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Abstract

Nanopore sequencing and phylodynamic modeling have been used to reconstruct the transmission dynamics of viral
epidemics, but their application to bacterial pathogens has remained challenging. Cost-effective bacterial genome se-
quencing and variant calling on nanopore platforms would greatly enhance surveillance and outbreak response in
communities without access to sequencing infrastructure. Here, we adapt random forest models for single nucleotide
polymorphism (SNP) polishing developed by Sanderson and colleagues (2020. High precision Neisseria gonorrhoeae
variant and antimicrobial resistance calling from metagenomic nanopore sequencing. Genome Res. 30(9):1354–1363)
to estimate divergence and effective reproduction numbers (Re) of two methicillin-resistant Staphylococcus aureus
(MRSA) outbreaks from remote communities in Far North Queensland and Papua New Guinea (PNG; n¼ 159).
Successive barcoded panels of S. aureus isolates (2� 12 per MinION) sequenced at low coverage (>5� to 10�) provided
sufficient data to accurately infer genotypes with high recall when compared with Illumina references. Random forest
models achieved high resolution on ST93 outbreak sequence types (>90% accuracy and precision) and enabled phylo-
dynamic inference of epidemiological parameters using birth–death skyline models. Our method reproduced phyloge-
netic topology, origin of the outbreaks, and indications of epidemic growth (Re > 1). Nextflow pipelines implement SNP
polisher training, evaluation, and outbreak alignments, enabling reconstruction of within-lineage transmission dynamics
for infection control of bacterial disease outbreaks on portable nanopore platforms. Our study shows that nanopore
technology can be used for bacterial outbreak reconstruction at competitive costs, providing opportunities for infection
control in hospitals and communities without access to sequencing infrastructure, such as in remote northern Australia
and PNG.
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Introduction
Sequence data from infectious disease outbreaks have pro-
vided critical information for infection control and inference

of pathogen transmission dynamics, including during the
West African Ebola virus epidemic (Quick et al. 2016) and
the current severe acute respiratory syndrome coronavirus 2
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(SARS-CoV-2) pandemic (Bull et al. 2020). Maximum-
likelihood (ML) and Bayesian phylodynamic methods are
commonly used to date the emergence of lineages, variants,
and outbreaks, and to estimate key epidemiological parame-
ters, such as changes in the effective reproduction number
over time (Re; Hodcroft et al. 2021; Volz et al. 2021). Oxford
Nanopore Technology (ONT) sequencing has emerged as
viable technology for real-time genomic epidemiology and
has been applied across national-scale SARS-CoV-2 surveil-
lance efforts in the United Kingdom, Denmark, and Australia,
amongst other countries (da Silva Filipe et al. 2021; du Plessis
et al. 2021; Hammer et al. 2021; Nicholls et al. 2021).
Moreover, nanopore sequencing devices can, in theory, be
operated in low- and middle-income countries (LMICs)
where local genomics infrastructure may be lacking or is dif-
ficult to access (Faria et al. 2017; Giovanetti et al. 2020), so that
a timely outbreak response is not feasible (Gardy and Loman
2018). Accessible genomics infrastructure is particularly rele-
vant for continuous surveillance at bacterial evolutionary
time scales, where outbreak strains may circulate for years,
and can persist in human and animal reservoirs or the envi-
ronment outside their host. Furthermore, viral pathogen
genomes, such as Ebola virus or SARS-CoV-2, are often
sequenced directly from patient samples using targeted
PCR-based enrichment approaches, achieving high-genome
coverage and resolution capable of informing phylodynamic
models (Quick et al. 2017; Bull et al. 2020). However, nano-
pore sequencing for bacterial pathogens, coupled to Bayesian
phylodynamic models, has so far not been considered for
routine epidemiological applications, mainly due the need
for sufficiently accurate single nucleotide polymorphism
(SNP) calling at bacterial whole-genome scales (Ingle et al.
2021). SNP calls from high-coverage (>30�) Illumina data are
the current standard for accurate SNP calls used in phyloge-
netic applications, but current generation nanopore SNP call-
ing has suffered from low raw sequence read accuracy (R9.4.1,
< Guppy v5.0) and a focus on variant calling in human
genomes, with much of the available callers developed specif-
ically for human variants (Luo et al. 2020). This problem is
further aggravated when attempting to sequence cost-
effectively, for example, using low-coverage multiplexed
runs (<5–10�) and simple library preparation with ONT
sequencing kits (at least R9.4.1 pore architecture, SQK-
RBK004 libraries) that can be used in LMICs with large bur-
dens of bacterial disease.

Phylodynamic inference on nanopore platforms is further
complicated because (ideally) an outbreak reference genome
is used, that is closely related to the outbreak sequence type,
thus providing sufficiently high variant calling resolution for
transmission inference, particularly in recent transmission
chains or outbreaks (Gorrie et al. 2021). In addition, on
bacterial time scales (years) little sequence variation will
have occurred in newly emergent outbreaks, which places a
disproportionate emphasis on correctly inferring the few
available outbreak-specific SNPs. As a consequence, there is
little room for systematic errors introduced by base and var-
iant callers when using (low coverage) nanopore sequencing
data to effectively survey bacterial outbreaks. Neural network-

based, nanopore-native variant callers in particular can intro-
duce excessive false-positive (FP) SNP calls, complicating
transmission inference from ONT sequence data, where
accuracy and precision are required (Sanderson et al. 2020).
Within-lineage phylodynamic inference for bacterial out-
breaks additionally depends on sufficient temporal signal to
ascertain a phylodynamic threshold, at which sufficient mo-
lecular evolutionary change has accumulated in the sample to
obtain robust phylodynamic estimates (Duchêne, Geoghegan
et al. 2016; Duchene, Featherstone, et al. 2020; Duchene,
Lemey, et al. 2020). Due to slower substitution rates in bac-
teria compared with viruses (Duchêne, Holt et al. 2016), lon-
gitudinal sample collections are optimal for genomic
epidemiology and often require multiple years of data to infer
transmission dynamics of the sampled population.
Requirements for accurate whole-genome SNP calls across
a large number of isolates, sequenced cost-effectively at
low-genome coverage and over a sufficient interval of time,
represent a significant barrier to the implementation of phy-
lodynamic modeling for bacterial pathogens.

Illumina hybrid-corrected and ONT-native phylogenetic
analyses methods have been demonstrated for a small num-
ber of distantly related bacterial nanopore genomes and ge-
nome assemblies from the same species for example, Neisseria
gonorrhoeae (Golparian et al. 2018; Sanderson et al. 2020) or
between species from environmental sources (Urban et al.
2021). Recently, a six-strain multiplex protocol for the
MinION with genome assembly and determination of phylo-
genetic relationships to identify outbreaks has been tested for
Staphylococcus aureus lineages sampled in Norway. However,
it remains unclear whether full within-lineage phylodynamic
modeling is possible at population-level scale, whether esti-
mates from nanopore data match results obtained using SNP
calling with Illumina reads and whether sequencing runs can
be conducted cost-effectively (at least 24 isolates per run). In
this study, we adapt a variant polishing approach first imple-
mented by Sanderson et al. (2020) on metagenomic sequenc-
ing of N. gonorrhoeae using random forest classifiers to filter
SNP calls from the nanopore-native variant callers Medaka
v1.2.3 and Clair v2.1.1 (Luo et al. 2020). We use Snippy
Illumina variant profiles as reference data and investigate cal-
ler performance across reference genomes and outbreak data
sets. We show that random forest classifiers sufficiently re-
move incorrect calls from Clair in outbreak isolates with>5�
coverage to allow for sequencing of 24 community-associated
S. aureus isolates per MinION flow cell (n¼ 181) which suc-
cessfully resolved phylodynamic parameters estimates of two
outbreaks of ST93-MRSA-IV in remote Far North Queensland
(FNQ) and Papua New Guinea (PNG).

New Approaches
In this study, we adapt the use of random forest classifiers for
SNP polishing of nanopore sequence data to reduce excessive
FP SNP calls, which have so far prevented accurate phyloge-
netic reconstruction of bacterial outbreaks. Our approach
enables the inference of outbreak source, timing, and effective
reproduction numbers using Bayesian phylodynamic models.
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We validated the method on new sequence data from two
outbreaks of community-associated S. aureus in remote com-
munities of northern Australia and PNG.

Results
We sequenced a total of 181 unique isolates from a pediatric
osteomyelitis outbreak (collected between 2012 and 2018) in
the Papua New Guinean highland towns Kundiawa (Simbu
Province, n¼ 42) and Goroka (Eastern Highlands Province,
n¼ 45). We additionally sequenced haphazardly collected
blood cultures from a hospital in Madang (Madang
Province, n¼ 8) and strains from routine community

surveillance across FNQ collected in 2019 (Cairns and
Hinterlands, Cape York Peninsula, Torres Strait Islands, proc-
essed at Cairns Hospital, n¼ 86; fig. 1, supplementary tables,
Supplementary Material online). ONT sequencing was con-
ducted using a minimal, dual-panel barcoding scheme, multi-
plexing 2� 12 isolates interspersed with a nuclease flush on a
single MinION flow cell (R9.4.1, EXP-WSH-003) for a total of
96 barcodes per outbreak (including isolate re-runs that were
merged, n¼ 12, and external isolates excluded here, n¼ 3).
Rapid barcode sequencing libraries (RBK-004) were prepared
omitting magnetic bead clean-ups after enzymatic digestion
of cultured strains and simple spin column extraction. Panels
produced between 0.506 and 6.47 Gb of sequence data per

FNQ PNG

8 x 12 95 unique isolates8 x 1286 unique isolates

1x M. sciuri

5x RF training

1x S. argenteus

3x RF training
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ONT Assembly 
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88
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159
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Goroka (n = 45, 2018) 
Community osteomyelitis ,
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FIG. 1. Culture-based sequencing protocol and outbreak sampling locations in northern Australia and PNG. (A) Isolates were sequenced on 8 flow
cells with 24 isolates per flow cell using a sequential nuclease flush protocol. (B) Sequenced data were subset to those matching Illumina
sequencing of the isolates, assembled, and quality controlled. Several isolates were set aside for independent random forest classifier training
used in the SNP polishing and phylogenetics pipeline.
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run (<24 h) resulting in low–medium coverage per isolate
(ST93-JKD6159; fig. 2A). We excluded one infection with
S. argenteus (FNQ) and one coinfection with
Mammaliococcus sciuri (PNG). Isolates with matching
Illumina data were retained to create a high-quality reference
data set for further evaluation of genome assembly and var-
iant calling (n¼ 159, fig. 1).

Genome Assembly and Genotype Validation
Short-read reference genomes (fragmented but highly accu-
rate), long-read polished nanopore genomes (contiguous as-
semblies but less accurate), and long-read hybrid genomes
corrected with Pilon (Walker et al. 2014) or Unicycler (Wick
et al. 2017) (contiguous and highly accurate) were assembled
using a standardized Nextflow (Di Tommaso et al. 2017)
pipeline wrapping Shovill, Flye (Kolmogorov et al. 2019),
Medaka and other components (Materials and Methods).
Several isolates (12/159) failed long-read assembly due to ex-
cessive fragmentation of libraries and/or barcode attachment,
but did not fail the short-read assemblies with Skesa
(Souvorov et al. 2018) or the hybrid assemblies with
Unicycler (supplementary tables, Supplementary Material

online), which first assembles short reads and then scaffolds
the assemblies with long reads to generate contiguous whole-
genome assemblies.

Compared with Illumina reference assemblies, SNP and
indels were frequently occurring in low-coverage uncorrected
nanopore assemblies (fig. 2A, right). Errors were considerably
reduced in high-coverage isolates leading to assembly identi-
ties ranging between 0.9993 and 0.9999 in the dnadiff metric
(Marçais et al. 2018; supplementary tables, Supplementary
Material online). Recovery of complete chromosomes and
S. aureus specific genotypes from uncorrected long-read
assemblies was sufficient for high-coverage isolates in
our collection (fig. 2B, > 80–90%). Assembly genotyping for
clinically relevant features such as the presence of mecA or
the Panton-Valentine leukocidin (PVL), major subtypes of
SCCmec elements, resistance genes, and other markers of
interest showed high concordance with reference assemblies
(fig. 2B). In contrast, low-coverage assemblies often failed to
call genotypes—recovery was low for mecA and SCCmec
types, as well as for PVL and other markers of interest
(fig. 2B, <60%, supplementary tables, Supplementary
Material online). Hybrid long-read correction with Pilon did

< 10x coverage (n = 69) >= 10x coverage (n = 90)

FIG. 2. (A) Average genome coverage (R9.4.1, RBK-004) of Bonito base-called nanopore reads against the JKD6159 (ST93) reference genome
(n¼ 159) where the dashed lines indicate the coverage thresholds chosen to evaluate genotyping (10�) and phylodynamic models (5�) in the
FNQ and PNG outbreaks. SNP and indel counts across three different assembly types: uncorrected nanopore reads polished with Medaka
(ont_medaka), Medaka polished nanopore genomes Illumina corrected with Pilon (hybrid_medaka), and hybrid assembly in Unicycler (hybrid_-
unicycler). (B) Assembly genotyping results are shown as proportion of assemblies matching the reference Illumina genotype across the three types
of assemblies, and the 10� coverage threshold.
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not markedly improve genotype recovery in low-coverage
isolate; however, recovery improved in the Unicycler hybrid
assemblies (fig. 2A and B). Lower SCCmec subtyping perfor-
mance was likely due to remaining insertions or deletions
from nanopore data impacting on the large cassette chromo-
somes (>20 kb). Unicycler produced more accurate hybrid
assemblies than correction of long-read assemblies with Pilon
alone and performed slightly better in hybrid assemblies of
low-coverage nanopore data (fig. 2B). For genome assembly
and genotyping, our dual-panel sequencing approach recov-
ers nanopore genotypes in high-coverage isolates (>10�)
although some errors remain, particularly in sequence type
calling and SCCmec subtyping.

Training and Evaluation of Random Forest SNP
Polishers
Next, we aimed to accurately reconstruct the PNG and FNQ
outbreaks within the ML background phylogeny of ST93.
Subsequent phylodynamic analysis is challenging because ac-
curate reconstruction of branch lengths within the nanopore
clades is required for reproduction of the Bayesian epidemi-
ological parameters. We first tried a candidate-driven

approach, using Illumina core SNP panels from the ST93
background population (Snippy, n¼ 444, 6,616 SNPs) and
Megalodon which accurately reconstructed the divergence
of the PNG clusters from the Australian East Coast (supple-
mentary fig. S1, Supplementary Material online). However,
within-outbreak branch lengths were not reconstructed, be-
cause novel variation had accumulated since the divergence
from the Australian East Coast population in the 1990s. We
therefore decided to use a de novo variant calling approach
comparing two native nanopore variant callers based on neu-
ral network architectures, by default trained on Homo sapiens
variant calls (Clair v2.1.1) or a mix of human and microbial
data from Escherichia coli, Saccharomyces cerevisiae, and
H. sapiens (v1.2.3). Although recall was high, raw basecaller
performance was exceedingly low in both Clair and Medaka
accuracy and precision, particularly in outbreak isolate calls
against the outbreak reference genome (<20%, supplemen-
tary fig. S2, Supplementary Material online).

We next adopted SNP polishers using random forest clas-
sifiers originally developed by Sanderson and colleagues
(2020) to correct nanopore variants in N. gonorrhoeae from
metagenomic data (fig. 3, Materials and Methods). Each

BA

C

D

Illumina PE ONT: RBK + WSH

Lineage Background

Outbreak SamplesPublic Archives

n = 4 x 24n = 444

Flye + Medaka + MLST

Clair / Medaka
call de novo  SNPs

Snippy
call lineage SNPs

NanoPath:
hybrid-denovo

QC 

Core 
SNPs

Hybrid sample 
alignment RAxML-NG

Unknown isolates

Informs background
lineage reconstruction:
collect genomes of ST93

Random Forest  
polish and filter SNPs

 BEAST2 TreeTime

FIG. 3. (A) Workflow outlining computational analysis of community-associated S. aureus nanopore sequencing using successive barcode panels
on ONT MinION flow cells (R9.4.1). MLST typing informs the background population genome collection from a previous study (Illumina).
Outbreaks in PNG and FNQ were caused by the Australian clone (ST93-MRSA-IV). SNPs are called for the Illumina background with Snippy and
ONT outbreak isolates with Clair. ONT SNP calls are polished using random forest SNP classifiers, trained on the outbreak reference genome
(JKD6159 of ST93). (B–D) AUC scores of quality or composite features (left) used in training random forest classifiers for SNP polishing and relative
feature importance of models (right) trained on (B) S. aureus mixed lineages (ST88, ST15, and ST93) (C) ST93 FNQ isolates and (D) ST93 from PNG
with matching Illumina data and Snippy reference calls (all n¼ 3).
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classifier was trained on three isolates with matching Illumina
data and composite sequence features (fig. 3B–D); because
there were no considerations of specific training sets used in
the original N. gonorrhoeae classifier, we trained S. aureus
classifiers on three combinations of isolates including a mixed
set of three sequence types (ST93, ST88, ST15; saureus_mixed)
and two sets of outbreak sequence type isolates (ST93) from
either FNQ (saureus_fnq) or PNG (saureus_png). In combi-
nation with the original N. gonorrhoeae classifiers, the differ-
ent training sets allowed us to evaluate whether SNP
polishing was effective using models from a different species
entirely (Sanderson), from the same species but without out-
break-related data (saureus_mixed) or from the same species,
but with isolates from the same sequence type or outbreak
(saureus_fnq, saureus_png). All models trained on composite
sequence features (fig. 3, Materials and Methods) demon-
strated high area under the curve (AUC) scores (0.976–
0.989, orange) whereas models trained on quality features
alone showed suboptimal AUC performance (0.748–0.760,
blue) (fig. 3B–D) demonstrating that quality scores alone
would be insufficient to discriminate false calls and remove
them.

We next evaluated both the N. gonorrhoeae classifier, as
well as the three S. aureus models against the remaining iso-
lates from PNG and FNQ, excluding those used in training (fig.
1B). Evaluations indicated that all trained SNP polishers in-
creased accuracy and precision with slight reductions in recall
(fig. 4). However, suboptimal performance was observed in all
metrics for the N. gonorrhoeae classifier across outbreak se-
quence types (<40%) as well as other sequence types (<50%).
Performance improved considerably in the mixed S. aureus
polisher (saureus_mixed) both among outbreak isolates
(69.52% 6 12.48 accuracy, 75.94% 6 14.56 precision) and other
sequence types (81.94% 6 14.56 accuracy, 90.11% 6 6.83
precision). However, despite significant baseline improvement,
the interspecies and mixed-sequence type models the number
of FP SNP calls remained in the range of 100s to 1,000s (right
column, fig. 4A and B). Training the models with isolates from
the same sequence type (ST93, FNQ) slightly improved per-
formance (ST93: 71.69% 6 13.99 accuracy, 83.33% 6 10.42
precision) but reductions of accuracy and recall in other se-
quence types were observed (fig. 4C). PNG outbreak-derived
model (saureus_png) performed best for polishing isolates
from the same outbreak across all metrics in the high-coverage
isolates (ST93: 69.28% 6 16.78 accuracy, 87.57% 6 9.83 pre-
cision) but incurred a steeper cost to accuracy and recall in
nonoutbreak isolates (fig. 4D). Reductions indicate that the
model trained on features specific to the outbreak genotype
and became significantly less generalizable to other sequence
type applications. We note that the levels of precision and
accuracy of the ST93 polishers in absolute numbers translate
to 1–10 s of false SNP calls compared with the N. gonorrhoeae
and mixed-sequence type model (fig. 4).

Phylogenetic Trees and Transmission Dynamics from
Polished SNPs
We next implemented Snippy’s core alignment functional-
ity, calling sites present in all isolates of the sampled

population, with a minimum SNP site coverage of 1�
(JKD6159). Hybrid alignments integrated Illumina back-
ground SNPs from the ST93 (outbreak) lineage (n¼ 444)
in combination with polished ONT nanopore calls from
Clair (fig. 1). The lineage background alignment, as one
would use for short-read reference data, therefore served
as a backbone for ONT data in the core-site alignment
(fig. 4B). We retained isolates with at least 5� coverage
(n¼ 531/562) due to low accuracy and precision of these
isolates in the SNP polishing step (fig. 4, supplementary fig.
S4, Supplementary Material online). We then used the
between-species, within-species, within-lineage (FNQ and
PNG) models to apply for variant polishing in our de
novo core alignment and phylodynamics pipeline (fig. 3A).

NanoPath’s core alignment construction reproduced
Snippy’s core alignment from Illumina data closely (6,319
SNPs with NanoPath vs. 6,580 SNPs with Snippy-core, fig. 5A
and B). When we called Clair SNPs on isolates with >5�
coverage from PNG (n¼ 56) and FNQ (n¼ 32), we observed
a vast excess of SNP calls, particularly in the raw Clair calls,
where the hybrid core alignment contained 491,210 SNP sites
and was considered unusable (supplementary table 7,
Supplementary Material online). All polished SNPs produced
reasonable alignments, where FNQ and PNG polishers pro-
duced alignments closest to the Illumina reference (fig. 5,
supplementary table 2, Supplementary Material online). We
reconstructed the ML phylogenies from these alignments in
RAxML-NG using the GTRþ G model with Lewis’ ascertain-
ment bias correction and rooted the trees on SRR115752 for
comparison of topological consistency (van Hal et al. 2018).
We also wanted to investigate whether the main introduc-
tions into FNQ and PNG could be reconstructed with accu-
rate interpretations of their source divergence on the
Australian East Coast. For reference, we used Illumina align-
ments constructed with NanoPath (Materials and Methods)
and Snippy-core with matching isolates (n¼ 531, fig. 5).

All major clades and subpopulations of the background
population (North West, East Coast, Northern Territory, and
New Zealand) including the outbreaks in FNQ and PNG were
accurately reconstructed as referenced by the Illumina trees
(fig. 5). Minor topological variations were observed in the
position of the PNG-1 and PNG-2 introductions (greens),
and the southern East Coast and New Zealand subclade (sea-
green) of the East Coast population (turquoise, fig. 5).
However, there were no major topological inconsistencies
that would affect interpretation of the source population.
In all topologies, the outbreaks from PNG derived from the
East Coast ST93-MRSA-IV clade, and the FNQ outbreak de-
rived from the Northern Territory reintroduction (fig. 5).
Regional transmissions into the United Kingdom and
Australia within the outbreak clusters remained identifiable
(black and red branches in PNG-1 and PNG-2). Introductions
into FNQ from other parts of the population are evident from
both the reference and the polished alignments (red branches
in East Coast, PNG and Northern Territory clades). Branch
lengths of the nanopore-sequenced clades were similar to the
reference ML tree, but were excessive in the between-species
N. gonorrhoeae polished alignments as well as in the mixed
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A

B

C

D

FIG. 4. Trained random forest SNP polisher evaluation showing left: accuracy, precision, and recall of Clair nanopore SNP calls against matching
Illumina reference SNPs called with Snippy. Plots are split into ST93 outbreak isolates (inside left) and other sequence types (inside right) from PNG
and FNQ combined. In the right-hand plots, the number of FNs, FPs, and TP SNP calls for the groups is shown on a log-scale. Models were trained on
three Illumina matched isolates from between-species (A) N. gonorrhea from Sanderson et al. within species (B) S. aureus ST88, ST93, ST15 from
PNG, (C) within-lineage (ST93) using samples from FNQ and separately from PNG (D) (ST93). Polishing models were evaluated on all PNG and
FNQ isolates excluding those used in training (ST93: n¼ 55, other sequence types: n¼ 25,>10� coverage). Outliers in the tails of the distributions
are novel multilocus sequence type variants of ST93.
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sequence type alignments (fig. 5, in particular due to two
isolates: PNG-36 and PNG-62, supplementary fig. S6,
Supplementary Material online). The alignment based on
SNPs polished using outbreak sequence type (ST93) isolates
was most consistent with the Illumina reference phylogeny of
ST93. We note that within-lineage polishing did not require
within-outbreak polishers, for example, FNQ-trained polishers
reproduced PNG outbreak divergence and vice versa.

We next investigated the performance of Bayesian phylo-
dynamic methods to estimate the divergence date and effec-
tive reproduction number using birth–death skyline models
with serial (PNG) or contemporaneous (FNQ) sampling and
lineage-specific prior configurations. We ran BEAST2 Markov
chain Monte Carlo (MCMC) chains on the outbreak subsets
of the full SNP alignment with sufficient isolates (nPNG-1¼ 53;
nFNQ ¼ 32) using a fixed substitution rate of the whole-
lineage median posterior estimate (3:199� 10�4). This was
necessary as nonrandom sampling (subsetting the alignment
to the outbreak clade) removes the temporal signal in the
comparatively recent outbreaks, and thus leads to an over-
estimation of the outbreak MRCA. We note that the models
were efficiently run on a standard NVIDIA GTX1080-Ti graph-
ical processing unit (GPU) using BEAST2 with the BEAGLE
library at speeds of<3–4 min/million steps in the MCMC (5–
7 h per run and GPU) making timely parameter estimation
for outbreak responses feasible on low-cost hardware. On an
NVIDIA P100 GPU, walltime decreased to <50 s to 1 min/
million steps in the MCMC, around 1–2 h walltime per run
and GPU on a distributed system.

MCMC chains converged onto similar posterior distribu-
tions across all polished alignments in the PNG clade (fig. 6).
Polished models in the PNG clade were highly stable across
posterior estimates, including those polished with between-
species polisher from N. gonorrhoeae, and showing only
slightly aberrant estimates of the most recent common an-
cestor in the mixed polishing model (fig. 6B, supplementary
table S2, Supplementary Material online). More variable pos-
terior estimates were observed in the FNQ clade (fig. 6), con-
sistent with higher variability in branch lengths as a result of
excessive FP SNP calls retained in low-coverage FNQ isolates
(fig. 5). Nevertheless, when compared with the NanoPath
Illumina reference estimates, ST93-polished estimates (sau-
reus_png, saureus_fnq) closely resembled those of the refer-
ence, with only minor deviations (fig. 6, supplementary table
S2, Supplementary Material online). Estimates were consis-
tent with full lineage-wide analysis (Re > 1.5–2.0) and we
observed robust estimates in an exploration of the Re prior
(supplementary table S2 and figs. S6 and S7, Supplementary
Material online). We therefore demonstrate that SNP polish-
ing enables the use of birth–death skyline models for out-
break parameter estimation, even with low-coverage
nanopore sequencing data (5� to 10�). Finally, we imple-
mented training, evaluation, and deployment of SNP polish-
ers for within-lineage transmission modeling in Nextflow.

Discussion
In this study, we adopted a method for variant polishing for
phylodynamic modeling of bacterial whole-genome data

ONT Outbreaks
Polished: sanderson

A B

FED

C 8755 SNPs

8709 SNPs 7614 SNPs7440 SNPs

6319 SNPs 6580 SNPs

NW

NZ

PNG-1

PNG-2

FNQ

East Coast

NT

East Coast

*

Illumina Reference
(NanoPath)

Illumina Reference
(Snippy)

ONT Outbreaks
Polished: saureus_mix

ONT Outbreaks
Polished: saureus_fnq

ONT Outbreaks
Polished: saureus_png

ONT

ONT

ONT

ONT

ONT

ONT

ONT

ONT
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using low-coverage nanopore sequencing, and applied it to
outbreaks of community-associated S. aureus in remote FNQ
and PNG. Previous studies using (high coverage) nanopore
data have evaluated phylogenetic reconstructions on few and
distantly related isolates of N. gonorrhoeae as well as other
bacterial genomes from assembly (Golparian et al. 2018;
Sanderson et al. 2020; Urban et al. 2021). A recent pipeline
for cluster identification using six strains per MinION flow cell
(42 on 7 flow cells) successfully identified clusters in four
distinct lineages, using a whole-genome assembly-based phy-
logeny (Ferreira et al. 2021). However, full outbreak recon-
struction within the outbreak lineage—allowing for Bayesian
model applications to estimate epidemiological parameters
within the phylogeny—has so far not been conducted. Here,
we show that the application of random forest SNP polishers
developed by Sanderson and colleagues (2020) can suffi-
ciently reduce the number of FP SNP calls from neural net-
work variant caller Clair v.2.1.1 (Luo et al. 2020). Hybrid
lineage alignments of ONT sequence and Illumina back-
ground data of the outbreak lineage (ST93) can be con-
structed, and effective reproduction numbers accurately
modeled using birth–death skyline models in BEAST2.

We evaluated genotype reconstruction against previously
sequenced Illumina data (Steinig et al. 2021) demonstrating
the superior quality of hybrid assembly with Unicycler. Our
genotyping analysis showed that for high-coverage isolates
(>10�) genotyping directly from polished nanopore assem-
bly was comparable to hybrid Illumina-ONT approaches (fig.
2). We used the most recent models at the time of writing for
base calling (Bonito v0.3.6) followed by polished long-read
assembly or hybrid assembly. With the imminent release of
R10.3 pores and expected increases in raw-read accuracy the
remaining misclassifications in genotypes from assemblies
(mostly in MLST and SCCmec subtyping) will be eliminated
and produce nanopore assemblies comparable to reference
assemblies at>10� coverage. We chose here to implement a
rapid and minimal protocol to evaluate its application in
reference laboratories without local access to sequencing in-
frastructure, such as at the Australian Institute of Tropical
Health and Medicine or the Papua New Guinea Institute of
Medical Research. Our method requires some context from
genomic surveillance at the level of full lineages (e.g., ST93 or
ST772) in order to situate nanopore-sequenced outbreaks
within the wider lineage context and fix the clade birth–death
model substitution rate. Given that substitution rates vary
between S. aureus lineages (Steinig et al. 2021), an estimate
from the background data is required to fix substitution rates
within the outbreak clusters. For optimal polishing results, it
appears to be effective to train the random forest polishers on
lineage-specific data, noting that effective polishing was still
achieved when training isolates derived from a different part
of the tree within the lineage (e.g., FNQ-trained polishers were
effective on PNG isolates). In higher-coverage isolates effective
polishing was also achieved with the mixed S. aureus and
N. gonorrhoeae models; we note that only three isolates
with matching Illumina and ONT data are required for train-
ing the polishers.

Interestingly, the random forest classifiers failed to polish
Medaka v1.2.3 reference-specific SNP calls (supplementary fig.
S3, Supplementary Material online) even though the Medaka-
Bonito model is trained explicitly on microbial signal data
from E. coli and an experimental version (v0.1.0) was success-
fully used for polishing by Sanderson and colleagues (2020).
Polishing success of Clair calls suggests that the features se-
lected here—in particular, the proximity and quality features
(fig. 3B–D)—were effective at removing systematic FP SNP
calls. SNP calling did not improve considerably using Bonito
v0.3.6 R9.4.1 DNA models compared with Guppy high accu-
racy (supplementary fig. S5, Supplementary Material online)
and methylation-aware models (data not shown). It remains
to be seen whether retraining Clair or Medaka neural net-
works on S. aureus specific signal and sequence data would
improve species-specific SNP calls without polishing.

We demonstrate the utility of our method by sequencing
novel isolates of community-associated MRSA from a pedi-
atric osteomyelitis outbreak in the highland towns of
Kundiawa and Goroka (PNG) and routine surveillance in re-
mote northern Australia (FNQ; fig. 1, n¼ 181). A protocol
that minimized cost (without optimization) allowed us to
sequence 2 consecutive panels of 12 isolates with rapid bar-
coded libraries on a MinION flow cell (SQK-RBK004), by using
an interspersing nuclease flush (ONT, EXP-WSH-003). We
note that spin column extractions resulted in several frag-
mented barcodes that failed assembly (12/96). Overall, phy-
lodynamic models were mostly affected by very low-coverage
isolates (<5�) whereas even low-medium coverage isolate
(�5�) produced consistent estimates of the effective repro-
duction number for the PNG and FNQ clades, when com-
pared with the Illumina reference (fig. 6). Accurate modeling
was possible even with interspecies polishers trained on
N. gonorrhoeae in higher-coverage isolates in PNG.
Estimates were more variable in the low-coverage FNQ out-
break clade and for optimal performance, some protocol op-
timization will be required, and may include extraction
protocols for long reads, inclusion of a magnetic bead cleanup
step (obligatory in the latest iteration of the ONT rapid kit
protocols, 2021) or short-read elimination kits. Although we
were ultimately unable to use a total of 32 isolates (<5�
coverage) in the phylodynamic estimation, the cost per
S. aureus genome using the 24� multiplex protocol ranges
between USD $40 (no failures over 181 unique samples) and
around USD $50 per genome with two repeat flow cells from
already extracted cultures (supplementary material 2,
Supplementary Material online). Further optimization would
incur small additional cost and can be conducted for bacterial
pathogens of interest in sufficiently resourced laboratories.
Further improvements in cost for genome selection by first
scanning genomes with approximate genomic neighbor typ-
ing approaches may also be feasible (Steinig et al. 2022).
Although we chose S. aureus as a model organism for this
work mainly due to our interest in sequencing the outbreaks
in PNG and FNQ, as well as because of its relatively small
genome (2.8 Mbp), core principles and methods used in this
study are immediately applicable to other bacterial pathogens
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and all steps of the pipelines are implemented in replicable
Nextflow workflows (Materials and Methods).

We did not expect significant rate variation in the out-
break clades, which made computation of clade parameters
with a lineage-wide fixed substitution tractable. We note that
within-outbreak patterns of divergence vary between phylog-
enies (fig. 5), and considering the number of remaining FP and
false-negative (FN) SNPs after polishing (fig. 4), we did not
expect within-outbreak transmission chains to be reproduc-
ible. Optimization of SNP polishing or variant calling, for ex-
ample, with species-specific neural networks, remains to be
investigated. For this study, we accelerated computation us-
ing the BEAGLE library (Ayres et al. 2019) in combination with
BEAST2. Moderate acceleration on standard hardware (<5–
7 h) and increased acceleration on NVIDIA P100 GPUs (<2 h)
were achieved. Nanopore-driven outbreak sequencing and
GPU acceleration in BEAST2 thus enable the rapid deploy-
ment of phylodynamic models and responsive surveillance of
bacterial diseases.

Ultimately, our cost-effective protocol for multiplex nano-
pore sequencing and phylodynamic inference of outbreak
parameters lowers the barrier of conducting these analyses
in scenarios where access to sequencing infrastructure is dif-
ficult or infeasible, including in low- or middle-income coun-
tries where the burden of bacterial disease outbreaks remains
high. In particular, the effective cost of monitoring disease
transmission is considerably lower on nanopore sequencing
platforms than with gold-standard Illumina sequencing,
which may facilitate the sustainable integration of genomic
surveillance in reference laboratories located in these regions,
including in remote northern Australia and the highlands of
PNG. Improvements to the sequencing protocol, for example,
by further reducing cost of nucleic acid extraction, increasing
the number of isolates per flow cell or balancing throughput
per barcode using in silico adaptive sequencing (Payne et al.
2021) will further enable the adoption of phylodynamic sur-
veillance for bacterial outbreaks on nanopore devices.

Materials and Methods

Outbreak Sampling in FNQ and PNG
We collected isolates from outbreaks in two remote popula-
tions in northern Australia and PNG (fig. 1). Isolates associ-
ated with pediatric osteomyelitis cases (mean age of 8 years)
were collected from 2012 to 2017 (n¼ 42) from Kundiawa,
Simbu Province (27), and from 2012 to 2018 (n¼ 35) from
patients in the neighboring Eastern Highlands province town
of Goroka. We supplemented the data with methicillin sen-
sitive S. aureus isolates associated with severe hospital-
associated infections and blood cultures in Madang
(Madang Province; n¼ 8) and Goroka (n¼ 12). Isolates
from communities in FNQ, including urban Cairns, the
Cape York Peninsula and the Torres Strait Islands (n¼ 91),
were a contemporary sample from routine surveillance at
Cairns Hospital in 2019. Isolates were recovered on LB agar
from clinical specimens using routine microbiological techni-
ques at Queensland Health and the Papua New Guinea
Institute of Medical Research (PNGIMR). Isolates were

transported on swabs from monocultures to the Australian
Institute of Tropical Health and Medicine (AITHM
Townsville) where they were cultured in 10-ml Luria-Bertani
(LB) broth at 37 �C overnight and stored at �80 �C in gly-
cosol and LB. Illumina short-read data from the ST93 lineage
(van Hal et al. 2018) included in this study were collected
from the European Nucleotide Archive (supplementary
tables, Supplementary Material online).

Nanopore Sequencing and Basecalling
Two milliliters of LB broth was spun down at 5,000 � g for
10 min and after removing the supernatant, 50 ml of 0.5 mg/
ml lysostaphin were added to the tube and vortexed. Cell
lysis was conducted at 37 �C for 2 h with gentle shaking
followed by a proteinase K digestion for 30 min at 56 �C.
DNA was extracted using a simple column protocol from
the DNeasy Blood & Tissue kit (QIAGEN) following the
manufacturer’s instructions. DNA was eluted in 70 ml of
nuclease-free water, quantified on Qubit, and DNA was
stored at 4 �C until library preparation. Library preparation
was done using approximately 420 ng of DNA and the rapid
barcoding kit with 12 barcodes (ONT, SQK-RBK004) as per
manufacturer’s instructions. Basecalling was done using the
R9.4.1 high accuracy (HAC, supplementary fig. S5,
Supplementary Material online), the HAC methylation
model (not shown), and the all context methylation Rerio
model (not shown) in Guppy v4.2.3, as well as the final Bonito
v0.3.6 R9.4.1 DNA model (used for all analyses), run on a
local NVIDIA GTX1080-Ti or a remote cluster of NVIDIA
P100 GPUs. Sequence runs were conducted with 2 � 12
barcoded (SQK-RBK004) isolates per flow cell in two con-
secutive 18–24 h runs. Libraries were nuclease flushed using
the wash kit between consecutive runs (EXP-WSH-003). This
is sufficiently effective to remove read carry-over, as demon-
strated previously with hybrid assemblies of sequentially se-
quenced Enterobacteriaceae (Lipworth et al. 2020) and our
analysis of a single library panel (FNQ-2) sequenced on a
previously used flow cell with a human library. After washing
with EXP-WSH-003, a total of 2,910/294,461 reads were clas-
sified as human in the S. aureus library, about twice as much
as human contamination in other runs. Sequencing runs
were managed on two MinIONs and monitored in
MinKNOW > v20.3.1.

Nanopore Genome Assembly and Quality Control
Genome assemblies for genotyping were constructed using
our Nextflow assembly pipeline (https://github.com/np-core/
np-assembly), which first randomly subsamples reads to a
maximum of 200� coverage with rasusa v0.3.0 (Hall 2022)
and filtered Q> 7 with minimum read length of 100 bp using
nanoq v0.8.0 (Steinig and Coin 2022). Fastp v0.20.1 (Chen
et al. 2018) was used to trim adapter and low-quality
Illumina sequences. We then constructed three types of as-
semblies: a polished long-read assembly using ONT data only
(flye), one with short-read correction of the ONT long-read
assembly (pilon) and one that first assembles short reads and
scaffolds the assembly with long reads. For the polished long-
read assembly, Flye v2.8.3 (Kolmogorov et al. 2019) was used
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in conjunction with four iterations of minimap2 v2.17-r941 (Li
2018) þ Racon 1.4.20 (Vaser et al. 2017) and subsequent
polishing with Medaka 1.2.3. For the long-read hybrid assem-
bly, corrections were conducted with Illumina paired-end
reads for each genome using two iterations of Pilon v1.2.3.
For the short-read hybrid assembly, we used Unicycler v0.4.8.
Reference Illumina assemblies were generated with the pipe-
line Shovill v1.1.0 (https://github.com/tseemann/shovill) us-
ing Skesa v2.4.0 and genotyped with Mykrobe v0.9.0 (Hunt
et al. 2019) (from reads) and SCCion v0.4.0 (https://github.
com/esteinig/sccion), a wrapper around common assembly-
based genotyping tools and databases (Zankari et al. 2012;
Chen et al. 2016; Kaya et al. 2018) for S. aureus. We called
species, resistance genes, virulence factors, PVL, multilocus
sequence type, mecA, and major SCCmec cassette subtypes.
We assessed differences between the Illumina references and
hybrid- or nanopore assemblies using the dnadiff v1.3 to de-
termine assembly-based differences in SNPs and Indels, as well
as assess overall identity between genomes (fig. 2). Coverage
against the reference genome (ST93: JKD6159; Chua et al.
2010) was assessed using CoverM v0.6.0 (https://github.
com/wwood/CoverM).

De Novo Variant Calling and Random Forest SNP
Polishers
We called SNPs de novo using the neural network callers
Medaka v1.2.3 (https://github.com/nanoporetech/medaka)
and Clair v2.1.1 (shown in example pipeline executions).
Snippy v4.6.0 (https://github.com/tseemann/snippy) was
used to generate a core-site alignment of the ST93 back-
ground population (n¼ 444, 6,161 SNPs) and reference
Illumina core alignments including the outbreaks in FNQ
and PNG isolates (>5�, n¼ 531, 6,580 SNPs). Snippy variant
calls (SNP type) were used as reference truth for matching
ONT and Illumina sequenced isolates. We implemented the
feature extraction and random forest design from Sanderson
and colleagues (2020) who use the RandomForest classifier
from scikit-learn (Pedregosa et al. 2011) with default hyper-
parameter settings and feature extraction with pysamstats.
Like the original implementation, we subsampled isolates to
2, 5, 10, 20, 50, and 100� coverage with rasusa to account for
read coverage in training and evaluating the classifiers. For
training, we created three sets of matching Illumina and ONT
sequence data, each with three isolates for training: three
mixed sequence types (ST88, ST15, and ST93; saureus_mixed),
one of FNQ within-lineage isolates (ST93; saureus_fnq), and
one of Papua New Guinean within-lineage isolates (ST93;
saureus_png). Training and validation sets for the classifiers
were split into 60% training and 40% validation data.

Next, we evaluated the classifiers, including the
N. gonorrhoeae classifier trained by Sanderson and colleagues,
using the remaining isolates from FNQ and PNG as an inde-
pendent test data set (fig. 1). We defined true positive (TP)
SNPs as those that were called by both Illumina Snippy and
ONT Clair, FP as ONT SNPs that were not called with Snippy,
and FN Snippy calls that were missed by ONT calls or later
excluded in the random forest filtering step. Since we used the
de novo Snippy calls as reference, true negative (TN) calls

(sites called as wild type by ONT and Snippy) were not able
to be considered. We combined data from both outbreaks
(nST93¼ 118, nother¼ 44) and computed accuracy, precision,
recall, and F1 scores for each evaluation against Illumina ref-
erence data (supplementary tables, Supplementary Material
online, fig. 4).

Hybrid Core-Site Outbreak Alignments
To contextualize polished ONT isolates called with Clair
within the wider background of the ST93 lineage, we adopted
the core functionality from Snippy’s core alignment caller
(Snippy-core) into an ONT and Illumina core SNP alignment
caller in the NanoPath package (https://github.com/np-core/
nanopath). Core SNP sites were defined by polymorphic SNP
sites present in genomes of all isolates included in the align-
ment, excluding any site that in any one isolate falls into a gap,
or any site with less than a predefined minimum coverage
(default: 1�). We first polished ONT SNPs from Clair with the
trained random forest models, including the N. gonorrhoeae
data set from Sanderson et al. (2020). We then created ref-
erence alignments of the Illumina data (ST93 background and
outbreaks, n¼ 531, >5�) with Snippy-core, as well as a ref-
erence Illumina and polished hybrid alignments with ONT
outbreak SNPs in NanoPath (fig. 5).

ML Phylogenetics and Bayesian Model Configurations
ML phylogeny of the ST93 lineage was reconstructed from
the Illumina and ONT polished alignments, including the
outbreaks. We used RAXML-NG with the GTRþ G and
Lewi’s ascertainment bias correction for SNP alignments.
Trees were rooted on SRR115236 (early isolate from 1992),
near the root of the phylogeny (van Hal et al. 2018) and
decorated with metadata of sample origin at state level in
ITOL (Letunic and Bork 2019). Sampling dates in years were
provided for each isolate. We next subset the full lineage
alignments to the isolates in the large clades of the FNQ
(n¼ 36) and PNG (n¼ 62) outbreaks. We then configured
birth–death skyline models in BEAST2 using a custom Python
interface (NanoPath Beastling) that stores model configura-
tions of the serially (PNG) and contemporaneously sampled
models (FNQ) in YAML files. Birth–death models consider
dynamics of a population forward in time using the (trans-
mission) rate k, the death (become uninfectious) rate d, the
sampling probability q, and the time of the start of the pop-
ulation (outbreak; also called origin time) T. The effective
reproduction number (Re), can be directly extracted from
these parameters by dividing the birth rate by the death
rate (k� d). We configured the model priors as outlined in
table 1. Importantly, we set a lineage-wide fixed substitution
rate prior at 3:199� 10�4 (Steinig et al. 2021) to account for
the loss of temporal signal in the outbreak subset alignments.
NanoPath constructs the BEAST2 XML model files which can
be run with the BEAGLE library on GPU. Results were sum-
marized using the bdskytools package in R, where median
higher posterior density intervals were computed in custom
plotting scripts that can be found along with all other results
from the pipelines and model runs at the data repository.
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Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
This work was supported by a joint Policy Relevant Infectious
Disease Simulation and Mathematical Modelling & Improving
Health Outcomes in the Tropical North pilot grant (Williams
et al. 2021) by the Australian National Health and Medical
Research Council (1131932 to E.S. and E.M.), an Improving
Health Outcomes in the Tropical North fellowship by the
Australian National Health and Medical Research Council
(1131932 to C.F.), an Australian National Health and Medical
Research Council fellowship (1145033 to S.Y.C.T.), a joint
Australian National Health and Medical Research Council
and European Union collaborative research grant
(GNT1195743 to L.C.), a Queensland Genomics project grant
(Vidgen et al. 2021) and a National Health and Medical
Research Council Ideas grant (2012286 to P.H., I.A., A.G., C.F.,
R.F., S.S., E.S., L.C., S.Y.C.T., E.M., and W.P.). Models were run on
graphical processing units supported by the Linkage
Infrastructure, Equipment and Facilities (LIEF) at the high-
performance computing facility hosted at the University of
Melbourne (LE170100200; Lafayette et al. 2016).

Author Contributions
E.S., P.H., E.M., L.C., and S.T. planned and conceived of the
study. E.S. conducted sequencing, wrote the code, and con-
ducted bioinformatic analysis; E.S. and S.D. conducted phylo-
dynamic analyses; I.A., A.G., R.F., M.Y., J.J., J.D., B.U., H.P., C.W.,
E.E., D.N., M.L., L.M., C.F., S.S., W.P., and P.H. collected, main-
tained, and provided the outbreak strains for sequencing, and
managed all work in Papua New Guinea and Far North
Queensland; E.S. wrote the initial manuscript draft, all authors
contributed to the final version.

Data Availability
Sequence data (Illumina, ONT) generated in this study have
been submitted to the NCBI BioProject database (https://
www.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA657380. Additional model results and configuration
files may be found in our repository (https://github.com/
esteinig/ca-mrsa).

References
Ayres DL, Cummings MP, Baele G, Darling AE, Lewis PO, Swofford DL,

Huelsenbeck JP, Lemey P, Rambaut A, Suchard MA. 2019. BEAGLE 3:
improved performance, scaling, and usability for a high-performance
computing library for statistical phylogenetics. Syst Biol.
68(6):1052–1061.

Bull RA, Adikari TN, Ferguson JM, Hammond JM, Stevanovski I, Beukers
AG, Naing Z, Yeang M, Verich A, Gamaarachchi H, et al. 2020.
Analytical validity of nanopore sequencing for rapid SARS-CoV-2
genome analysis. Nat Commun. 11(1):6272.

Chen L, Zheng D, Liu B, Yang J, Jin Q. 2016. VFDB 2016: hierarchical and
refined dataset for big data analysis–10 years on. Nucleic Acids Res.
44(D1):D694–D697.

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ
preprocessor. Bioinformatics 34(17):i884–i890.

Chua K, Seemann T, Harrison PF, Davies JK, Coutts SJ, Chen H, Haring V,
Moore R, Howden BP, Stinear TP. 2010. Complete genome sequence
of Staphylococcus aureus strain JKD6159, a unique Australian clone
of ST93-IV community methicillin-resistant Staphylococcus aureus. J
Bacteriol. 192(20):5556–5557.

da Silva Filipe A, Shepherd JG, Williams T, Hughes J, Aranday-Cortes E,
Asamaphan P, Ashraf S, Balcazar C, Brunker K, Campbell A, et al.;
COVID-19 Genomics UK (COG-UK) Consortium. 2021. Genomic
epidemiology reveals multiple introductions of SARS-CoV-2 from
mainland Europe into Scotland. Nat Microbiol. 6(1):112–122.

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame
C. 2017. Nextflow enables reproducible computational workflows.
Nat Biotechnol. 35(4):316–319.

du Plessis L, McCrone JT, Zarebski AE, Hill V, Ruis C, Gutierrez B, Raghwani J,
Ashworth J, Colquhoun R, Connor TR, et al.; COVID-19 Genomics UK
(COG-UK) Consortium. 2021. Establishment and lineage dynamics of
the SARS-CoV-2 epidemic in the UK. Science 371(6530):708–712.

Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A,
Lemey P, Baele G. 2020. Temporal signal and the phylodynamic
threshold of SARS-CoV-2. Virus Evol. 6(2):veaa061.
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