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Abstract
Alcohol use disorder (AUD), brought about by excessive alcohol use, is associated with damages to several organs including 
the brain. Chronic excessive use of alcohol can compromise intestinal integrity, leading to changes in gut microbiota (GM) 
composition known as dysbiosis. Dysbiosis, by disruption of the gut-brain axis (GBA), further exacerbates the deleteri-
ous effects of alcohol. One of the fermentation by-products of GM is butyrate (BUT), a short-chain fatty acid (SCFA) that 
plays an important role in maintaining homeostasis of the GBA. Alcohol metabolism results in formation of acetaldehyde, 
a highly reactive compound that reacts with dopamine in the brain to form toxic adducts such as salsolinol. Recent studies 
indicate potential neuro-protective effects of BUT against various toxicants including salsolinol. Here, we sought to inves-
tigate whether BUT can also protect against alcohol toxicity. Pretreatment of neuroblastoma-derived SH-SY5Y cells with 
500 mM ethanol (ETOH) for 24 h resulted in approximately 40% reduction in cell viability, which was totally blocked by 
10 µM of either BUT or AR 420,626 (AR), a selective fatty acid 3 receptor (FA3R) agonist. The neuro-protective effects 
of both BUT and AR were significantly (80%) attenuated by beta-hydroxy butyrate (BHB), a selective FA3R antagonist. 
Interestingly, combination of BUT and AR resulted in synergistic protection against ETOH, which was totally blocked by 
BHB. These findings suggest potential utility of butyrate and/or FA3R agonists against ETOH-induced toxicity.
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Introduction

Chronic excessive alcohol (CEA) use could lead to alco-
hol used disorder (AUD), a problematic pattern of alcohol 
use with an impaired ability to stop/control alcohol use 
despite adverse social, occupational, or heath consequences 
(Koob 2021). CEA can cause neuronal loss by inducing 
neurotoxicity as well as inhibiting neurogenesis. This leads 
to significant volume loss in cortical and subcortical brain 
structures and shrinkage in both gray and white matters. 
These structural changes along with impairment in neuronal 
signaling and glial dysfunction result in short-term memory 

loss and other behavioral abnormalities such as weakness, 
ataxia, motor speech disorder, diminished executive func-
tioning, anxiety, and negative emotions (Tizabi et al. 2021b).

Recent development in the gut-brain axis (GBA) has 
confirmed a bidirectional and intimate cross talk between 
gut microbiome and the brain. Thus, the importance of nor-
mal intestinal colonization of the gut, starting at neonatal 
period and continuing throughout life, in critical physiologi-
cal functions has been well established. Gut microbiome 
plays an essential role in food digestion, xenobiotic metabo-
lism, and regulation of innate and adaptive immunologi-
cal processes (Bishehsari et al. 2017; Cryan et al. 2019). 
Indeed, dysbiosis, a term representing a loss or reduction 
of beneficial bacteria and accumulation of pathogenic 
ones (Belizário and Faintuch 2018), has been associated 
with dysregulation of food intake and energy homeo-
stasis (Romaní-Pérez et al. 2021; Woźniak et al. 2021) 
and implicated in a myriad of central nervous system 
(CNS) disorders such as anxiety and depression (Cryan 
et al. 2019; Knudsen et al. 2021; Poluektova et al. 2021), 
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stroke (Yamashiro et al. 2021), multiple sclerosis (Ullah 
et  al.  2021), Parkinson’s disease (Tizabi et  al.  2021a), 
autism (Kong et al. 2021), schizophrenia (Kelly et al. 2021), 
aging (Li et al. 2021; van Krimpen et al. 2021), cognitive 
dysfunction (Cryan et al. 2019; Cowan and Cryan 2021; Li 
et al. 2021), Alzheimer’s disease (Giovannini et al. 2021; 
Jiang et al. 2021), and even substance abuse (Meckel and 
Kiraly 2019; García-Cabrerizo et al. 2021).

Dysbiosis due to alcohol abuse may be a contributing fac-
tor to AUD (Engen et al. 2015; Bishehsari et al. 2017). Thus, 
alcohol-induced changes in the gut microbiota may con-
tribute not only to development of alcoholic liver disease, 
but also to a variety of CNS disorders (Engen et al. 2015; 
García-Cabrerizo et al. 2021). Indeed, it has been suggested 
that use of probiotic might be of potential use in preven-
tion and treatment of alcohol-associated pathologies (Engen 
et al. 2015; Lowe et al. 2018; Rodriguez-Gonzalez and Orio 
2020; Carbia et al. 2021; Gupta et al. 2021). In this regard, it 
was recently reported that butyrate (BUT) ameliorates alco-
holic fatty liver disease in mice (Zhang et al. 2021).

Butyrate is a short-chain fatty acid (FA) that acts 
as an energy source for colonic epithelial cells. It has anti-
inflammatory, enteroendocrine, and epigenetic effects and 
can also affect the brain function (Cantu-Jungles et al. 2019). 
The postulated mechanism of action of BUT includes its 
interaction with fatty acid receptor 3 (FA3R) which is a G 
protein coupled receptor, as well as inhibition of histone 
deacetylase (HDAC) (Cantu-Jungles et al. 2019; Falomir-
Lockhart et al. 2019). Recently, our group reported protec-
tive effects of BUT against salsolinol-induced toxicity in 
neuroblastoma-derived SH-SY5Y cells (Getachew et al. 
2020). The protective effects of BUT were mimicked by 
another FA3R agonist (AR), and both BUT and AR could 
be blocked by the FA3R antagonist, beta-hydroxy butyrate 
(BHB) (Kimura et al. 2011; Ulven 2012; Inoue et al. 2014; 
Getachew et al. 2020). Since salsolinol is produced via 
condensation of dopamine with aldehydes and was shown 
lately to be present in the ventral tegmental area of rats fol-
lowing oral alcohol administration (Bassareo et al. 2021), 
we undertook this study to determine whether BUT and/
or AR could also protect against alcohol-induce toxicity in 
SH-SY5Y cells.

Materials and Methods

Ethanol (ETOH, 100%) was obtained from EMD Chemicals 
Inc. (Gibbstown, NJ). Butyrate, beta-hydroxy butyrate (BHB), 
a selective FA3R antagonist (Kimura et al. 2011; Ulven 2012; 
Inoue et al. 2014), and other analytical reagents including 
3,(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bro-
mide (MTT) assay kit were purchased from Sigma Chemi-
cal Company (Sigma-Aldrich, St. Louis, MO). AR 420,626 

(AR),  chemical name: N-(2,5-dichlorophenyl)-4-(furan-
2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-
3-carboxamide, a FA3 receptor agonist (Hudson et al. 2014; 
Bolognini et al. 2016; Kaji et al. 2018), was purchased form 
Bio Techne Corp-Tocris (Minneapolis, MN). The SH-SY5Y 
human neuroblastoma cell line was purchased from Ameri-
can Type Culture Collection (ATCC, Manassas, VA).

As detailed previously (Getachew et al. 2018, 2020), 
SH-SY5Y cells were cultured in a 1:1 mixture of Dulbec-
co’s modified Eagle’s medium (DMEM) and Ham’s F12 
supplemented with 10% fetal bovine serum, penicillin/
streptomycin (100 IU/ml), and gentamicin (50 μg/ml) at 
37 °C in 95%  O2/5%  CO2 humidified incubator. The cells 
(un-differentiated) were trypsinized when confluent and 
plated in 96-well plates (1.2 ×  104 cells/well). Cells were 
allowed to adhere to bottom surface for 24 h. Then, fresh 
media containing ethanol (500 mM) or various concentra-
tions of BUT or AR with and without FA3R antagonist 
were added to the carefully aspirated wells.  The con-
centration of ethanol was chosen based on our previous 
experiments and the fact that such concentration results in 
approximately 40% toxicity in SH-SY5Y cells (Getachew 
et al. 2018). Butyrate or AR was added 1 h prior to ETOH, 
and FA3R antagonist, in turn, was added 1 h prior to BUT 
or AR. In combination studies, both BUT and AR were 
added simultaneously 1 h prior to ETOH. In all cases, the 
control group consisted of cells that were maintained in 
media alone and without any drug treatment. All treatments 
were carried out for 24 h, and the effects on cell viability 
were determined following the 24-h incubation. Each treat-
ment group consisted of 6 replicates, and a minimum of 4 
assays were conducted for each experimental manipulation.

Cell viability was determined by MTT colorimetric assay 
according to the manufacturer’s protocol as described previ-
ously (Getachew et al. 2018, 2020). Briefly, the yellow MTT 
tetrazolium salt (0.5 mg/ml) was dissolved in phosphate-
buffered saline (PBS) with 10 mM (4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES). Thirty microlit-
ers of MTT was added to each well and incubated for 3 h 
at 37 °C. The live cells cause a reduction of the yellow salt 
to insoluble purple formazan crystals. The wells were then 
carefully aspirated, and 50  µl of dimethyl sulfoxide (DMSO) 
was added to the wells to solubilize the crystals; the plates 
were then placed in a shaker for an hour and read spectro-
photometrically at 570 nm with a background of 630 nm in 
a plate reader. Cell viability was determined by subtracting 
the test results from the background and is presented as a 
percentage of the control.

Data is expressed as mean ± standard error of the mean 
(SEM). Statistical differences within and between treatment 
groups were determined by one-way analysis of variance 
(ANOVA) followed by post hoc Newman–Keuls Multiple 
comparison test, where p < 0.05 was considered statistically 
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significant. Data were analyzed using GraphPad Prism 9.2 
(GraphPad Software, Inc., San Diego, CA).

Results

Figure 1 depicts the effect of various concentrations of 
BUT (0.01–10 µM) against ETOH-induced toxicity in SH-
SY5Y cells. For ETOH, we used a concentration of 500 mM 
because we have consistently observed about 40% toxicity 
during the 24-h exposure with this concentration (Getachew 
et al. 2018). As seen, there was a concentration-dependent 
protection by BUT against ETOH toxicity with full protec-
tion at 10 µM [F(5,24) = 14.8, p < 0.01]. Butyrate by itself, 
at any concentration, did not affect the cell viability (data 
not shown).

Figure 2 depicts the effect of various concentrations of 
AR (0.01–10 µM) against ETOH-induced toxicity. Here 
also, there was a concentration-dependent protection by 
AR against ETOH-induced toxicity. Full protection was 
achieved at 10 µM AR [F(5,24) = 13.6, p < 0.01]. AR by 
itself, at any concentration, did not affect the cell viability 
(data not shown).

Figure 3 depicts the effect of various concentrations 
of FA3R antagonist (BHB) on protective effects of BUT 

against ETOH-induced toxicity. We used the highest con-
centration of BUT (10 µM) as this concentration was fully 
protective against ETOH toxicity. As seen, there was a con-
centration-dependent attenuation of BUT effect by BHB 
[F(7,32) = 16.4, p < 0.01]. The highest concentration of BHB 
(60 µM) reduced the protective effects of BUT by approxi-
mately 80% (p < 0.01). BHB did not have any effect of its 
own on cell viability at any of the concentrations used (data 
not shown). We did not try any higher BHB concentration, 
because at 80 µM, it caused some of its own toxicity.

Figure 4 depicts the effect of various concentrations of 
BHB on protective effects of AR against ETOH-induced tox-
icity. We used the highest concentration of AR (10 µM) as 
this concentration was fully protective against ETOH-induced 
toxicity. As shown, there was a concentration-dependent 
attenuation of AR protection by BHB [F(7,32) = 14.5, 
p < 0.01]. In this case also, the highest concentration of BHB 
(60 µM) reduced the protective effects of AR by approxi-
mately 80% (p < 0.01).

Figure 5 depicts the effect of combination of low concen-
trations of BUT and AR. Whereas neither butyrate nor AR 
at 0.01 µM concentration had any protective effect against 
ETOH toxicity, the combination of the two resulted in 
approximately 50% protection [F(9,42) = 12.1, (p < 0.01)]. 
The combination of 0.1 µM BUT and 0.1 µM AR, where 

Fig. 1  Effect of various concentrations of butyrate (BUT) against 
ethanol (ETOH)-induced toxicity. Cells were treated with ETOH 
with and without BUT for 24 h, and cell viability was determined by 

MTT. BUT was added 1  h before ETOH. Values are mean ± SEM. 
**p < 0.01 compared to control, †p < 0.5, ††p < 0.01 compared to 
ETOH. N = 4 per treatment
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each had approximately 24% protection, resulted in com-
plete protection against ETOH [F(9,42) = 12.1, (p < 0.01)]. 
Moreover, the effects of the combination treatments at 

either concentration levels were totally blocked with the 
highest concentration of BHB (60 µM) [F(9,42) = 12.1, 
(p < 0.01)].

Fig. 2  Effect of various concentrations of AR, a selective FA3R agonist, 
against ethanol (ETOH)-induced toxicity. Cells were treated with ETOH 
with and without AR for 24 h, and cell viability was determined by MTT. 

AR was added 1  h before ETOH. Values are mean ± SEM. **p < 0.01 
compared to control, †p < 0.5, ††p < 0.01 compared to ETOH. N = 4 per 
treatment

Fig. 3  Effect of various concentrations of beta-hydroxy butyrate 
(BHB), a FA3R antagonist, on protective effects of butyrate (BUT) 
against ethanol (ETOH)-induced toxicity. Cells were treated with 
ETOH, BUT, and BHB for 24  h and cell viability was determined 

by MTT. BHB was added 1  h before BUT, which was added 1  h 
before ETOH. Values are mean ± SEM. **p < 0.01 compared to con-
trol. ††p < 0.01 compared to ETOH, #p < 0.05, ##p < 0.01 compared to 
BUT + ETOH. N = 4 per treatment

2189Neurotoxicity Research  (2021) 39:2186–2193



Discussion

The results of this study show that BUT as well as AR, an 
FA3R agonist, can protect against ETOH-induced toxicity 
in neuroblastoma-derived dopaminergic cells. Moreover, a 
synergistic protective effect of low concentrations of BUT 
and AR was also observed. Thus, a combination of ineffec-
tive or very low concentrations of BUT and AR resulted in 
more than an additive protection against ETOH toxicity. Pre-
treatment of cells with BHB, a selective FA3R antagonist, 
substantially reduced the protective effects of BUT and AR 
individually and completely blocked the protective effects of 
the combined concentrations of the two drugs. These results 
support potential beneficial effects of BUT and/or an FA3R 
agonist in alcohol toxicity.

The findings also extend the utility of short-chain fatty 
acids (SCFAs) beyond the neurodegenerative diseases such 
as Parkinson’s disease (PD), to a common toxicant such as 
alcohol. Although further in vivo studies are required to vali-
date this premise in relation to alcohol, such observations 
have been reported in PD models (St Laurent et al. 2013; 
Liu et al. 2017). Interestingly, in regard to cellular model of 

PD, protective effects of BUT against salsolinol were also 
partially blocked by BHB, whereas the protective effects of 
AR against salsolinol were fully blocked by BHB (Getachew 
et al. 2020). Since AR is considered a full FA3R agonist 
(Hudson et al. 2014; Bolognini et al. 2016; Kaji et al. 2018) 
and BHB a selective FA3R antagonist (Kimura et al. 2011; 
Ulven 2012; Inoue et al. 2014), it was suggested that pro-
tective effects of BUT against salsolinol may involve more 
than FA3R activation (Getachew et al. 2020). This may 
include HDAC inhibition, activation of Nrf2/HO-1 axis, and 
stimulation of glucagon like peptide-1 (Funakohi-Tago et al. 
2018; Liu et al. 2017; Cantu-Jungles et al. 2019). Although it 
remains to be determined whether AR also shares any of such 
BUT characteristics, the finding that BHB could only par-
tially block the protective effects of either BUT or AR against 
ETOH may also indicate involvement of other mechanism(s) 
in protection by BUT and AR against ETOH toxicity. How-
ever, the finding that the synergistic effects of the combina-
tion of BUT and AR could be fully blocked by BHB suggests 
that adequate activation of the FA3R might be sufficient for 
observed protection against ETOH toxicity and that the effi-
cacy or potency of BHB to block FA3R might be limited.

Fig. 4  Effect of various concentrations of beta-hydroxy butyrate 
(BHB), a FA3R antagonist, on protective effects of AR against etha-
nol (ETOH)-induced toxicity. Cells were treated with ETOH, AR, 
and BHB for 24 h, and cell viability was determined by MTT. BHB 

was added 1 h before AR, which was added 1 h before ETOH. Val-
ues are mean ± SEM. **p < 0.01 compared to control. ††p < 0.01 com-
pared to ETOH, #p < 0.05, ##p < 0.01 compared to AR + ETOH. N = 4 
per treatment
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SCFAs in general and BUT in particular may not only 
prevent neurotoxicity induced by such compounds as sal-
solinol or ETOH but may also be of potential utility in 
other diseases such as graft rejection, inflammatory bowel 
disease, colorectal cancer, and diabetes, all of which carry 
an inflammatory component (Tikhonova 2017; Alrafas 
et al. 2019; Baxter et al. 2019). As mentioned earlier, anti-
inflammatory effects of BUT are well established (Cantu-
Jungles et al. 2019). Interestingly, BUT may also be of 
therapeutic potential in both alcoholic- and non-alcoholic 
fatty liver diseases (Ralli et al. 2021; Zhang et al. 2021). 
In addition, BUT has been advocated for treatment of obe-
sity and sleep disorders (Baxter et al. 2019; Szentirmai 
et al. 2019) and most recently for control of cytokine storm 
associated with COVID-19 (Nithin et al. 2021). However, 
because BUT has short half-life due to first-pass hepatic 
clearance (Miller et al. 1987; Kumar et al. 2019; Dingeo 
et al. 2020), AR, or any selective FA3R agonist, with a 
better pharmacologic profile than BUT, may offer a desir-
able alternative.

In summary, the findings support the potential use of 
butyrate and/or a selective FA3R agonist in combating 
alcohol toxicity.
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