results for applications
in chronic conditions.18 As we demonstrated, balancing a
combination of perspectives was necessary to ascertain a
high-quality EHR-derived phenotype.

Overcoming potential gaps in EHR data coverage
Despite gains with NLP, negation remained problematic
throughout our study, introducing potential for bias. Specif-
ically, identifying true negation of a targeted therapy status
was problematic when coverage for a patient’s EHR data was
poor—improvements are ongoing. When longitudinal drug
exposures can be captured with a high level of coverage,
we posit that negation will become more reliable. Minimizing
potential bias begins by ensuring data integrity within local
research data warehouses. In our study, the EDT, our local
data warehouse, was documented to represent all clinical
data from the local EHR.9 However, documentation available
to the researchers regarding handling of data from legacy
EHR systems and maintenance/integrity was incomplete—a
potential study limitation. This can be particularly problem-
atic when certain therapeutics (e.g., trastuzumab treatment
for HER2+ breast cancer vs. anastrozole for ER+ breast
cancer) have varying administration routes (infusion vs. oral)
and corresponding data will be captured via different clinical
workflows. The integration of external data into the EHR per-
spective would allow for a precision phenotype to include
the perspective of filled medication orders—integration of
insurance claims perspectives hold great promise to over-
come biases resulting from incomplete coverage. For exam-
ple, in cases where longitudinal EHR coverage is initially
poor, augmenting the EHR perspective with that of filled
medication orders from insurance claims, to represent care
received at external healthcare facilities, might increase PMP
performance. Conversely, in instances where a patient is
known to have near complete coverage in the EHR, perfor-
mance of that phenotype will potentially be enhanced, with
increased reliability. Finally, novel computational phenotyp-
ing approaches are likely needed to account for data cov-
erage within a patient’s EHR compared with patients with
similar disease states and drug exposures.

Informatics opportunities
We posit informatics approaches will be critical to ascertain-
ing PMPs in an evolving landscape of molecular targets and
corresponding therapeutic agents: First, clinical utilization of
evolving molecular subtypes and newly discovered targeted
therapies will likely outpace mandates for annotation of
applicable clinical data elements in population research
registries. For example, national organizations such as
the Surveillance, Epidemiology, and End Results Program
(SEER) mandate collection of only specific clinical data
elements. While curating these registries is of tremendous
value, gaps in data (or clinical data elements of insuffi-
cient granularity) needed to define molecular subtypes and
identify targeted therapy utilization may exist. Informatics

approaches offer the opportunity to resolve granularity
gaps with the wealth of clinical knowledge contained within
the EHR. Second, curating these cancer registries com-
monly rely on resource-intensive manual abstraction. As
informatics-based phenotyping advances, future oppor-
tunities to develop automated or semiautomated data
annotation procedures might exist. Third, while rule-based
algorithms might sufficiently phenotype most cases, in cer-
tain instances medical oncology and pathology diagnostic
decisions might remain too “unclear,” from an informatics
perspective, for an EHR phenotyping algorithm to disam-
biguate case status. In retrospective research, extraction
processes that refer select “unclear” cases for expert clinical
review might provide an optimal means to prioritize the
manual annotation efforts needed for registry inclusion.
Rule-based approaches may not be readily scalable “out
of the box”; advancements in deep-learning techniques are
needed to ensure feature extraction adaptable to nuances
contained within multiple care delivery perspectives. Fourth,
prescribed medications, medical oncology, and pathology
data sources provide unique perspectives that might reflect
certain aspects of clinical reality. While different clinical per-
spectives are certainly valuable for research applications and
conceptually scalable to clinical informatics applications,
they should not inappropriately offer a prescriptive perspec-
tive for guiding clinical care decisions. Specifically, based on
observed performance and limited ability (i.e., unreliability)
to negate or identify a “negative” status, improvements
are needed prior to implementation of a similar algorithm.
Close clinical collaboration and validation is needed prior
to consideration of phenotyping algorithms for clinical care
applications.
In the future, the complexity of informatics approaches

needed to ascertain precision phenotypes will likely vary
between simple rule-based and novel computational
approaches. Formally trained informaticians can help
guide application and development of the methodologies
needed to ascertain robust precision phenotypes. Can-
cer subtypes, such as TNBC and basal-like subtypes,
are frequently heterogeneous,19 and characterized using
multiple types of data, complicating potential EHR phe-
notyping. In research endeavors, phenotyping approaches
that span genetic, transcriptional, histological,20 and clinical
features will likely be necessary to resolve these hetero-
geneous cases,21 which hold potential to uncover novel
biology.22

Cancer registries are a particularly robust resource for per-
sonalized medicine discovery. Augmenting cancer registry
data with clinical data elements from the local EHR offers a
profound opportunity to gain knowledge that may have pre-
viously been hidden. For certain cancer registries, additional
biological specimens are collected (e.g., tumor slides and
blocks, germline DNA, somatic tumor DNA, plasma, serum)
that correspond to the clinical intervention. This enables pur-
suit of translational bioinformatics research endeavors span-
ning the richness of information contained within both the
local EHR and biological specimens.23 Indeed, development
of robust precision medicine phenotypes is critical for trans-
lational bioinformatics to empower pursuit of clinical phar-
macology knowledge.
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CONCLUSION

As precision medicine phenotypes grow increasingly com-
plex in the era of precision medicine, nuanced informatics
applications that account for multiple EHR perspectives are
needed. A thorough understanding of EHR data source per-
spectives, data source coverage, and potential for bias are
imperative to the development of robust precision medicine
phenotypes.
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