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Abstract: Nontargeted analysis can be used for the rapid screening and confirmatory analysis of
veterinary drugs and their metabolites, which are important for the comprehensive safety evaluation
of animal-derived foods. Here, a novel nontargeted screening approach based on liquid chromatog-
raphy coupled with electrospray ionization–high-resolution mass spectrometry (LC/ESI–HR-MS)
was developed to determine erythromycin, clarithromycin, and their metabolites in chicken liver
microsomes. Erythromycin and clarithromycin were incubated in vitro in the presence of NADPH
for 60 min to generate metabolites in chicken liver microsomes. After the incubation, the supernatant
was extracted using ultrasonic shaking, orbital shaking, and centrifugation before analysis using
LC/ESI-HR-MS in positive ion mode on an Agilent Eclipse Plus C18 column (100 mm × 2.1 mm;
i.d. 3.5 µm) with 0.1 percent formic acid-water and acetonitrile as the mobile phases for gradient
elution at 0.4 mL/min. The results show that erythromycin can produce N-desmethyl-erythromycin
A in chicken liver microsomes, but clarithromycin cannot produce N-desmethyl-clarithromycin in
chicken liver microsomes. The N-desmethyl-erythromycin A and N-desmethyl-clarithromycin were
tentatively identified in chicken liver microsomes using the established quick analytic method, which
will provide a theoretical foundation for future research on pharmacokinetics and drug elimination
in poultry.

Keywords: nontargeted screening; LC/ESI-HR-MS; erythromycin; clarithromycin; metabolites;
chicken liver microsomes

1. Introduction

Erythromycin (ERY) and clarithromycin (CLA) are macrolide antibiotics (MACs) with
broad-spectrum antibacterial activity and have effects on both Gram-positive and Gram-
negative bacteria. The antibacterial mechanism of ERY and CLA involves irreversible
binding to the 50S subunit of the bacterial ribosome and selective inhibition of protein
synthesis by blocking transpeptidation and mRNA displacement, which is the same as
the antibacterial mechanism of chloramphenicol [1,2]. MACs are mainly used to treat
diseases caused by aerobic Gram-positive and Gram-negative cocci, anaerobic bacteria,
Legionella, Mycoplasma, and Chlamydia. Soluble erythromycin thiocyanate powder has
been used as a veterinary medicine to treat chickens artificially infected with chronic
respiratory diseases [3]. Although the toxicity of this type of antibiotic is low, unreasonable
or excessive use can lead to contamination of animal-derived food and an increase in
resistant strains that pose risks to humans. MACs and their metabolites will damage human
health once swallowed and accumulated to a sufficient concentration in the body [4–6].
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China, the United States, the European Union (EU), and the Joint FAO/WHO Expert
Committee on Food Additives (JECFA) have defined maximum residue limits of 40–200
µg/kg ERY in milk, eggs, and edible tissues for the safety of animal-derived food and
human health [7–10].

The monitoring of veterinary drug metabolites in animal-derived foods has not re-
ceived enough attention. However, studying such metabolite residues is extremely im-
portant for the safety of animal-derived foods. Phase I and phase II reactions are the two
stages of drug metabolism in the liver. The first oxidation and reduction reactions in phase
I are catalysed by monooxidases (mixed-function oxidases) in the liver. This group of
enzymes constitute a complex microsomal system with haemoglobin cytochrome P-450
(CYP) as the core enzyme [11]. Studies have confirmed that ERY and other MACs undergo
metabolic reactions under the action of cytochrome P-450 enzymes in liver microsomes in
mice and humans and that ERY can undergo demethylation under the action of human
and mouse liver microsomal CYP450 3A4 (CYP3A4) enzymes [11–13]. The CYP3A enzyme
converts ERY into N-desmethylerythromycin and formaldehyde; therefore, the activity
of CYP3A is proportional to the amount of formaldehyde formed. Nduka et al. [14,15]
used this principle to study the effects of Aframomum melegueta, Denniettia, and Millettia
aboensis extracts on CYP3A activity in intestinal and liver microsomes. The cytochrome
P450 enzymes in liver microsomes of poultry (turkey, duck, quail, and chicken) that are
orthologous to cytochrome P450 enzymes in human and mouse liver microsomes are
CYP1A1/2, CYP2A6, and CYP3A4 [16–19]. Zhang et al. [20] reported the liver toxicity
of macrolides with different structures in zebrafish and revealed their common targets
for exerting hepatotoxic effects; this work will contribute to a better understanding of
how macrolides should be used in clinical practice. Moreover, ERY and CLA have similar
chemical structures (Figure 1), and both contain -N-(CH3)2 branches. In the present work,
chicken liver microsomes containing CYP3A4 orthologues, the liver toxicity of MACs, and
medicinal chemical structural factors were considered and ERY and CLA in chicken liver
microsomes were incubated with N-demethylation metabolites.

The separation and detection characteristics of liquid chromatography tandem mass
spectrometry (LC-MS/MS) make it ideal for the investigation of veterinary medication
residues in complicated food matrices [21]. Many targeted analytical methods with high
selectivity have been developed based on LC-MS or LC-MS/MS to detect MACs in fish,
chicken, swine, bovine tissues, meat, eggs, and milk [6,22–26]. However, targeted methods
can detect known compounds but cannot be used to identify unknown compounds [27,28].
To solve this problem, nontargeted screening based on LC-high-resolution (HR)-MS meth-
ods needs to be established for comprehensive analysis of known and unknown com-
pounds [29,30]. HR-MS, as with quadrupole/time-of-flight (Q/TOF) or Q/orbital ion trap
instruments, has the advantages of a wide scanning range, fast speed, and precise molec-
ular weight determination, which enable retrospective data mining of a chromatogram
to search for additional compounds of possible interest, such as metabolites [31,32]. Be-
cause of the efficient separation and high mass resolution, nontargeted screening based on
LC-HR-MS methods will be useful for detecting veterinary drugs and their metabolites
in animal-derived foods [33]. Kaufmann et al. [34] established a method for determining
100 veterinary medicines in various meat matrices using ultra high-performance liquid
chromatography (UHPLC) coupled to TOF-MS. The UHPLC-TOF-MS method can detect
100 veterinary medicines simultaneously with good recovery and precision. Fu et al. [35]
reported an LC-HRMS method to quickly screen and determine compounds that potentially
pose health risks in meat samples and built an in-house risk substance (IHRS) database
by summarizing the structural characteristics of specific classes of compounds. The IHRS
database, which was established to quickly screen and detect unknown compounds and
metabolites in animal-derived foods, contains approximately 500 different additives and
drugs and was used to quickly screen unknown and suspicious chemicals in specific
structure classes. Jia et al. [36] developed a nontargeted screening based on a UHPLC-HR
(Orbitrap)-MS method to detect macrolides and metabolites in bass. HR-MS can accurately
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obtain the mass spectral ratio of a precursor ion and product ion and accurately determine
the composition of the product ion fragment. Due to the high resolution and high sensitiv-
ity of this HR-MS method, an LC-HR-MS method was used to detect ERY, CLA, and their
metabolites in chicken liver microsomes in this study.
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Figure 1. Chemical structures of erythromycin A, clarithromycin, N-desmethyl-erythromycin A, and N-desmethyl-
clarithromycin.

The purpose of this study was to verify whether ERY and CLA can produce N-
desmethyl-erythromycin A and N-desmethyl-clarithromycin in chicken liver microsomes.
Buspirone (BUS) can be metabolized by the CYP3A4 enzyme and thus was added as a
positive control in this experiment. An in vitro incubation test was carried out in chicken
liver microsomes, and a cofactor group and no cofactor (control) group were set up to
verify the N-desmethyl-erythromycin A and N-desmethyl-clarithromycin. A nontargeted
screening method based on LC-TOF-MS/MS was established to determine BUS, ERY, CLA,
and their metabolites in chicken liver microsomes. This study will provide a scientific
basis for the pharmacokinetics and drug elimination of ERY, CLA, and their metabolites in
poultry and for the monitoring of MACs residues in animal-derived foods.
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2. Materials and Methods
2.1. Chemicals and Reagents

Erythromycin A dihydrate (analytical standard), CLA (≥95% standard), buspirone
hydrochloride, dimethylsulfoxide (DMSO, 1.100 g/mL), and the reduced form of β-
nicotinamide dinucleotide phosphate (NADPH, ≥93% standard) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). N-Desmethyl-erythromycin A and N-desmethyl
clarithromycin were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Potassium phosphate buffer (0.1 M, pH 7.4) was purchased from Biosesang (Seongnam, Ko-
rea). HPLC-grade methanol and acetonitrile (ACN) were supplied by J.T. Baker Chemical
(Radnor, PA, USA). Chicken liver microsomes (PL-MIC-201) were purchased from PRIMA-
CYT GmbH (Schwerin, FRG, Germany) and stored at −80 ◦C before use. All chemicals
were of the highest purity available.

2.2. Preparation of the Standard Stock and Working Solutions

Standard 20 mM stock solutions of erythromycin A dihydrate, buspirone hydrochlo-
ride, N-desmethyl-erythromycin A, and N-desmethyl-clarithromycin were prepared in
pure methanol. A standard 20 mM stock solution of CLA was prepared in DMSO.
These standard stock solutions were stored at −20 ◦C. Standard working solutions of
erythromycin A dihydrate, CLA, buspirone hydrochloride, N-desmethyl-erythromycin A,
and N-desmethyl-clarithromycin at 20 µM were prepared by diluting the stock solutions
with 0.1 M potassium phosphate buffer (pH 7.4). The standard working solutions were
prepared for immediate use through gradual dilution. A 10 mM NADPH solution was
prepared in 0.1 M potassium phosphate buffer (pH 7.4). An internal standard (IS) solution
of 1 µg/mL CLA and an IS solution of 1 µg/mL erythromycin A dihydrate were prepared
in pure ACN and stored at −20 ◦C.

2.3. Microsomal Incubations

The incubation system (100 µL) contained 65 µL of potassium phosphate buffer (0.1 M,
pH 7.4), 20 µL of chicken liver microsomes (5 mg/mL), 5 µL of a compound (20 µM) and
10 µL of NADPH (10 mM). After a 5 min preincubation period at 37 ◦C, the reaction was
started by introducing 10 µL of NADPH (10 mM) as the cofactor solution. The final study
groups were divided into cofactor and no cofactor (control) groups. After preincubation
for 5 min, 10 µL of potassium phosphate buffer (0.1 M, pH 7.4) was added to the control
group. At 0 and 60 min, the reaction was quenched with 100 µL of ice-cold ACN with IS
(1 µg/mL; CLA and ERY for ERY and CLA, respectively). For 0 min samples, the reaction
was quenched immediately after the 5-min preincubation, followed by the addition of
10 µL of NADPH (10 mM) and 10 µL of potassium phosphate buffer (0.1 M, pH 7.4) to the
cofactor and control groups, respectively. Following brief sonication (5 min) and vortexing
(5 min), the mixtures were centrifuged for 30 min at 3000 rpm and 4 ◦C. The supernatant
was transferred to an Agilent 96-well plate and then analysed on an Agilent 6530 Q-TOF
LC-MS/MS instrument.

2.4. LC/ESI-HR-MS Analysis

Liquid chromatographic separation and mass spectrometric detection were performed
on an Agilent 1200 series HPLC system and an Agilent 6530 Q-TOF LC-MS/MS system
equipped with a dual AJS ESI ion source. Chromatographic separation was performed on
an Agilent Eclipse Plus C18 column (100 mm × 2.1 mm; i.d. 3.5 µm) by gradient elution
with a mobile phase consisting of 0.1 vol.% formic acid in water (A) and ACN (B) at 40 ◦C:
0–2 min, 5 vol.% B; 2–3 min, 50 vol.% B; 3–4 min, 75 vol.% B; and 4-5 min, 5 vol.% B. The
injection volume was 5 µL with a flow rate of 0.4 mL/min. Before sample injection, the
instrument was equilibrated under the initial gradient conditions (A:B = 95:5, v/v) and the
above-mentioned column temperature and flow rate conditions. HR-MS detection was
carried out in positive ionization mode with the following ion source parameters: capillary
voltage, 4000 V; drying gas, 12 L/min and 325 ◦C; nebulizer gas, 35 psi; and sheath gas,
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10 L/min and 350 ◦C. Mass spectra were acquired in positive ion auto MS/MS mode (F,
100 V; CE, 0 eV) with a full scan range of m/z (100–1000) and a mass scan rate of 5 spectra/s.
The mass spectrometer was run in an extended dynamic range mode with a mass range of
m/z 50–3200. The mass resolving power was greater than 12,000 FWHM at m/z 1552.

2.5. Data Analysis

The data were analysed using Agilent MassHunter Quantitative Analysis software
(version B.05.00) and Agilent MassHunter Metabolite ID software (version B.04.00) (Santa
Clara, CA, USA). The remaining content was evaluated by dividing the ratio of the response
of the target compound to the response of the IS at 60 min of incubation by the ratio of the
response of the target compound to the response of the IS at 0 min of incubation in the
cofactor group or control group.

3. Results and Discussion

In the existing literature, C18 columns are used predominantly in LC-MS/MS methods
for determining MACs and their metabolites in animal-derived foods [6,22,24–26,36]. BUS,
erythromycin A, CLA, and their metabolites are polar compounds, and a C18 column
can retain polar compounds well and achieve good separation. Therefore, an Agilent
Eclipse Plus C18 column (100 mm × 2.1 mm; i.d. 3.5 µm) was used to determine BUS,
erythromycin A, CLA, and their metabolites in chicken liver microsomes. In this study,
the mobile phase consisted of 0.1 vol.% formic acid in water-ACN, and the gradient
elution conditions were optimized so that the target compound produced a good peak
shape without tailing. In MS mode, the precursor ions for BUS, erythromycin A, CLA,
N-desmethyl-erythromycin A, and N-desmethyl-clarithromycin are protonated molecular
ions [M + H]+ at m/z 386.2577, 734.4741, 748.4898, 720.4581, and 734.4756 (Figures 2 and 3),
respectively, in positive ionization mode.

ERY and CLA are effective inhibitors of the cytochrome P450 system (especially
CYP3A4). Midazolam was used as the CYP3A4 substrate to evaluate the strength of
drug interactions mediated by CLA and ERY. CLA and ERY caused strong and moderate
interactions, respectively, possibly because the strengths of their inhibition of the main
drug-metabolizing enzyme CYP3A4 differ but they do not inhibit the activity of the drug
transporter P-GP [37,38]. Chicken liver microsomes contain human isoenzymes of CYP1A2,
CYP2C9, CYP2C19, CYP2D6, and CYP3A4, which were evaluated by PRIMACYT GmbH
(Schwerin, FRG, Germany). The absence of clear orthology between avian and human
CYP2C or CYP3A genes, as well as the occurrence of CYP2J, CYP2AB, and CYP2AC du-
plication events in the early bird lineage, were discovered by Watanabe et al. [17]. The
contribution of each CYP subtype to drug metabolism largely depends on its protein expres-
sion level in the liver. ERY and CLA are commonly used to treat chronic respiratory diseases
in chickens. Moreover, ERY is metabolized by enzymes of the cytochrome P450 system,
especially isoenzymes of the CYP3A superfamily. Therefore, this study verified whether
ERY and CLA produced N-desmethyl-erythromycin A and N-desmethyl-clarithromycin in
chicken liver microsomes.

Based on previous studies by Zhou et al. [39] and Lee et al. [40], we designed an
in vitro incubation test. BUS is an anti-anxiety medication that alters brain chemicals that
may be out of balance in persons who suffer from anxiety. Tension, dizziness, pounding
heartbeat, and other physical symptoms of anxiety are treated with BUS. The enzyme
CYP3A4 has been demonstrated to metabolize BUS in vitro [41]. This conclusion is in line
with the in vivo interactions found between BUS and CYP3A4 inhibitors or inducers [42].
Therefore, we added BUS to chicken liver microsomes for in vitro incubation experiments
to study the related metabolism. After preincubation for 5 min, the cells were incubated
for 0 min or 60 min after adding the IS, and then 10 µL of NADPH (10 mM) and 10 µL
of potassium phosphate buffer (0.1 M, pH 7.4) were added to the cofactor and control
groups, respectively. The purpose of this procedure was to decrease the drug metabolism
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of erythromycin A at 0 min of incubation to more accurately quantitate the remaining
amount of erythromycin A after 60 min of incubation.
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Compared with targeted and quantitative approaches, a nontargeted screening method
based on matching fragmentation characteristics can confirm and analyse unknown sub-
stances and collect as much substance information as possible, with wide coverage. Thus,
this study used a nontargeted screening method based on LC-HR-MS to detect BUS, ery-
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thromycin A, CLA, and their metabolites in chicken liver microsomes. We extracted the ion
chromatograms of BUS, CLA (IS), and N-desmethyl-erythromycin A in chicken liver micro-
somes at m/z 386.2551, 748.4842, and 720.4529 (calculated), respectively. In the extracted
ion chromatograms, the retention times of BUS, IS, and N-desmethyl-erythromycin A are
4.70, 5.22, and 4.77 min, respectively. The extracted ion chromatograms of erythromycin
A (calculated m/z 734.4685), N-desmethyl-erythromycin A, and IS from the cofactor and
control groups at 60 min and 0 min incubation are shown in Figures 4 and 5. In contrast to
Figure 5, Figure 4 shows that erythromycin A produced N-desmethyl-erythromycin A in
chicken liver microsomes after incubation for 60 min and addition of NADPH cofactor, but
there was no peak corresponding to N-desmethyl-erythromycin A under other conditions.
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The in vitro incubation test of CLA in chicken liver microsomes was carried out based
on erythromycin A; erythromycin A was used as an IS and detected by LC-HR-MS. We
extracted the ion chromatograms of BUS, IS, and N-desmethyl-clarithromycin (calculated
m/z 734.4685) in chicken liver microsomes, and the retention times of these compounds
were 4.71, 4.80, and 5.12 min, respectively. Figures 6 and 7 show that N-desmethyl-
clarithromycin was not extracted under any of the conditions. Therefore, CLA cannot
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produce N-desmethyl-clarithromycin in chicken liver microsomes, possibly because CLA is
a strong inhibitor of CYP3A4, which inhibits the production of N-desmethyl-clarithromycin
by the CYP3A4 isoenzyme in chicken liver microsomes.
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Residues of erythromycin A, N-desmethyl-erythromycin A, and CLA in animal-
derived foods can pose human health risks due to toxicity. Therefore, drug metabolism
residues in animal-derived foods should be considered. This study evaluated the levels of
erythromycin A and CLA metabolism remaining in chicken liver microsomes, as shown in
Table 1. After incubation for 60 min and the addition of NADPH cofactors, the average
residual contents of BUS, ERY, and CLA in chicken liver microsomes were 48.9%, 86.6%,
and 89.8%, respectively. After 60 min of incubation but no addition of NADPH, BUS, ERY,
and CLA were metabolized to certain degrees.

Table 1. BUS, ERY, and CLA metabolize the remaining amount in chicken liver microsomes.

Analyte Matrix

+Cofactor
Mean ± SD

(%)

−Cofactor
Mean ± SD

(%)
Remaining Content (%) Remaining Content (%)

1 2 3 1 2 3

BUS CLM 46.4 46.2 54.1 48.9 ± 4.5 87.5 65.7 91.2 81.5 ± 13.8
ERY CLM 82.6 83.1 94.1 86.6 ± 6.5 99.0 97.9 87.6 94.8 ± 6.3
CLA CLM 77.5 77.3 114.7 89.8 ± 21.5 100.7 78.7 80.3 86.6 ± 12.3

Abbreviations: buspirone, BUS; erythromycin A, ERY; clarithromycin, CLA; chicken liver microsomes, CLM.



Foods 2021, 10, 1504 12 of 14

4. Conclusions

In this study, whether erythromycin A and CLA produce N-desmethyl-erythromycin
A and N-desmethyl-clarithromycin in chicken liver microsomes was tentatively identified
by LC-HR-MS. Through comparison of the extracted ion chromatograms with standard
chromatogram, it was found that erythromycin A can produce N-desmethyl-erythromycin
A in chicken liver microsomes, but CLA cannot produce N-desmethyl-clarithromycin.
Nontargeted screening based on the LC-HR-MS method is fast, efficient, and sensitive and
is suitable for the detection of veterinary drugs and their metabolites in animal-derived
foods. This study will provide a scientific basis and detection methods for the monitoring
of erythromycin A, CLA, and N-desmethyl-erythromycin A in poultry.
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