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SUMMARY

Molecular signatures specific to particular tumor types are required to design treatments for 

resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for 

drug development share such signatures. We developed similarity core analysis (SCA), a universal 

and unsupervised computational framework for extracting core molecular features common to 

tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, 

comparing melanoma cell lines and metastases. The signature obtained was associated with 

phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in 
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melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an 

intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, 

MITF, PAX3, SOX10, LEF1, and GAS7) and miRNAs (211-5p, 221-3p, and 10a-5p). The SCA 

signature effectively discriminated between two subpopulations of melanoma patients differing in 

overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines.

In Brief

Cancer cell lines are at the forefront of drug discovery but are often limited in representing the 

tumor of origin due to the artificial culture conditions. Rambow et al. develop a computational 

approach for identifying tumor cell lineage expression cores. These core genes reveal relevant 

molecular dependencies linking aggressiveness, patient survival, and drug sensitivity.

INTRODUCTION

Genome-wide profiling approaches have provided molecular insight into cancer initiation 

and progression, promoting the development of targeted drugs for personalized treatment 

(Gonzalez-Angulo et al., 2010). However, cancer treatments targeting driver mutations are 

prone to resistance development, due to genetic and epigenetic tumor heterogeneity. Tumor 

cell-type- or lineage-specific expression characteristics were identified as key predictors of 

responses to several compounds in a screen of 479 cancer cell lines of 36 different tumor 

types (Barretina et al., 2012). Cancer-derived cell lines also are used in drug discovery, but 

may differ from the tumor of origin (Ertel et al., 2006; Gillet et al., 2013; Masters, 2000). In 

tumors, different cell types interact with each other and the tumor microenvironment, 

whereas cell lines are essentially clonal. Culture conditions and long-term passaging select 

the most adapted (potentially artificial) patterns of gene expression, resulting in differences 

in gene expression and epigenetic status between cell lines and tumors (van Staveren et al., 

2009). The unsupervised clustering of whole-transcriptome expression data clearly separates 

cell lines from tumor samples, even if they contain the same mutations (Domcke et al., 
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2013). We therefore need to identify significant similarities in gene expression between 

cancer-derived cell lines and tumors that might be masked by differences due to biological 

growth conditions.

Differential gene expression analyses have identified differences, but not core similarities, 

between cell lines and tumors for particular cancers. Comparisons of cell lines and tumors 

on this basis are uninformative, as they simply separate in vivo and in vitro samples 

(Domcke et al., 2013). Supervised gene lists can be used to identify suitable tumor models 

from cancer cell lines (Dancik et al., 2011; Gillet et al., 2011; Uva et al., 2010), or 

similarities between cancer cell lines and their tumors of origin can be scored with a tissue 

similarity index (TSI). This method uses expression data, without identifying the features 

underlying the similarity (Sandberg and Ernberg, 2005).

We designed a computational framework for the unsupervised extraction of core (= 

signature) molecular features common to tumors and cell lines. Characterization of this core 

should provide information about phenotypic in vitro and clinical in vivo characteristics, 

facilitating lineage-specific approaches. This approach is unique in its use of similarities 

rather than differences and its retention of weakly expressed genes. Similarity core analysis 

(SCA) uses a pan-cancer comparative approach to detect tumor cell lineage-specific genes 

also expressed in vitro, for a given tumor type, corresponding to subtle, biologically 

meaningful changes in a given lineage. It correctly identified a melanoma-specific molecular 

signature including genes for migration and invasion proteins, such as TRIM63 and CAPN3, 

and it underlies melanoma survival.

A similar analysis of microRNA (miRNA) highlighted a regulatory network connecting 

lineage-specific miRNAs (miR-211, 221, and 10a), transcription factors (e.g., MITF, 

TFAP2A, SOX10, and DLX2), and target genes potentially involved in phenotype switching. 

These specific, biologically relevant features demonstrate the utility of SCA for identifying 

lineage-specific expression cores relevant for tumor biology. SCA is suitable for use with all 

tumor cell types. Here we applied it to mRNA and miRNA data for melanoma tumors and 

cell lines.

RESULTS

SCA Identifies a Melanoma-Specific Expression Signature

We applied unsupervised hierarchical clustering to gene expression profiles from tumors and 

cell lines (Table S1). Melanoma tumors and derived cell lines clustered separately, as is the 

case for other cancer types (Gillet et al., 2011), whether we used global mRNA levels 

(17,322 unique genes) (Figure S1A), the 5,000 genes with the most variable expression 

(Figure S1B), or 244 multidrug resistance (MDR) genes (Figure S1C).

We then developed a computational framework, SCA, to extract cancer type-specific gene 

expression patterns by comparing the proximity of melanoma cell lines to melanomas and 

other tumor types. Using expression profiles for 240 tumor samples from eight cancer types 

and 63 melanoma cell lines (Table S1), we generated 1 × 106 subsets of expression levels for 

20 randomly selected genes (randomly selected contexts [RSCs]).
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For each RSC, we used principal component analysis (PCA) to capture the characteristic 

gene expression pattern for each tumor type and to reduce dimensionality, generating a 

different PCA space for each RSC. We decreased the number of dimensions to the first eight 

components for each space. We converted the PCA space into a correlation space by 

projecting the 240 tumors, correlating the expression profile of each tumor with that of each 

of the eight components. We then reduced the data again by computing the Euclidean 

centroid for each tumor type from the coordinates of its 30 tumors. The candidate cell line 

then was projected similarly into the correlation space, and we calculated the Euclidean 

distances between the cell line and the centroid for each tumor type (Figure S1D).

We evaluated the representation of melanoma specificity by selecting spaces for which the 

cell line position in the eight-dimensional correlation space was twice as close to the 

melanoma centroid as to any other centroid. The contribution of genes contribution to 

melanoma specificity was evaluated by calculating their frequency of occurrence in the 

RSCs corresponding to the selected spaces, with respect to all the RSCs generated. Fisher’s 

exact test was used to evaluate the significance of enrichment. Finally, genes were ordered 

by decreasing contribution to melanoma specificity (increasing p value). An SD median 

(SDM) score was generated to take inter-cell line variability into account and to identify the 

top 100 genes (Figure 1A).

The top 100 genes (Table S1) of the mRNA signature defined by SCA (Figure S1E; SCA-

MEL-mRNA signature or SCA-MEL-mRNA-100) showed expression to be more similar in 

the 30 melanomas and 63 melanoma cell lines than between melanoma cell lines and other 

tumor types. The numbers of contributing samples and tumor types were not exhaustive, but 

SCA can manage larger amounts of data if required.

We used literature vector analysis (LitVAn) to search for terms overrepresented in our 

signature from publications relating to the SCA-melanoma-mRNA signature (Akavia et al., 

2010). Significant enrichment was observed for five terms as follows: melanocyt, melanoma, 

catenin, pigment, and tyrosinas (Figure 1B). These terms were linked to 36 of the 100 SCA 

genes, consistent with SCA yielding a cancer type-specific expression signature (Table S1).

The SCA signature was specific to melanoma, separating the 210 tumor samples (30 

samples × 7 different cancer types) from the 30 melanoma samples and 63 melanoma cell 

lines in unsupervised analysis (Figure 1C). Of the SCA-melanoma-mRNA-100 signature, 45 

genes were underexpressed (45DN) in melanomas, the other 55 being overexpressed (55UP) 

(Figure 1C; Table S1). Melanoma cell lines and melanomas clustered together, in two clear 

subgroups (Figure 1D), in analyses based on the SCA-melanoma-mRNA signature. This 

suggests that SCA identified a melanoma-specific signature potentially useful for 

comparisons of cell lines and tumors. The 55 overexpressed SCA genes were significantly 

enriched in terms associated with melanoma biology, such as melanocyt, melanoma, 

pigment, tyrosinas, waardenburg, SOX10, neural, and MITF (Table S1), whereas no such 

enrichment was observed for the other 45 genes (Figure 1E). We therefore focused on the 

55UP SCA-melanoma-mRNA signature, which seemed to capture melanoma specificity. 

The overexpression of these genes in melanoma samples also identifies them as suitable 

targets for loss-of-function approaches.
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Thus, SCA can extract a tumor cell lineage-specific signature from expression data for 

multiple cancers. Melanoma cell lines with this signature are relevant models of their in vivo 

counterparts, as illustrated below.

The SCA-Melanoma-mRNA-55UP Signature Is Correlated with Phenotypic Characteristics 
In Vitro

We investigated the correlation between SCA-melanoma-mRNA-55UP signature expression 

and in vitro behavior. We obtained expression profiles for 23 independent melanoma cell 

lines not used in the SCA analysis, in house, with a microarray platform different from that 

used to generate the previous tumor dataset. Two characteristic groups (groups 1 and 2) were 

obtained for clustering with the SCA-MEL-mRNA-55UP signature (Figure 2A). Two well-

separated groups (groups 1b and 2b) also were obtained (Figure S2) when clustering with 

the SCA-MEL-mRNA-100 signature. In this second analysis, SK29, Mull, and Gerlach 

melanoma cell lines shifted from group 1 to group 2, suggesting that these cell lines were 

less representative of the two groups. This is consistent with the previous finding that 14% 

of 536 profiled melanoma cell lines were intermediate between proliferative and invasive 

phenotypes (Widmer et al., 2012).

We analyzed the association between SCA-MEL-mRNA-55UP and in vitro behavior, 

assessing migratory, invasive, tumorigenic, and proliferative potentials. Four representative 

melanoma cell lines were chosen from each subgroup for further analysis (Figure 2B). The 

cell lines of group 1 (G1, T1, 501mel, MNT-1, and SKMel3) generally expressed 

melanocyte differentiation-associated genes, such as SOX10, MITF, TFAP2A, TYR, 

TYRP1, PAX3, RAB38, DCT, SILV, MLANA, and EDNRB, more strongly than those of 

group 2 (WM1366, WM793, WM852, Lu1205, and A375M). Group 2 cell lines were more 

aggressive, with a greater wound-closure capacity, a larger capacity to invade Matrigel, and a 

higher tumorigenic capacity after subcutaneous injection into nude mice. However, they 

proliferated less than group 1 cell lines (Figure 2C). There are, thus, two groups of 

melanoma cell lines differing in SCA-MEL-mRNA-55UP signature expression and 

phenotypic characteristics.

Transcriptional Control of the SCA-MEL-mRNA-55UP Signature through MITF and New 
Targets Involved in Melanoma Cell Migration and Invasion

The 55UP SCA signature was enriched in MITF target genes (Figure 3A). We investigated 

the biological roles of CAPN3 and TRIM63, two SCA-MEL-mRNA-55UP signature genes 

with unknown roles in melanoma biology. Consistent with SCA-based predictions, CAPN3 
and TRIM63 were overexpressed in group 1 melanoma cell lines (Figures 3B and 3C). Small 

interfering RNA (siRNA)-mediated MITF knockdown in 501mel melanoma cells decreased 

CAPN3 and TRIM63 levels, consistent with direct regulation by MITF via the predicted 

MITF-binding sites (Strub et al., 2011; Figure 3D). TRIM63 repression by siRNA in 501mel 

cells increased Matrigel invasion capacity (Figure 3E), whereas CAPN3 repression enhanced 

wound closure (Figure 3F), consistent with the greater migration capacity of B16 murine 

melanoma cells after treatment with calpastatin, a pan-calpain inhibitor (Raimbourg et al., 

2013).
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The SCA-MEL-mRNA-28SDE Melanoma Signature

We carried out differential gene expression analysis (fold change > 2, adjusted p < 0.05) 

with the SCA-MEL-mRNA-55UP signature in order to identify genes significantly 

differentially expressed (SDE) between more and less aggressive melanoma cell lines. We 

identified 28 SDE genes. Clustering of the 23 melanoma cell lines with the SCA-MEL-

mRNA-28SDE signature yielded two characteristic groups (groups 1 and 2) identical to 

those for SCA-MEL-mRNA-100 (Figure S3A). Of the 28 SDE genes, 26 were generally 

overexpressed in less aggressive (group 1) melanoma cell lines. Only RAGE and the non-

coding RNA (uncharacterized LOC100130938) were significantly more strongly expressed 

in more aggressive (group 2) melanoma cell lines. RAGE overexpression in WM115 

primary melanoma cells confers a metastatic phenotype (Meghnani et al., 2014).

SCA Identifies a Melanoma-Specific miRNA Expression Signature

Unsupervised clustering of global (422) miRNA levels (Figure S4A) or for the 100 most 

variably expressed miRNAs (Figure S4B) clearly separated melanoma cell lines and 

metastases. We applied SCA to the miRNA profiles of 157 tumor samples (21 samples × 7 

cancer types), with 21 melanoma samples and 51 melanoma cell lines (Table S1). We 

selected the miRNAs making the largest contribution to melanoma specificity, by calculating 

miRNA enrichment and identifying a core of 51 miRNAs, the SCA-MEL-miR-51 signature 

(Figure S4C; Table S1). Melanoma samples and cell lines formed a distinct branch in the 

dendrogram (Figure 4A) and clustered together (Figure 4B) with this signature. Of the SCA-

MEL-miR-51 genes, 22 were underexpressed (22DN) and 29 were overexpressed (29UP) in 

melanoma samples (Figure 4A). LitVAn allows only mRNA gene symbols for input. We 

therefore predicted mRNA targets for the 22DN and 29UP miRNA signatures by sequence-

based approaches only. The predicted miRNA targets had to overlap the SCA-MEL-mRNA 

signature to qualify for LitVAn analysis (Table S1). The predicted target mRNAs of SCA-

MEL-miR-29UP genes were enriched in the melanocyt, waardenburg, melanoma, SOX10, 

neural, crest, and MITF terms. The predicted mRNA targets of SCA-MEL-miR-22DN were 

enriched in all these terms except MITF and SOX10 (Figure 4C).

The clustering of 21 independent melanoma cell lines with SCA-MEL-miR-51 yielded two 

distinct groups (groups 1 and 2) identical to those for SCA-MEL-mRNA-100 and SCA-

MEL-mRNA-28SDE (Figure 4D; Figure S2). Thus, SCA extracts meaningful melanoma-

associated miRNAs, with expression patterns correlated with the in vitro behavior of 

melanoma cell lines. We performed a conventional differential miRNA expression analysis 

between group 1 and group 2 cell lines. Only three miRNAs from SCA-MEL-miR-51 were 

SDE (adjusted p value < 0.05). The more aggressive melanoma cell lines (group 2) had 

higher levels of miR-221-3p and miR-10a-5p. miR-221 has been identified as a potential 

biomarker of melanoma, as high serum miR-221 levels are correlated with tumor thickness 

(Kanemaru et al., 2011) and higher recurrence risk (Friedman et al., 2012). miR-10a 

expression has been linked to gene amplification in melanoma (Zhang et al., 2006). Group 1 

cell lines overexpressed miR-211-5p (Figure 4E), a melanocyte lineage-specific small non-

coding RNA intronic to TRPM1, a target gene of MITF. By upregulating TRPM1 
transcription, MITF, which is critical for melanocyte differentiation and survival and for 

melanoma progression, indirectly drives miR-211 expression (Levy et al., 2010).
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The Melanoma-Specific Regulatory Network Is Associated with Melanoma Survival

The SCA-MEL-mRNA-55UP signature includes eight transcription factor genes as follows: 

ALX1, DLX2, GAS7, LEF1, MITF, PAX3, SOX10, and TFAP2A. Ingenuity Pathway 

Analysis, based on published findings, and available chromatin immunoprecipitation 

sequencing (ChIP-seq) datasets for these transcription factors and their surrogates (Table S1) 

suggested probable mutual control for these factors (Figure 5A). Moreover, 90% of the 

SCA-MEL-mRNA-55UP signature was connected to at least one of these transcription 

factors (Figure 5B); the myelin basic protein gene (MBP) was potentially regulated by five 

of the eight transcription factors (MITF, SOX10, LEF1, PAX3, and TFAP2A). Significant 

enrichment was observed for TFAP2A, as 40 of the SCA-MEL-mRNA-55UP genes had 

TFAP2A ChIP-seq peaks in their promoters (p < 3.77 × 10−14). MITF, PAX3, SOX10, 

LEF1, and TFAP2A have been implicated in melanocyte/melanoma biology (Harris et al., 

2010; Koludrovic and Davidson, 2013; Larue and Delmas, 2006; Medic and Ziman, 2009; 

Melnikova and Bar-Eli, 2008). The roles of ALX1, DLX2, and GAS7 in the melanocyte 

lineage are unclear, although they have been linked to neural tube development (Achim et 

al., 2014; Chao et al., 2005; Juriloff and Harris, 2000). Thus, the SCA-MEL-mRNA-55UP 

signature identified transcriptional programs involving melanoma core genes, driven by 

melanocyte, neural crest, and neuronal transcription factors.

We identified three miRNAs differentially expressed between melanomas and contributing 

to a network regulating melanoma phenotype (Figure 5C). Based on the inversely correlated 

expression levels for these three specific miRNAs, and sequence-based methods (targetscan), 

we identified 12 potential mRNA targets (including MITF, SOX10, TFAP2A, EDNRB, and 

MBP). miR-221 overexpression was associated with enhanced invasive, migratory, and 

tumorigenic behavior of melanoma cell lines in vitro. Moreover, miR-221-3p levels were 

inversely correlated with expression levels for three potential target genes encoding key 

transcription factors (MITF, SOX10, and TFAP2A). These findings are consistent with 

reports that inhibiting miR-221 expression with antagomiRs decreases invasion and 

migration by melanoma cells (Felicetti et al., 2008). The expression of miR-211 and 

miR-221-3p was correlated with a weak MITF transcriptional signature, typical of highly 

invasive melanoma cells (Hoek et al., 2008; Figures S5A and S5B). miR-211 restores 

adhesion through NUAK1 repression, suggesting that the MITF-miR-211 axis inhibits 

invasion by blocking adhesion (Bell et al., 2014). miR-221-3p targets MITF, thereby 

favoring invasion over proliferation. Epithelial-to-mesenchymal transition (EMT) inducers 

such as FOSL1 (FRA-1) and TGFB1 or TWIST1 (Figure S5C) have been shown to control 

the expression of miR-10a-5p and miR-221-3p, respectively (Li et al., 2013; Stinson et al., 

2011).

Finally, we assessed the clinical relevance of melanoma SCA signatures by survival analyses 

of independent external data-sets. We downloaded RNA sequencing (RNA-seq) data for 292 

melanoma metastases (the Cancer Genome Atlas [TCGA] portal, skin cutaneous melanoma 

cohort) and clustered them with the SCA-MEL-mRNA-28SDE signature (Figure 5D). 

Cluster 2 patients (n = 68), generally displaying underexpression of the 28 genes, survived 

significantly longer overall (p = 0.0191). Studies of two other published datasets (Bogunovic 

et al., 2009; Jönsson et al., 2010) confirmed that patients overexpressing the 28 SDE core 
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genes had significantly lower overall (p = 0.0362) and distant metastasis-free (p = 0.0205) 

survival, respectively (Figures S5D–S5G). By contrast, the melanoma phenotype-specific 

expression (MPSE) gene (n = 97) signature, derived from melanoma cell lines only, was not 

informative for survival analysis (Figures S5H and S5I; Widmer et al., 2012). However, a 

46-gene signature, consisting mostly of immune-related genes and shown to be informative 

for patient survival (Mann et al., 2013), also was discriminant for patients’ survival in the 

TCGA dataset (Figures S5J and S5K). Thus, overexpression of the 28 SDE signature, 

associated with a less aggressive phenotype in vitro, was associated with a worse patient 

outcome in vivo.

We performed an equivalent survival analysis with the three SDE miRNAs (211-5p, 10a-5p, 

and 221-3p). Patients from the TCGA cohort with high levels of miR-211-5p and low levels 

of miR-10a-5p and miR-221-3p had significantly lower overall survival (p = 0.0031) (Figure 

5E). High miR-211-5p and low miR-10a-5p and miR-221-3p levels were associated with a 

less aggressive phenotype in vitro. The previously published miRNA-survival signature, 

consisting of another 18 miRNAs (Segura et al., 2010), yielded no significant results for 

analysis of the TCGA melanoma cohort (p = 0.0606) (Figures S5L and S5M).

In summary, SCA of melanoma samples revealed molecular features associated with the 

cellular and clinical features of melanoma samples, suggesting a melanoma model (Figure 

5F).

DISCUSSION

Appropriate in vitro, in cellulo, and in vivo models are required for preclinical pipelines for 

cancer treatment. For ethical, economic, and biological complexity reasons, cancer cell lines 

are a good compromise for deciphering molecular and cellular mechanisms before testing 

therapies. Relevant systems, reproducing in vivo scenarios accurately, are thus required for 

molecular and cellular studies. Cell lines have long been used for therapeutic drug screening. 

Murine B16 melanoma cells have been widely used, but with little success. It has become 

clear that this specific cell line is useful for addressing particular biological questions, but 

not for the development of new treatments for humans, probably due to differences between 

this in vitro model and in vivo tumors. Large-scale cell-line panels are increasingly used for 

drug screening and omics data generation (Kim et al., 2014). Analyses of the correlation of 

molecular features with sensitivity to small-molecule drugs in many cancer cell lines have 

highlighted the need to take lineage-specific features into account (Barretina et al., 2012; 

Basu et al., 2013; Cheung et al., 2011). Our SCA approach could be useful for this. 

Similarly, tumor samples and cancer cell lines for specific tumors do not cluster in 

transcriptomics analyses, suggesting clear differences in gene expression that may render 

cell lines inappropriate for use in treatment development.

SCA identified cancer lineage-specific mRNA/miRNA expression patterns. This 

computational approach extracts signatures characteristic of both tissue samples and cell 

lines. The combination of lineage specificity and the relevance of the signature to both in 

vivo and in vitro conditions make it possible to identify molecular relationships missed by 

conventional strategies, such as differential gene expression analysis and batch removal 

Rambow et al. Page 8

Cell Rep. Author manuscript; available in PMC 2018 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approaches comparing cell lines with tumors (Figure S6). SCA was developed in assuming 

that cancer cell lines of a specific lineage retain key transcriptional programs reminiscent of 

the original tumor and in the unsupervised extraction of these programs.

Unlike other methods, SCA identified a molecular mRNA and miRNA signature in 

melanoma tumors that was common to melanoma cell lines, suggesting that these cell lines 

were relevant to the corresponding tumor samples. This method can be applied to other 

tumor types. For melanoma samples, this approach also did the following: (1) identified new 

mRNA/miRNAs specific to the melanocyte lineage; (2) showed that most of the associated 

proteins were molecularly linked via eight transcription factors also included in the 

signature; and (3) showed that, according to SCA-MEL-mRNA-55UP and SCA-MEL-miR 

signatures, aggressive cell lines corresponded to non-aggressive melanomas and vice versa.

This mRNA/miRNA signature is, by design, specific to the melanocyte lineage. 

Pharmacological approaches are based on toxicity and specificity. By using the specificity of 

this signature to target these mRNA/proteins and/or miRNAs, it should be possible to alter 

their molecular and cellular functions. For instance, CAPN3 (protease) and TRIM63 (E3 

ubiquitin ligase) are produced abundantly by aggressive melanomas and regulate in vitro 

migration and invasion, respectively. The enzymatic activities of these proteins may induce 

the release of toxic products from prodrugs. This general strategy already has been 

proposed, with tyrosinase as the enzyme and MITF (the master transcription factor of the 

melanocyte lineage) as the target (Sáez-Ayala et al., 2013). Such cell lineage-targeted 

therapy could be coupled with molecularly targeted therapy and/or immunotherapy, yielding 

additional benefits.

The mRNA components of the SCA-MEL-mRNA signature include mRNAs for key neural 

crest and melanocyte transcription factors and their targets. MITF and TYR scored highest 

in the SCA-MEL-mRNA signature analysis, and our melanoma-specific signature was 

highly enriched in MITF target genes (30 of 55), including melanocyte differentiation genes, 

such as MLANA, TYRP1, DCT, and SILV, and genes involved in melanosome biogenesis, 

such as MFN2 and RAB38 (Daniele et al., 2014; Loftus et al., 2002). It has been suggested 

that RAB7 controls melanoma progression through lineage-specific wiring of the 

endolysosomal pathway (Alonso-Curbelo et al., 2014). Lysosomes and melanosomes have 

common precursors (Raposo and Marks, 2007). The Cancer Cell Line Encyclopedia (CCLE) 

cohort was used to explore expression patterns specific to melanoma cell lines by 

comparison with cell lines for other cancer types. This validates our approach, also using 

tumor samples and cell lines to identify lineage-specific dependences.

SCA-MEL-mRNA highlights a regulatory network including eight transcription factors 

(MITF, TFAP2A, ALX1, DLX2, PAX3, SOX10, LEF1, and GAS7). TFAP2A seems to be a 

key regulator of this lineage with significant target enrichment (p < 3.77 × 10−4). We 

identified a new potential regulator of TFAP2A encoded by a gene upstream from the 

TFAP2A promoter: open reading frame 218 on chromosome 6 (C6ORF218) or long 

intergenic non-protein coding RNA 518 (LINC00518). Given its location and strong 

coexpression with TFAP2A, LINC00518 may act in cis, regulating the expression of its 

neighbor (Luo et al., 2013). TFAP2A loss contributes to progression from the radial growth 
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phase to the vertical growth phase in melanoma (Mobley et al., 2012). Our melanoma cell 

lines with low levels of TFAP2A and MITF expression had a more aggressive phenotype in 

vitro. TFAP2A controls neural crest differentiation and development and is strongly 

expressed in neural crest cells migrating from the cranial folds during neural tube closure. 

Homozygous TFAP2A-knockout mice have neural tube defects and craniofacial and body 

wall abnormalities (Zhang et al., 1996). ALX1 and DLX2 have similar roles in cranial neural 

crest development (Merlo et al., 2000; Uz et al., 2010). The other transcription factors from 

our signature, SOX10, PAX3, LEF1 and GAS7, regulate neural crest and neuronal 

development (Betancur et al., 2010; Hung et al., 2013; Sauka-Spengler and Bronner-Fraser, 

2008), highlighting the lineage specificity of melanoma cells. The transcription factors 

identified constitute the core of our proposed regulatory network. About 90% of the 

remaining melanoma-specific signature genes (47 of 55) may be regulated by at least one of 

these transcription factors.

Variants of the SCA-MEL-mRNA/miR signature in melanoma cell lines predict behavior in 

vitro and melanoma patient survival. We did not expect tumors to form distinct subclasses 

associated with tumor aggressiveness. Further in vitro and in vivo studies are now required 

to gain insight into this serendipitously discovered relationship. Aggressive tumors had 

signatures corresponding to non-aggressive cell lines and vice versa. This apparent 

discrepancy probably results from high and modifiable MITF levels. This transcription 

factor acts as a rheostat, determining subpopulation identity (Carreira et al., 2006). Low 

MITF levels in melanomas result in invasive cells with stem-like properties, arrested in G1 

phase and efficiently inducing tumors (Cheli et al., 2011). By contrast, high MITF levels 

activate differentiation genes driving melanin production, such as tyrosinase (TYR) and 

melanosome biogenesis enzyme genes (Cheli et al., 2010). Cell lines consist of largely 

homogeneous dividing cells. We considered cell lines to be aggressive if they invaded, 

migrated, and formed tumors in nude mice, even if they divided slowly. Conversely, even 

rapidly dividing non-aggressive cell lines did not invade, migrate, or form tumors in mice.

We evaluated the prediction by the SCA signature of MEKi and BRAFi drug sensitivity in 

melanoma cell lines. Strong SCA-MEL-mRNA-28SDE signature expression was associated 

with sensitivity to MEK and BRAF inhibition (Figures S3B–S3E). Also, we evaluated the 

SCA-MEL-mRNA-28SDE signature using publicly available primary melanoma samples (n 

= 297, GEO: GSE57715) and melanoma cell lines (n = 63, GEO: GSE7127) (Figure 6). 

Interestingly, the SCA-MEL-mRNA-28SDE separated two groups of primary melanomas 

mixed with melanoma cell lines. After classifying the melanoma cell lines as either 

proliferative or invasive using Heuristic Online Phenotype Prediction (HOPP, Widmer et al., 

2012), we noticed that strong SCA-MEL-mRNA-28SDE expression identified proliferative 

melanoma cell lines that coclustered with primary melanomas of deeper Breslow depth 

(Figure 6). This provides further support for our SCA approach, because it is informative for 

both metastatic and primary melanoma.

Tumors are heterogeneous with some cells proliferating and others invading. Invading cells 

that cannot proliferate do not induce death rapidly, but the converse may not be true. We 

analyzed survival in melanoma metastases, proliferative cells that were previously invasive; 

however, melanoma cells readily switch between these states. There is increasing evidence 
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for this phenotype switching phenomenon (Hoek and Goding, 2010). We considered the 

average expression pro-files of melanomas to be the predominant phenotypic state of all 

melanoma cells within the lesion. A previously defined invasive signature (Widmer et al., 

2012) did not overlap with our SCA signature because the invasive program is common to 

different cancers and, thus, not specific to melanoma (Figure S3F).

SCA may become a standard tool for extracting lineage-specific molecular dependencies for 

any tumor type. Increasing computational power will make it possible to analyze larger 

cohorts. SCA can highlight cancer regulatory networks operating in vitro and is particularly 

valuable for drug development.

EXPERIMENTAL PROCEDURES

SCA

Data Transformation and Context Generation—Expression data for eight tumor 

types (Table S1) were retrieved from GEO. We aggregated 30 randomly selected samples 

from each set into a single dataset, which was then quantile-normalized for interdisease 

scaling. This multi-tumor dataset covered 17,322 genes. A similar miRNA analysis was 

performed with 21 samples per tumor type, covering 422 miRNAs. One million subsets of 

20 randomly selected features (mRNA/miRNA) referred to as RSCs were generated.

PCA Space Computation and Tumor Projection—For each RSC, PCA was 

performed on the tumor dataset in the same manner as singular value decomposition (SVD) 

was used by Sandberg and Ernberg (2005), but limited here to the RSC features, whereas 

Sandberg and Ernberg used a single signature of 303 genes. We limited the dimensions of 

the resulting PCA space to its first eight, assuming the different types of cancer to be the 

major source of variance in the tumoral dataset. Tumors used for PCA space construction 

were then projected into the space by Pearson correlation of their expression to yield a new 

eight-dimensional correlation space. Euclidean centroids were calculated for each tumor 

type in this correlation space. Each cell line was then projected similarly into the correlation 

spaces corresponding to each RSC.

Context Selection Based on Disease Similarity and Specificity—We evaluated the 

ability of each RSC to capture the features making a cell line uniquely similar to the 

corresponding disease, with a graphical criterion: its coordinate distance to the melanoma 

centroid in the correlation space. RSCs were considered to be melanoma-specific if the cell 

line coordinate in the space was at least twice as close to the melanoma centroid as to any 

other centroid (Figure S1D). This selection procedure was performed independently for each 

melanoma cell line.

Feature Enrichment Evaluation and Core Generation—For each cell line, feature 

enrichment in the selected RSCs versus their occurrence in the one million generated RSCs 

was evaluated with Fisher’s exact test. Features were then ordered by increasing p values, 

after false discovery rate correction by the Benjamini-Hochberg method. For core 

generation, we pooled the feature-ranking results for all independently analyzed cell lines 

and assigned a score (SDM score) to each feature, by calculating the SD of its rank across 
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cell lines divided by its median rank. After ordering features in descending order of scores, 

cores were built by taking the 100 best features for mRNA and all features with a score 

above 1.0 for miRNA. The SCA code is provided as an R script (https://github.com/

aoumess/SCA).

Variability of Gene Expression

See the Supplemental Experimental Procedures.

Sample Classification

See the Supplemental Experimental Procedures.

Data Retrieval, Preprocessing, and Normalization of Public Datasets

See the Supplemental Experimental Procedures.

Literature Vector Analysis

See the Supplemental Experimental Procedures.

Survival Analysis

See the Supplemental Experimental Procedures.

Molecular and Cellular Biology Methods

See the Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Similarity core analysis (SCA) is a bioinformatics tool for analyzing 

expression data

• SCA generates specific transcriptome-miRnome signatures for any tumor type

• SCA clusters aggressive and non-aggressive tumors and cell lines

• Molecular signatures reveal a lineage-specific regulatory network for 

melanoma
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Figure 1. SCA Identifies a Melanoma-Specific Gene Expression Core
(A) SCA flowchart for mRNA. Gene expression data for eight different tumor types (Ma, 

melanoma; Co, colon; Ov, ovary; Br, breast; Lu, lung; Li, liver; Ew, Ewing sarcoma; Ne, 

neuroblastoma) were acquired and preprocessed to generate randomly selected contexts 

(RSCs) or packs of 20 arbitrarily chosen genes. SCA extracts cancer type-specific gene 

expression patterns for in vitro and in vivo comparisons, by measuring the proximity of 

cancer cell lines (melanoma) to tumors of the same type (melanoma) and comparing this 

proximity with that to other tumor types in PCA-based correlation spaces corresponding to 

one million RSCs. These spaces were screened with a criterion based on the minimal 

distance between melanoma cell lines and the melanoma centroid. The genes with the largest 

contribution to melanoma specificity were identified by calculating gene enrichment in the 

selected spaces and identifying a core of 100 genes (SCA signature).

(B) The SCA-melanoma signature is enriched in melanoma-related terms. Literature vector 

analysis (LitVAn) showed that 36 of the 100 core genes (gray) were linked to five 

significantly enriched terms (red) (Table S1). Note that the terms melanocyt and tyrosinas 

are deliberately truncated to act as wild cards.

(C) Unsupervised clustering of 240 tumor samples from eight different cancer types and 63 

melanoma cell lines based on the SCA signature clearly discriminates between melanoma 

samples and other samples. The SCA-melanoma-mRNA signature consists of 55 

overexpressed (55UP) and 45 underexpressed genes (45DN).
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(D) The melanoma branch of the dendrogram shows the coclustering of melanoma cell lines 

(black) and melanomas (blue).

(E) Melanoma specificity is determined by 55UP genes. LitVAn was performed on the 

45DN and 55UP core genes separately. The 55 UP core displayed enrichment for eight terms 

(Table S1).
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Figure 2. In Vitro Phenotypic Characteristics of Melanoma Cell Lines Are Correlated with SCA-
Melanoma-mRNA Signature
(A) Of the independent melanoma cell lines, 23 not used for SCA were profiled and used as 

the validation set. These melanoma cell lines were clustered using the 55UP gene core. Two 

major clusters of cell lines were obtained. Confidence in clusters is indicated with bootstrap 

values (approximate unbiased p value, AU). The major classes are independent (p = 0.4639) 

of mutations of BRAFV600E (B), NRASQ61K,L,R (N), or wild-type status for BRAF/NRAS 

(W). Five cell lines of cluster 1 (G1, T1, 501mel, MNT-1, and SKMel3) and five cell lines of 

cluster 2 (WM1366, WM793, WM852, Lu1205, and A375M) were chosen for further 

phenotypic analyses.

(B) 55UP expression heatmap shows the ten chosen melanoma cell lines (2.3 < log2 

expression intensity < 14.8).

(C) Phenotypic characterization of cluster 1 and 2 melanoma cell lines in vitro. Wound 

scratch analysis was performed as a surrogate for migratory capacity, Matrigel invasion 

assay for invasive capacity, subcutaneous tumor growth for tumorigenic potential, and 

doubling time for proliferation rate. In general, cluster 2 cell lines had greater migratory and 

invasive capacities and were more tumorigenic, but less proliferative than cluster 1 cell lines 

(Mann-Whitney test, *p < 0.05).
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Figure 3. SCA-Melanoma-mRNA Genes TRIM63 and CAPN3 Are Potential MITF Targets 
Involved in Melanoma Cell Migration and Invasion
(A) The 55UP SCA signature was enriched in MITF target genes (30 such genes included; p 

< 2.7E–23, hypergeometric distribution test [Hoek et al., 2006]). Gene symbols are as 

follows: red, transcription factor; blue, other; and black, gene of further interest.

(B and C) TRIM63 and CAPN3 expression levels are higher in cluster 1 than in cluster 2 cell 

lines, according to (B) microarray and (C) qRT-PCR analysis (representative experiment 

shown, the error bar represents the SDV of technical triplicates).

(D) MITF downregulation by an siRNA approach decreases the levels of TRIM63 and 

CAPN3 mRNA.

(E) The repression of TRIM63 by an siRNA approach increases the Matrigel invasion 

capacity of 501mel melanoma cells after 48 hr. Unpaired t test with Welch correction, ***p 

< 10–−4.

(F) The repression of CAPN3 in 501mel cells, by an siRNA approach, increases wound 

closure. Unpaired t test with Welch correction, ***p < 10−3.
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Figure 4. SCA Identifies a Melanoma-Specific miRNA Expression Core
(A) Unsupervised clustering of 168 tumor samples from eight different cancer types (Ma, 

melanoma; Co, colon; Ov, ovary; Br, breast; Lu, lung; Li, liver; Ew, Ewing sarcoma; Gl, 

glioblastoma) and 51 melanoma cell lines based on the SCA-melanoma-miRNA signature. 

Samples are color coded according to their origin. Melanoma samples (blue) cluster together 

and are well discriminated on the basis of expression of the 51 core miRNAs. The 51 core 

miRNAs can be separated into 22 miRNAs generally less strongly expressed in melanoma 

than in other cancers (22DN) and 29 miRNAs generally more strongly expressed in 

melanoma than in other cancer samples (29UP).

(B) The melanoma branch of the dendrogram shows the coclustering of melanoma cell lines 

(black) and melanomas (blue). Note the clustering of one ovary tumor (red) with the 

melanoma samples. The melanoma cell lines and tumors separate into two major groups, 

suggesting that the cell lines of group 1 are more representative of group 1 melanomas than 

group 2 melanomas, and vice versa.

(C) LitVAn was performed for the sequence-based predicted targets of the 22DN and 29UP 

miRNAs separately. The 29UP miRNAs were predicted to target 39 of the 100 core mRNAs 

and these miRNAs were enriched in the terms melanocyt, waardenburg, melanoma, SOX10, 

neural, crest, and MITF (Table S1). The 22DN miRNAs were predicted to target 30 of the 

100 core mRNAs; these 30 mRNAs were analyzed by LitVAn and were found to be enriched 

in the terms melanocyt, melanoma, waardenburg, crest, and neural (Table S1).

(D) Of the independent melanoma cell lines not used for SCA, 21 were analyzed with the 

29UP miRNA core. Two major clusters of cell lines were obtained. The major classes are 

independent (p = 0.43) of mutations of BRAFV600E (B), NRASQ61K,L,R (N), or wild-type 

status for BRAF/NRAS (W).
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(E) Differential miRNA analysis was performed between group 1 and group 2 melanoma 

cell lines with the 29UP miRNAs. Three miRNAs (221-3p, 10a-5p, and 211-5p) were found 

to be differentially expressed; miR-221-3p and miR-10a-5p were more strongly expressed in 

group 1 than in group 2 melanoma cell lines, whereas miR-211-5p was less strongly 

expressed in group 1 than in group 2 melanoma cell lines.
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Figure 5. The Melanoma-Characteristic Gene Network Is Associated with Patient Survival
Interactions between genes/proteins of the melanoma-specific signature (55UP) were 

inferred from Ingenuity Pathway Analysis (IPA, literature-based) and publicly available 

ChIP-seq data (Table S1). The ALX1- and DLX2-related ChIP-seq data were not available at 

the time of publication.

(A) A core of eight transcription factors (TFs) characteristically overexpressed in melanoma 

and identified by SCA. Directed arrows of a specific color indicate that a specific TF 

regulates or potentially regulates other TFs. Potential regulation is evaluated according to the 

integration of ChIP-seq data, expression, and known interactions by IPA (see Table S1 and 

GEO: GSE67638). For instance, MITF (blue) regulates TFAP2A, SOX10, LEF1, PAX3, and 

probably also GAS7.

(B) Over 90% of the melanoma signature genes have been reported or predicted to be 

targeted by the core TFs. The color code corresponds to the eight TFs.

(C) Sequence-based prediction (mirDIP) and correlation of expression approaches used to 

integrate the melanoma-specific miRNA and mRNA signatures. Yellow triangles represent 

miR. Each potentially binds to sequences located in the 3′ region of the indicated mRNA, 

decreasing the levels of the corresponding mRNA.
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(D) Melanoma metastases (SKCM cohort, TCGA portal) were clustered on the basis of the 

expression of the 28 core genes (27 of 28 genes were exploitable, LOC100130938 was not 

recognized) generally overexpressed in melanoma and SDE between aggressive and non-

aggressive melanoma cell lines. The patients of the two principal clusters differed 

significantly in terms of overall survival (p = 0.0191, Mantel-Cox test).

(E) Melanoma metastases (TCGA portal) were clustered on the basis of the expression of the 

three core miRNAs generally overexpressed in melanoma and SDE between aggressive and 

non-aggressive melanoma cell lines. The patients of the two principal clusters differed 

significantly in terms of overall survival (p = 0.0031, Mantel-Cox test).

(F) Summary of the model linking molecular in vitro and in vivo features for melanoma 

based on SCA is shown.
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Figure 6. SCA Identifies Melanoma Cell Lines Being Representative of Primary Melanomas that 
Differ in Breslow Thickness
(A) Primary melanomas (n = 297, GEO: GSE57715) and melanoma cell lines (n = 63, GEO: 

GSE7127) were clustered using the SCA-MEL-mRNA-28SDE signature (20 of 28 genes 

were exploitable in this dataset). The dendrogram shows two distinct clusters containing 

each primary melanomas and melanoma cell lines.

(B) Primary melanomas of cluster 1 are generally of lower Breslow depth compared to 

cluster 2 (***p < 0.0001, Mann-Whitney test)

(C) Scoring of cluster 1 and cluster 2 melanoma cell lines using melanoma phenotype-

specific expression (MPSE) correlation plot. In this plot, Pearson correlation coefficients 

against the proliferative (x axis) and invasive (y axis) standard signatures are plotted 

(Widmer et al., 2012). Perfect correlation of a melanoma cell line’s expression signature 

with the standard invasive signature would result in a correlation coefficient (r) = 1 (y axis), 

and perfect correlation with the standard proliferative signature in r = 1 (x axis). According 

to the MPSE correlation plot, melanoma cell lines of cluster 1, which cocluster with primary 

melanomas of lower Breslow thickness, are most likely to exhibit an invasive phenotype.
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