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Recent advances have witnessed a growth of herbalism studies adopting a modern
scientific approach in molecular medicine, offering valuable domain knowledge that can
potentially boost the development of herbalism with evidence-supported efficacy and
safety. However, these domain-specific scientific findings have not been systematically
organized, affecting the efficiency of knowledge discovery and usage. Existing knowledge
graphs in herbalism mainly focus on diagnosis and treatment with an absence of
knowledge connection with molecular medicine. To fill this gap, we present HerbKG, a
knowledge graph that bridges herbal and molecular medicine. The core bio-entities of
HerbKG include herbs, chemicals extracted from the herbs, genes that are affected by the
chemicals, and diseases treated by herbs due to the functions of genes. We have
developed a learning framework to automate the process of HerbKG construction. The
resulting HerbKG, after analyzing over 500K PubMed abstracts, is populated with 53K
relations, providing extensive herbal-molecular domain knowledge in support of
downstream applications. The code and an interactive tool are available at https://
github.com/FeiYee/HerbKG.
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1 INTRODUCTION

A knowledge graph (KG) serves as a useful tool to represent real-world semantic phenomena in an
organized way (Wang et al., 2017). Specifically, a KG consists of a collection of three tuples, each of
which follows a format of [head, tail, relation]. The head and tail specify an entity pair, and the
relation defines how the two entities are semantically related. Both entities and relations can have
domain-specific properties. A broad spectrum of large-scale KGs encoding generic knowledge, such
as YAGO3 (Mahdisoltani et al., 2014), Freebase (Bollacker et al., 2008), DBpedia (Auer et al., 2007),
and BabelNet (Navigli and Ponzetto, 2012), have been developed and have created massive value that
benefits a variety of downstream applications, such as knowledge visualization (Kerdjoudj and Curé,
2015) and reasoning (Chen et al., 2020), information retrieval (Wise et al., 2020), and question
answering (Saha et al., 2018). Furthermore, domain-specific KGs have also gained extensive interests
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(Ernst et al., 2014) by domain experts who desire to have efficient
access to high-quality domain knowledge. For instance, a
biomedical KG allows researchers and medical practitioners to
mine and discover complex interactions between millions of bio-
entities (e.g., chemicals, genes, and diseases), facilitating academic
knowledge query and clinical decision making (Su et al., 2021;
Zheng et al., 2021). Adding such domain knowledge into existing
healthcare applications can greatly improve the quality and
efficiency of current medical operations and IT systems.

As a sub-field of medicine, herbal medicine, also referred to as
herbalism, is the study of pharmacognosy and the use of
medicinal plants, forming the basis of traditional medicine
that has been existing and evolving for over five thousand
years across multiple continents and countries, including
Africa, Americas, ancient Egypt, Greece, China, and India
(Wikipedia contributors, 2004c). In the modern era, herbalism
has received criticism and skepticism due to the lack of strong
evidence of efficacy and safety found in high-quality scientific
publications. Currently, herbalism is still the primary health care
in many underdeveloped regions and is widely used to treat
chronic diseases, such as diabetes (Egede et al., 2002), cancer
(Burstein et al., 1999), end-stage kidney disease (Roozbeh et al.,
2013), and asthma (Szelenyi and Brune, 2002). In the past
decades, more and more researchers have taken a modern
scientific approach to investigating the biological function of
herbs and herbal contents, validating the interconnection
between herbs, extracted chemicals, diseases, and genes (Babu
et al., 2007; Brackman et al., 2008). These studies bridge modern
molecular medicine and traditional herbalism, which provides
more evidence to support the medicinal usage of herbs, opening a
promising direction to boost the development of herbalism in the
21st century. In addition, these studies provide valuable domain
knowledge in herbalism that should be restructured for building a
herb KG.

Existing efforts of herb KG construction mainly focus on the
diagnosis and treatment side of herbalism. Wang et al. (Wang
et al., 2019) propose a Knowledge Graph Embedding Enhanced
Topic Model (KGETM) for traditional Chinese medicine (TCM).
The used KG in the study considers relations between symptoms,
syndromes, treatments, and herbs to support a herb
recommendation application. Zheng et al. (Zheng et al., 2020)
have developed a TCM KG that stores herbs, therapies,
prescriptions, diseases, syndromes, symptoms, and the
relations between them. Another group (Somé et al., 2019) has
developed the West African Herbal-based Traditional Medicine
KG consisting of 143 identified West African medicinal plants
and 108 recipes to treat 110 diseases and symptoms. Similar herb
KGs that aim to facilitate prescription can be found in literature
(Liu et al., 2018; Miao et al., 2018; Gong et al., 2021). On the other
hand, prior efforts have also investigated generic biomedical KGs.
Zheng et al. (Zheng et al., 2021) propose PharmKG, which
consists of 500,000 relations between genes, drugs, and
diseases. Another study by Su et al. (Su et al., 2021) proposes
the Cornell Biomedical Knowledge Hub (CBKH) that takes into
account genes, drugs, diseases, anatomies, molecules, and
symptoms, resulting in a KG with 2,231,297 entities of six
types and 48, 678, 651 relations of eight types. To our best

knowledge, there is no existing KG in the literature to model
herbs, the contained chemicals, and their interactions with genes
and diseases from the viewpoint of molecular medicine. Thus, our
study aims to fill this gap.

The contributions of this study are summarized as follows:

• We propose a Herb ontology named HerbOnt composed of
four entity types and five relation types to encode the
interplay between herbs, chemicals, genes, and diseases.

• We develop a learning framework to automate the
construction of HerbKG. We leverage an existing named
entity recognition (NER) model and design a BERT-based
model for relation extraction (RE) to annotate raw PubMed
abstracts that are screened to match the subject of
herbalism.

• To validate the RE model, we create a herb RE dataset with
3,526 human-annotated relations. BERT and two of its
variants, SciBERT and BioBERT are evaluated on the
herb RE dataset. In addition, two performance boosters,
including a fine-tuning strategy and a substitution-based
generative augmentation module, have been utilized for
performance improvement. Our ablation studies show
that the two boosters can bring consistent gains in the F1
score due to the additional domain knowledge injected into
the models. The best model, the fine-tuned BioBERT that is
further trained on the augmented dataset, can achieve an F1
score of 95.9%. The self-created herb RE dataset, with the
evaluated models, can serve as a credible benchmark for
future research.

• The proposed system has analyzed a total of 516,393
PubMed abstracts and identified 4,130 herbs, 6,331
chemicals, 2,187 diseases, and 2,641 genes, with 53,754
distinct relations, providing valuable domain knowledge
in herbalism from the molecular perspective. In addition,
the constructed HerbKG can support multiple downstream
tasks like evidence-based graph queries and drug re-
positioning. We have made the code publicly available at
https://github.com/FeiYee/HerbKG, where an interactive
tool and a system tutorial are also provided.

The rest of this paper is structured as follows. Section 2
provides the technical details of the proposed framework for
HerbKG construction. Section 3 presents the experimental
results and a discussion about several downstream tasks.
Section 4 offers a summary of this study with limitations and
future plans.

2 MATERIALS AND METHODS

2.1 The Herb Ontology
In information sciences, an ontology shows the properties of a
subject area and how they are related, by defining a set of
categories and concepts that represent the subject (Guarino
et al., 2009). To unify the terminology throughout the article,
we use entity types to refer to categories and entities to refer to
concepts that are instantiated from entity types. An ontology
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serves as a template for constructing a KG since only relations
defined in the ontology can be added into the KG. As shown in
Figure 1, HerbOnt consists of four entity types, including Herb,
Chemical, Disease, and Gene, with five coarse-grained relation
types, including HerbHasCompoundChemical (HHC),
HerbTreatsDisease (HTD), ChemicalActsOnDisease (CAD),
ChemicalAssociatesGene (CAG), and GeneInfluencesDisease
(GID). A description of the entity types is as follows.

• Herbs in this study can be a part or produced from parts of a
plant (either fresh or dried), including the leafy green or
flowering parts, seeds, bark, roots and fruits. Examples
include “abrus precatorius”, “ginkgo biloba”, “salvia
officinalis”, and “cinnamomum cassia”.

• Chemicals refer to chemical compounds that can be used as
medicine. In our study, we mainly focus on the chemicals
extracted from herbs. Examples include “essential amino
acids”, “isoflavanquinones”, “diphenhydramine”, and
“abruquinone A”.

• A Disease refers to a particular abnormal condition that
negatively affects the structure or function of all or part of an
organism, and that is not due to any immediate external
injury (Wikipedia contributors, 2004a). Examples include
“anemia”, “otoconia”, “hypoosmotic swelling”, and “gastric
ulcer”.

• A Gene refers to a basic unit of heredity and a sequence of
nucleotides in DNA or RNA that encodes the synthesis of a
gene product, either RNA or protein (Wikipedia
contributors, 2004b). Examples include “caspase-3″, “AP-
1″, “Bax”, and “cytochrome c”.

We also provide a description of the relation types below:

• An HHC describes a containment relation between a herb
and a chemical, which is extracted from the herb. A herb
may contain one or more chemicals that can be used for
medical purposes. For example, cassia barks contains
cinnamaldehyde.

• An HTD indicates that a herb has positive effect on the
treatment of a disease.

• ACAD refers to a relation between a chemical and a disease.
The effect of the chemical on the disease can be either
positive or negative. CAD allows us to understand which
chemical extracted from the herb causes what effect on the
disease.

• A CAG describes an association between a chemical and a
gene. For example, a study (Li et al., 2016) shows that
cinnamaldehyde (a chemical) can inhibit the PI3K/Akt (a
gene) signaling pathway, inducing apoptosis and affecting
the biological behavior of human colorectal cancer cells.

• A GID indicates a connection between a gene and a disease.
For example, a study (Lee et al., 2007) shows that AP-1 (a
gene) inactivation can inhibit SW620 colon cancer (a
disease) cell growth.

2.2 HerbKG Learning Tasks
Two learning tasks, including NER and RE, are involved in the
construction of HerbKG. We provide a formal definition for each
task as follows.

2.2.1 NER Task
The goal of NER is to locate entity mentions in an input text and
classify them into a set of pre-defined categories. Formally, let s =
[t1, t2, . . . , tn] denote a sentence s with n tokens. Taking s as an
input, an NER model outputs a list of tuples < Is, Ie, k> , each of
which is an entity mention in s. Here, Is and Ie specify the indices
of the starting and ending tokens of an entity mention. Thus, both
Is and Ie are in [1, n], and Is ≤ Ie. Also, k belongs to a category set.
In our study, k ∈ {“Herb”, “Chemical”, “Disease”, “Gene”}.

2.2.2 RE Task
For the RE task, we choose to develop a medium-sized dataset,
because there is no existing one that has the same ontology
definition as HerbOnt. We formulate the learning problem as
follows. Let DRE � {(xi, yi)}mi�1 be the self-developed herb RE
dataset with m examples. Each input xi contains the title and
content of an abstract and a pair of entities. The label yi specifies
the relation type of the entity pair in xi. The task is to train a
model to predict the relation type given xi as an input. It is noted
that the problem belongs to document-level RE, where the head
and tail entity mentions could span across multiple sentences in
the abstract. Also, in the context of HerbKG, we have yi ∈ {“HHC”,
“HTD”, “CAD”, “CAG”, “GID”, “Neg.“}, in which the first five are
positive relation types defined in HerbOnt, and “Neg.” represent
the negative examples indicating a non-relation. Since not every
entity pair of an abstract are related, it is essential to introduce
negative examples into the dataset so that the model can be
trained to make a distinction.

FIGURE 1 | The proposed Herb ontology consists of four entity types
and five relations. The four entity types are Herb, Chemical, Disease, and
Gene; the five relation types are HerbHasCompoundChemical (HHC),
HerbTreatsDisease (HTD), ChemicalActsOnDisease (CAD),
ChemicalAssociatesGene (CAG), and GeneInfluencesDisease (GID).

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 7993493

Zhu et al. A Herbal-Molecular Medicine Knowledge Graph

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2.3 System Overview
Figure 2 shows a two-stage learning framework of building
HerbKG. Since only a small fraction of PubMed articles are
relevant to the subject of HerbKG, we develop a screening
procedure to identify the matching abstracts. Specifically, only
an abstract that contains a mention of either a herb or a
chemical in a pre-defined domain vocabulary is considered
as a match. In practice, it is straightforward to list the herbs
and their contained chemicals for medicinal usage. This work
is manually done by one of the authors with domain
knowledge in herbal medicine. Each selected abstract is
then passed through the PubTator Central (PTC) NER

model (Wei et al., 2019), followed by a custom BERT-based
RE model to produce a list of identified relation triplets, which
are used for the HerbKG construction. In addition, two
boosting strategies have been utilized for performance
improvement, including fine-tuning BERT on domain
resources and a generative data augmentation method. The
former aims to inject domain knowledge into the BERT model,
while the latter can generate synthetic samples to enhance the
training set. The constructed HerbKG can support multiple
downstream applications, such as descriptive analysis,
evidence-based graph query, similarity analysis, and drug
repurposing.

FIGURE 2 | A two-stage learning framework for building HerbKG. Stage I is the NER task, which is done by the PTC NER model. Stage II is the RE task, which
extracts relation triplets used to build the HerbKG. In addition, two boosting strategies have been utilized for performance improvement, including fine-tuning BERT on
domain resources and a generative data augmentationmethod. The former aims to inject domain knowledge into the BERTmodel, while the latter can generate synthetic
samples to enhance the training set. The constructed HerbKG can support multiple downstream applications, such as descriptive analysis, evidence-based graph
query, similarity analysis, and drug repurposing.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 7993494

Zhu et al. A Herbal-Molecular Medicine Knowledge Graph

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2.4 The PTC NER Model
Numerous methods have been developed to solve NER. In this
study, we adopt an existing model (Wei et al., 2019), referred to as
PTC, proposed by Wei et al., who have provided an
implementation hosted online at https://www.ncbi.nlm.nih.
gov/research/pubtator/. PTC can identify and annotate six
types of entities, including Gene, Disease, Chemical, Mutation,
Species, and Cellline. At a high level, PTC works by feeding an
article into a tagging module, which integrates a series of entity
taggers including GNormPlus (Wei et al., 2015a), AB3P (Sohn
et al., 2008), SimConcept (Wei et al., 2015b), tmVar 2.0 (Wei et al.
, 2018), SR4GN (Wei et al., 2012), TaggerOne (Leaman and Lu,
2016), and Cellosaurus (Bairoch, 2018). The tagging module also
addresses several issues in bio-entity annotation, including
abbreviation resolution, detection of composite/variant
mentions, and entity normalization. The initial annotations are
further processed by a concept disambiguation module to ensure
that mentions referring to the same entity receive the same
identifier. Figure 3 is a screenshot of bio-concept annotation
using the PTC web interface for an article with PMID 12860272.

To adapt PTC to suit our needs, we disable the detection of
mutations and celllines that are not defined in HerbOnt. Also, a
detected species is annotated as a herb if it matches any entity in
the pre-defined domain vocabulary. The top three sections in

Table 1 display an annotated sample by PTC. These intermediate
samples are further annotated by an REmodel, which is discussed
in the next subsection.

2.5 A BERT-Based RE Model
As defined in Section 2.2.2, the RE task in this study is a multi-
class classification problem aiming to predict the relation type,
given an abstract and a pair of annotated entities. Since there is no
existing dataset, we have developed a dataset and trained a BERT-
based model for the herb RE task.

2.5.1 Herb RE Dataset Development
Figure 4 describes the dataset development process. First, we
gather a collection of seed keywords of herb varieties that are
commonly used in herbal medicine. We then use a self-developed
crawler to search the PubMed dataset for the seed herb keywords.
The search is only applied to the PubMed abstracts rather than
the full texts, because an abstract contains the essential findings of
a study; in most cases, the entities and their relations are clearly
stated in an abstract, providing sufficient information that can be
extracted to build our knowledge graph. The crawler is able to
scrape a collection of relevant abstracts guided by the seed
keywords. Next, the collected abstracts are fed into the PTC
through its restful API at https://www.ncbi.nlm.nih.gov/research/

FIGURE 3 | Bio-concept annotation through the PTC web interface for an article with PMID 12860272.
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pubtator/api.html (accessed on 7 July 2021). We display a
complete sample with full annotation in Table 1, in which the
first three rows, including Title, Abstract, and Entity Mentions,
are generated by the PubTator API; the last row, Relations, is
completed by a human annotator, who is a Ph.D. student in
molecular biology with sufficient domain knowledge for the
annotation task.

Each annotated abstract follows the PubTator format, as
shown in Table 1, which divides a sample into four sections,
each starting with the PubMed article ID of the abstract. The Title
and Abstract sections that are directly extracted from the PubMed
database. Each entity mention is a six-tuple with a specified
sequence of PubMed ID, entity start position, end position,
entity text, entity type, and entity ID. Similarly, each relation
in the Relations section is a four-tuple sequence including the
PubMed ID, the relation type, the head entity ID, and the tail
entity ID.

Since we adopt BERT-based models for RE, the input can be
split into two sentences, denoted by A and B. For our RE task,
sentence A is a concatenation of the title and the abstract, and
sentence B contains the head and tail entities, separated by a
space. For each relation type, we need both positive and
negative training examples. Also, each example in the

dataset is a three-tuple, namely, sentence A, sentence B, and
relation type that are separated by a tab. To simplify training,
we group all negative examples together to create a new RE
category, i.e., “Neg.“. Therefore, the RE type for each example
is one of the elements in {“HHC”, “HTD”, “CAD”, “CAG”,
“GID”, “Neg.”}, leading to a six-class classification problem.
Table 2 shows five instances in the herb RE dataset.

Table 3 shows the stats of the herb RE dataset that contains a
total of manually annotated 3,526 examples, split in the ratio of 3:
1 to obtain the training and test sets. It is observed that the six
classes are highly imbalanced. HHC and Neg. combined account
for nearly 70% of all relations, while CAG and GID only take 1.3
and 3.1%, respectively. Thus, a performance metric (see Section
3.1.1) should be carefully chosen to properly deal with the class
imbalance issue.

2.5.2 BERT-Based Neural Architecture for RE
BERT (Devlin et al., 2018) is a transformer-based NLP model
created and published in 2018 by Devlin et al. at Google. The
original BERT model has two versions: Bertbase and Bertlarge. The
former consists of a stack of 12 transformer encoders with 12 self-
attention headers, and the latter includes 24 encoders with 16 self-
attention headers. Each transformer encoder consists of a self-

TABLE 1 | A sample with annotation in the herb RE dataset.

Title 9848396 Cinnamaldehyde Inhibits Lymphocyte Proliferation and Modulates T-Cell Differentiation

Abstract 9848396 Two kinds of cinnamaldehyde derivative, 2′-hydroxycinnamaldehyde (HCA) and 2′-benzoxy-cinnamaldehyde
(BCA), were studied for their immunomodulatory effects. These compounds were screened as anticancer drug candidates
from stem bark of Cinnamomum cassia for their inhibitory effect on farnesyl protein transferase activity. Ras activation, which
is accompanied with its farnesylation, has been known to be important in immune cell activation as well as in carcinogenesis.
Treatment of these cinnamaldehydes to mouse splenocyte cultures induced suppression of lymphoproliferation following
both Con A and LPS stimulation in a dose-dependent manner. . .

Entity Mentions 9848396 0 14 Cinnamaldehyde Chemical C012843
9848396 127 151 2′-hydroxycinnamaldehyde Chemical C117567
9848396 162 187 2′-benzoxy-cinnamaldehyde Chemical C117567
9848396 322 339 Cinnamomum cassia Herb 119,260
. . .

Relations 9848396 HHC 119260 D013390
9848396 HHC 119260 C117567
9848396 CAD D013390 C565232
9848396 CAD C117567 C565232

TABLE 2 | Instances in the herb RE dataset.

RE Type Sentence A Head Entity Tail Entity

HHC These results showed that cassia barks contained high contents of cinnamaldehyde . . . cassia bark cinnamaldehyde
HTD . . .The extract of cinnamon bark contains potentially valuable antiamyloidogenic agents for the prevention and treatment

of AD . . .

cinnamon AD

CAD . . .The present experiment showed that cinnamaldehyde dose-dependently depresses the proliferation of three types of
NSCLC cells and induces cell apoptosis in vitro and in vivo. . .

cinnamaldehyde NSCLC

CAG . . .Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of
the PI3K/Akt signaling pathway. . .

Cinnamaldehyde PI3K/Akt

GID . . .2-hydroxycinnamaldehyde inhibits SW620 colon cancer cell growth through AP-1 inactivation. . . AP-1 colon cancer
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attention layer with multiple heads and a feed-forward layer. A
self-attention head projects a sequence of input tokens into a
latent space to capture the semantic dependency between the
tokens. The output of the self-attention layer is normalized,
aggregated, and passed through a feed-forward layer to
produce a vector, namely, the hidden state, which is the
output of the transformer encoder. The paths the tokens take
to flow through the encoder can be partially executed in parallel,
which allows the training and inference of the neural network to
be accelerated. In this study, we adopt Bertbase, which is pre-
trained on BooksCorpus (Pechenick et al., 2015) (800M words)
and on English Wikipedia (2,500M words). BERT adopts two
unique pre-training techniques, i.e., masked-language modeling
(MLM) and next sentence prediction (NSP), both of which are
self-supervised. MLM works by randomly masking a fraction of
tokens in the input sentence and training the model to predict the
missing ones, while NSP trains BERT to predict the follow-up

sentence given an input sentence. Both MLM and NSP aim to
help BERT better understand the style of unstructured human
language by optimizing the loss function of self-training and
adjusting the model parameters. BERT has achieved the state-of-
the-art (SOTA) performance in a variety of NLP tasks (Devlin
et al., 2018) and yielded a spectrum of variants (Beltagy et al.,
2019; Sanh et al., 2019; Lee et al., 2020).

Figure 5 describes the neural architecture of the BERT-based
model for the herb RE task. Each input instance contains two
strings, including sentences A and B, separated by a [sep] token.
Sentence A is a concatenation of the title and abstract of a
PubMed article, and sentence B contains an entity pair linked
by a space character. The input passes through a stack of
embedding layers for token, sentence, and positional
embedding, transforming the original text to numeric vectors,
which are further fed into a series of transformer encoders
(Vaswani et al., 2017), where the neural parameters are
updated via its unique self-attention mechanism. Lastly, the
output of the Nth transformer layer passes through a dense
and classification (also softmax) layer to generate the
prediction result, which is a six-dimensional normalized vector
that encodes the confidence scores for each relation type. During
training, the predicted and ground truth values are fed into a cross
entropy loss function to calculate the loss for back-propagation.

We investigated BERT and two BERT variants, namely,
BioBERT and SciBERT, to develop the benchmark models for
the herb RE task.

FIGURE 4 | The development process of the Herb RE dataset. A crawler is adopted to search for a pre-defined set of herb keywords in the PubMed dataset,
returning a collection of matching abstracts that are firstly annotated by the PTC for NER and then annotated by a human annotator for RE. Thereafter the positive
examples can be directly extracted, and the negative examples can be obtained through negative sampling. The positive and negative samples are aggregated to form
the final herb RE dataset. Blue boxes in the figure represent various types of data being processed along the pipeline, and green rounded boxes represent
operations/functions applied on the data.

TABLE 3 | Stats for the herb RE dataset.

HHC HTD CAD CAG GID Neg

Training 884 472 176 29 81 1,010
Test 346 201 68 16 29 224
Total 1,230 673 244 45 110 1,234
% 34.8 19.1 6.9 1.3 3.1 34.8
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• BioBERT (Lee et al., 2020) is a BERT variant pre-trained on
PubMed articles for adapting the biomedical domain.
BioBERT has been pre-trained on a large biomedical
corpus with over a million PubMed articles, leading to
superior performance in a variety of biomedical NLP
tasks, compared to BERT and other pre-training models
(Lee et al., 2020).

• SciBERT (Beltagy et al., 2019) is another BERT varient pre-
trained on a corpus consisting of 1.14M full text scientific
papers with 3.1B tokens collected from semanticscholar.
org. As shown in (Beltagy et al., 2019), SciBERT has
achieved SOTA performance in numerous NLP tasks in
the scientific domain.

2.6 Performance Boosters
A big challenge faced by the RE task is the lack of training
resources due to the high annotation cost that has to involve a
human expert. Therefore, the RE model cannot absorb
sufficient domain knowledge to always make the correct
prediction. Two strategies, including fine-tuning and data
augmentation, have been adopted to enhance the model’s
learning capability in the context of herbal-molecular
medicine.

2.6.1 Fine-Tuning on Domain Resources
BERT, SciBERT, and BioBERT have been sufficiently pre-trained
on different types of domain resources, namely, on general
English texts, general scientific articles, and biomedical articles,
respectively. Due to the disparity of domains, BERT and its two
variants have learned different knowledge, which could lead to
misclassification when applied to the domain of herbal-molecular
medicine. Therefore, we conduct fine-tuning for all three models
on the 516K PubMed abstracts to inject more domain knowledge
into the models. The tuned models are then further trained to
tackle the downstream RE task.

2.6.2 Substitution-Based Generative Augmentation
We employ a GPT-2-based generative model to generate
synthetic samples to enhance the quantity and diversity of the

training data. Figure 6 depicts the data augmentation
mechanism, which includes the following steps.

• Corpus preparation. GPT-2 is a pre-trained generative
model that can produce generic English sentences. To
satisfy our requirements, GPT-2 needs to be fine-tuned
on a corpus relevant to our RE task. Thus, the first is to
prepare a corpus with textual resources that 1) are in the
domain of herbal-molecular medicine and 2) present the
entities and relations pre-defined in the herb ontology.
Intuitively, we extract such sentences from the annotated
dataset described in Section 2.5.1 based on one condition,
namely, the sentence must contain at least a pair of entities
that present one of the pre-defined relation categories. For
example, the sentence “Cinnamaldehyde induces apoptosis
via inhibition of the PI3K/Akt signaling pathway.” presents
a CAG relation, is an ideal candidate to be added to the
corpus. Since there are five relation types, five corpora are
needed.

• Substitution I. For each sentence in each corpus, we apply a
transformation by substituting each entity mention in the
sentence with a type token. For example, the sentence in the
above item becomes “[Chemical] induces apoptosis via
inhibition of the [Gene] signaling pathway.” after the
substitution. This step allows GPT-2 to focus on the
semantic relations between generic entity types rather
than particular entity mentions.

• Fine-tuning GPT-2. After substitution I, we send each
corpus to fine-tune a GPT-2 model. The tuned GPT-2
model can generate sentences that are both semantically
and syntactically similar to the ones in the input corpus. For
instance, a generated sentence may look like “[Chemical]
reduced myocardial infarction area and attenuated [Gene]
production.”

• Substitution II. The generated samples are passed through
another substitution block, which samples a pair of entities
with known relations from an entity database (i.e., entity DB
in the Figure) to replace the type token, namely, the
placeholder, yielding the final augmented sample with the

FIGURE 5 | Neural architecture of BERT-based RE model. The input consists of sentence (A,B), in which A is a concatenation of the title and the abstract content,
and (B) includes the head and tail entity mentions. (A) (sep) token is placed at the end of each sentence as a separator. The input is processed through token, sentence,
and positional embedding layers and then fed into a sequence of transformer encoder layers. Lastly, the output of theNth transformer passes a dense and a classification
(softmax) layer to generate the prediction result.
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correct entity and relation annotation. The generated
sentence from the previous item can become “Flavonoids
reduced myocardial infarction area and attenuated TNF-
alpha production.” which encodes a CAG relation between
the entities in bold. The output of this module can be used to
train the BERT-like models for the RE task.

3 EXPERIMENTS AND RESULTS

All experiments were implemented using Python 3.6.7 and
PyTorch 1.7.1 and conducted on a Windows 10 workstation
with an i7-10875h CPU and a Tesla V100 16G GPU. We chose
BERT base, which has 12 layers of encoders with a hidden size of
768, 12 attention heads, and 110M trainable parameters. As such,
we choose the BERT base version for both SciBERT and BioBERT
to conduct a comparable experiment.

3.1 RE Task Evaluation
We focus on the evaluation of the RE module for two reasons: 1)
we adopted an existing NER model whose performance has been
extensively evaluated in the original paper (Wei et al., 2019); 2)
the outputs of the RE model are directly added into the HerbKG,
which determines the quality of the KG.

3.1.1 RE Performance Metric
Given a highly imbalanced RE dataset, accuracy is not an
adequate metric since the model is encouraged to classify
examples into the major classes and can still achieve a decent
accuracy. A better metric to deal with class imbalance is the F1
score, which is defined as the harmonic mean of precision (Pre)
and recall (Rec). Also, Pre and Rec are useful metrics since they
are two inverse indicators of false alarms and missed instances,
respectively. With the given true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN), the definitions
of Pre, Rec, and F1 are given in Eqs. 1–3. In addition, we choose
the precision-recall area under the curve (PR AUC) as another
important performance indicator, which is usually calculated by
the average precision (AP) metric given in Eq 4, where precision

P is expressed as a function of recall R, and AP is the average value
of precision over the interval from R = 0 to R = 1. In other words,
AP summarizes the PR curve as the weighted mean of precisions
at each threshold, with the increase in recall from the previous
threshold used as the weight, namely, Rn − Rn−1 in Eq 4.

P � TP

TP + FP
× 100% (1)

R � TP

TP + FN
× 100% (2)

F1 � 2 ×
P × R

P + R
× 100% (3)

AP � ∫1

0
P R( )dr ≈ ∑

n

Rn − Rn−1( )Pn (4)

3.1.2 Hyperparameter Tuning
Since the three benchmark RE models adopt the same neural
architecture, it is convenient to tune the models with the same set
of hyperparameters in the same predefined ranges, which are
given in Table 4. We tuned four hyperparameters, including
epoch, learning rate, loss function, and optimizer, which are
commonly used in prior efforts (Lee and Hsiang, 2019;
Mosbach et al., 2020). For the number of epochs, we chose the
odd numbers less than ten. Since the models have been
extensively pre-trained, fine-tuning them for a downstream
task would be fast (Zhu et al., 2021). For the learning rate, we
chose four values including 0.0001, 0.0003, 0.001, 0.003, and 0.01.
In practice, a large learning rate may bring difficulty in model
convergence due to overshooting, and a small learning rate may
lead to slow convergence (Goodfellow et al., 2016). For the loss
function, we examined two options, including the standard cross
entropy (CE), and the weighted CE. Since the class labels are
imbalanced, using a weighted CE allows the algorithm to trade off
recall and precision by up- or down-weighting the cost of a
positive error relative to a negative error. Lastly, for the optimizer,
we explored three options, including stochastic gradient descent
(SGD), Adam, and SGD with Momentum. During training, SGD
is computationally fast due to its frequent updates to the

FIGURE 6 | Substitution-based generative model for data augmentation. Blue boxes refer to text samples, green rounded boxes are procedures, and orange
rounded boxes are models.
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parameters; the Adam optimizer improves SGD by combining
the AdaGrad and RMSProp algorithms to handle sparse
gradients; adding momentum to SGD allows the optimization
algorithm to accumulate the gradient used by the previous steps
to calculate a better direction for the next step. A grid search is
conducted based on the given ranges of hyperparameters to
determine the optimal setting. Table 5 shows the best
hyperparameters for each model obtained from the grid search
using F1 as the selection criterion. It is observed that all three
models demonstrate an F1 of over 92%. The best model,
BioBERT, presents an F1 of 94.37%. A detailed breakdown of
the results is discussed in the next subsection.

3.1.3 RE Performance Comparison
We report a performance comparison on the RE task for BERT,
SciBERT, and BioBERT using their base models in Tables 6–8
respectively. Each table is divided into two sections. The upper
section is a confusion matrix that provides the exact RE
classification results on the test set of the herb RE dataset, and
the lower section presents the results in multiple metrics
including TP, FP, FN, TN, Pre, Rec, and F1, which reflects the
model performance from various aspects. We break down the
result interpretation as follows.

• The overall ranking of the three models is BioBERT,
SciBERT, and BERT, with an F1 of 94.7, 93.4, and 92.6%,
respectively. This result is reasonable, since the three
versions are pre-trained on corpora of different domains.
BERT, SciBERT, and BioBERT are pre-trained on general
English articles, scientific articles, and biomedical
(i.e., PubMed) articles, presenting a narrower but more
focused domain. It is clear that BioBERT has obtained
extensive biomedical domain knowledge that well fits the
herb RE task, leading to superior performance.

• The three minor relation types, namely, CAG, CAD, and
GID, present worse performance due to insufficient training
instances. Taking CAG as an example, there are only 16

instances in the test set. The BERT model throws two false
alarms (the actual relations are HHC and HTD) and
misclassifies three CAG instances into HHC (two cases)
and CAD (one case), resulting in 13 instances correctly
predicted. SciBERT fixes one error prediction (CAG
misclassified as HHC) made by BERT. On the other
hand, BioBERT eliminates all three false alarms, leading
to a gain of 5.8% in F1, compared to BERT. Similar

TABLE 4 | Hyperparameter tuning range.

Hyperparameter Tuned Range

Epoch [1, 3, 5, 7, 9]
LR [0.0001, 0.0003, 0.001, 0.003, 0.01]
Loss [cross entropy, weighted cross entropy]
Optimizer [SGD, Adam, Momentum]

TABLE 5 | Optimal hyperparameter setting.

Hyperparameter BERT SciBERT BioBERT

Epoch 5 3 3
LR 0.001 0.001 0.0003
Loss CE CE CE
Optimizer Adam Adam Adam
F1 0.9265 0.9344 0.9473

The highest F1 score is marked in bold.

TABLE 6 | BERT performance.

CAG HHC HTD CAD GID Neg Total

CAG 13 2 0 1 0 0 16
HHC 1 338 6 0 1 0 346
HTD 1 5 191 3 0 1 201
CAD 0 1 2 64 1 0 68
GID 0 0 0 4 25 0 29
Neg 0 2 1 1 0 220 224
TP 13 338 191 64 25 220 851
FP 2 10 9 9 2 1 33
FN 3 8 10 4 4 4 33
TN 838 513 660 787 826 631 4,255
Pre 86.7% 97.1% 95.5% 87.7% 92.6% 99.5% 93.2%
Rec 81.3% 97.7% 95.0% 94.1% 86.2% 98.2% 92.1%
F1 83.9% 97.4% 95.3% 90.8% 89.3% 98.9% 92.6%

TABLE 7 | SciBERT performance.

CAG HHC HTD CAD GID Neg Total

CAG 14 1 0 1 0 0 16
HHC 2 338 5 0 1 0 346
HTD 1 5 191 3 0 1 201
CAD 0 0 2 66 0 0 68
GID 0 0 0 4 25 0 29
Neg 0 2 1 1 0 220 224
TP 14 338 191 66 25 220 854
FP 3 8 8 9 1 1 30
FN 2 8 10 2 4 4 30
TN 840 516 663 788 829 634 4,270
Pre 82.4% 97.7% 96.0% 88.0% 96.2% 99.5% 93.3%
Rec 87.5% 97.7% 95.0% 97.1% 86.2% 98.2% 93.6%
F1 84.8% 97.7% 95.5% 92.3% 90.9% 98.9% 93.4%

TABLE 8 | BioBERT performance.

CAG HHC HTD CAD GID Neg Total

CAG 13 2 0 1 0 0 16
HHC 0 341 5 0 0 0 346
HTD 0 5 192 3 0 1 201
CAD 0 0 2 66 0 0 68
GID 0 0 0 4 25 0 29
Neg 0 2 1 0 0 221 224
TP 13 341 192 66 25 221 858
FP 0 9 8 8 0 1 26
FN 3 5 9 2 4 3 26
TN 845 517 666 792 833 637 4,290
Pre 100.0% 97.4% 96.0% 89.2% 100.0% 99.5% 97.0%
Rec 81.3% 98.6% 95.5% 97.1% 86.2% 98.7% 92.9%
F1 89.7% 98.0% 95.8% 93.0% 92.6% 99.1% 94.7%
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observations can be made for other relation types. In other
words, BioBERT results in consistent performance gain
across the individual relation types, demonstrating its
superiority in the herb RE task.

The results presented in Tables 6–8 are from the base models
of BERT, SciBERT, and BioBERT without any boosting strategy
applied. Figures 7, 8 show the performance scores in F1 and AP
for the three models. Specifically, for each model, we
incrementally apply the two boosters, namely, fine-tuning and
data augmentation, yielding six models. Our observations on the
results are as follows.

• Both fine-tuning and data augmentation have demonstrated
consistent performance gains for all three models, validating
the effectiveness of the boosting strategies in the given
context. The best model, namely, the fine-tuned BioBERT
further trained on the augmented dataset, presents an F1
score of 95.9%.

• Fine-tuning has boosted the F1 by 1.1, 0.8, and 0.7%, for
BERT, SciBERT, and BioBERT, respectively. It is observed
that the gain reduces as the model moves from BERT to
BioBERT, which can be explained from the perspective of
the domain resources used for pre-training. BERT was pre-
trained on generic English texts, which is distant from the
domain of herbal-molecular medicine in this study. On the
other hand, BioBERT has already been trained on PubMed
articles, which are highly relevant to the domain for our
task. Whereas SciBERT is somewhere in the middle.
Therefore, fine-tuning BERT led to the most performance
gain since more domain knowledge can be injected and
transferred to the downstream task. In contrast, BioBERT
does not benefit too much from the fine-tuning, because
most syntactic and semantic patterns (i.e., domain
knowledge) have been seen and learned during pre-training.

• Adding data augmentation on top of the three tuned models
also brings consistent improvements, yielding a gain of 0.6,
0.9, and 0.5%, for BERT, SciBERT, and BioBERT,

respectively. The gain is minor due to the strategy taken
to generate the synthetic samples. As described in Section
2.6.2, a sentence is selected to fine-tune GPT-2 only if it
contains two entity types with a known relation. As a result,
the chosen sentences are generally short and only present
intra-sentence relations. However, most of the hard cases
are samples with inter-sentence relations. In other words,
two entities may span multiple sentences to present a
relation. Fortunately, these hard cases are rare in the
abstracts of scientific papers. In fact, most authors tend
to use concise and clear sentences to present scientific
findings, which is good news for our RE task.

• Similar observations can be obtained from Figure 8
regarding the effects of fine-tuning and data
augmentation on AP. The addition of fine-tuning brings
up the AP by 0.6, 1.5, and 1.5% for the three base models,
and the addition of data augmentation leads to a gain of 1.7,
0.6, and 0.7% for the three fine-tuned models. The gains
have been consistent across for both metrics with all three
models, validating the efficacy of the two boosters.

3.1.4 Token Importance Evaluation
In this section, we discuss how BioBERT is trained to learn the
relations using several qualitative results to gain a deeper
understanding on the impacts of individual tokens on the
determination of a relation. The process is as follows. For each
instance in the test set, only sentences that contain both head and
tail entities are kept and saved in a list. Let s = [t1, t2, . . . , tn]
denote an extracted sentence with n tokens t1, . . . , tn. Our goal is
to calculate a score that measures the impact of each individual
token on the relation of an entity pair. Specifically, we first pass s
through the fine-tuned BioBERTmodel to obtain a score denoted
by c*, which represents the probability that s is classified into the
correct relation type. Thereafter a loop is employed to iterate
through s token by token. For the ith iteration, token ti is replaced
by a meaningless token t′, and the modified sentence is passed
through the same BioBERT model once again to obtain another
score denoted by ci. The score difference, denoted by di = c* − ci,

FIGURE 7 | Performance comparison of BERT, SciBERT, and BioBERT
in F1 score under three training settings: base model, with fine tuning (F. T.),
and with F. T. and data augmentation (D. A.).

FIGURE 8 | Performance comparison of BERT, SciBERT, and BioBERT
in AP under three training settings: base model, with fine tuning (F. T.), and
with F. T. and data augmentation (D. A.).
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reflects the importance of token ti. In other words, the larger the
di, the more greatly the confidence score drops, thus, the more
important ti is. Figure 9 shows an example where di is obtained
for each token i. The sentence is extracted from an instance in the
test set and expresses a HHC relation between “cassia bark” and
“cinnamaldehyde”. It is observed that tokens that receive high
importance scores fall into two categories: 1) tokens such as
“cassia”, “barks”, and “cinnamaldehyde” are parts of the entities
that are obviously important; 2) tokens such as “contained” and
“contents” are the keywords that semantically determine the
relation type. For the latter case, it is noted that BioBERT can
effectively learn and quantify the impacts of tokens in a given
instance, demonstrating its superior capability of semantic
reasoning.

3.2 The Constructed HerbKG
The proposed system analyzed a total of 516,393 PubMed
abstracts and identified 4,130 herbs, 6,331 chemicals, 2,187
diseases, and 2,641 genes, with 53,754 distinct relations,
including 19,872 HHC, 13,627 HTD, 9,984 CAD, 3,353 CAG,
and 6,918 GID relations. A subgraph of HerbKG (stored using the

Neo4j graph database (Webber, 2012)) is shown in Figure 10,
which consists of one herb entity, three chemical, eleven gene,
and three disease entities. Also, the subgraph includes three HHC,
eleven CAG, six GID, and three CAD relations. It is noted that
only three abstracts were processed through the proposed
learning pipeline to generate this subgraph.

3.3 Downstream Applications
This subsection covers four categories of downstream
applications with several case studies to demonstrate the
potential of HerbKG to provide data-driven and evidence-
based knowledge support in pharmacology.

3.3.1 Descriptive Analysis
An advantage of a KG is that data, as stored in entities and
relations, can be easily visualized and presented to end users.
Thus, knowledge visualization has been a basic feature for KG-
based applications (Yu et al., 2017; Liu et al., 2018; Wise et al.,
2020; Zheng et al., 2020). In addition, descriptive analysis, which
helps describe, show or summarize data points, is desired in a
dashboard interface that allows a user to quickly grasp a big

FIGURE 9 | An examination of token importance in the determination of a relation type. The example shows in the figure is correctly classified by the BioBERT-
based RE model, which outputs a triplet (“cassia bark”, “cinnamaldehyde”, “HHC”) as an entry in the HerbKG.

FIGURE 10 | The extracted graph for herb “Sophora flavescens” is a subgraph of HerbKG, in which Herb, Chemical, Gene, and Disease entities are marked in red,
tan, green, and pink, repsectively.
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picture of data. Statistical results can be customized, presented,
and visualized (Su et al., 2021; Zheng et al., 2021). The core
mission of HerbKG is to investigate the molecular mechanism of
herbal medicine. Therefore, it is crucial to understand the
physiological behavior of herbs in the treatment of diseases by
regulating gene expression/function. At a high level, the HerbKG
can provide the top-ranked herbs with the most related genes
(Figure 11A, the genes regulated by the most herb extracts
(Figure 11B, the herbs that can treat the most diseases

(Figure 11C), and the most treated diseases by herbs
(Figure 11D). It is observed that five herbs, including Methyl
Salicylatum, Allium sativum, Andrographis Paniculata, Panax
Ginseng, and Rhizoma Curcumae, appear in both list (a) and (c),
indicating that the extracted chemicals from these herbs have
been extensively experimented to validate their effects on the
diseases at the molecular level. Also, it is found that three heat
shock proteins, namely HSP70, HSP90, and GRP78, are among
the top-ten genes in list (b). Heat-related proteins have shown

FIGURE 11 | Examples of descriptive analysis are shown. The HerbKG can provide the top-ranked herbs with the most related genes (A), the genes regulated by
the most herb extracts (B), the herbs that can treat the most diseases (C), and the most treated diseases by herbs (D).
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significance in clinical trials, especially in cancer treatment. Other
top-ranked genes include MCL-1 (related to Myeloid Leukemia),
ACE2 (related to human coronavirus), SOD2 (related to
idiopathic cardiomyopathy, premature aging, sporadic motor
neuron disease, and cancer), and so on. In addition, the top-
ranked diseases in list (d) include several deadliest diseases, such
as various types of cancer, diabetes, Alzheimer’s disease, and
lower respiratory infections (e.g., MERS). Meanwhile, herbs are
used to treat a wide range of common diseases, such as cold,
obesity, hypertension, cough, and diarrhea. In all, these statistical
results can be displayed in a dashboard to help users gain a high-
level understanding of the commonly studied herbs and their
related genes and diseases.

3.3.2 Evidence-Based Graph Queries
KGs that are built from scientific articles are supported by the
research findings in the source articles. Since users of such KGs
could be researchers, doctors, or clinical practitioners, providing
an evidence for each query that points to the original source is a
huge advantage. With this feature, users can be more convinced
by the information found in the KG and can be easily re-directly
to the first-hand resource (Miao et al., 2018; Zheng et al., 2021). In
this study, each extracted relation in HerbKG is based on a
sentence in an abstract. The sentence where both entities
appear becomes the evidence supporting the relation. For
example, Table 9 shows a collection of relations learned from
an abstract (PMID27882228), which is a study that investigated
Oxymatrine (OMT), a component of Sophora flavescens, and its
potential treatment for neurodegenerative diseases via the
regulation of a set of genes. The test was done using our best
model and achieved a satisfactory result, except that the CAG
relation between OMT and myeloid differentiation factor (MYD)
88 (last row of the table) was not detected due to the fact that the
PubTator-based NER model failed to classify it as a gene in the
first place. Each sentence that contains a detected relation was
marked as a piece of evidence, and the relation is reinforced if it is
supported by multiple evidence from different articles, meaning
that the relation has been validated by more than one study and
becomes more convinced. With this setup, a wide range of graph
queries can be made. Since HerbKG is stored in a Neo4j graph
database, a question should be first translated into a query
statement in Cypher and sent to the Neo4j database engine;

then a resulting subgraph is returned. For example, if our query
were “find the top three most studied chemicals of Sophora
flavescens and their related entities,” the result would be the
entire graph in Figure 10.

3.3.3 Similarity Analysis
Similarity analysis in a KG is useful analytical method that
measures the entity-entity or relation-relation similarity. Wang
et al. utilize the Pearson correlation (Benesty et al., 2009) to
represent the semantic similarity of herbs (Wang et al., 2019).
Recent graph neural network (GNN) models facilitate this
analysis by encoding a collection of relevant features into a
node/relation embedding, which can be directly used for
similarity calculation (Shen et al., 2019; Wise et al., 2020;
Zheng et al., 2021). For example, Fokoue et al. adopt a GNN
to compute drug similarity, which is used as a feature to predict
drug-drug interaction. A unique value provided by HerbKG is the
interplay between a herb-extracted chemical and a gene, which
affects a disease. To quantify the similarity between two herbs in
their biological functions, we focus on two aspects, namely, the
shared set of genes they regulate and the shared set of diseases
they may treat. Let SiG and SiD denote the set of genes herb extract i
can regulate and the set of diseases i may treat, respectively. The
similarity between two herb extracts i and j is given as follows.

sim i, j( ) � 1
2

SiG ⋂ SjG
SiG ⋃ SjG

+ SiD ⋂ SjD
SiD ⋃ SjD

( )
Intuitively, the more related genes and diseases two chemicals

share, the more similar they are. With this idea, we performed
similarity analysis for “Nelumbo nucifera”, and found the top-five
most similar herbs as follows: Acanthopanax senticosus (0.56),
Scutellaria barbata (0.41), Litchi chinensis (0.39), Myristica
fragrans (0.31), Kaempferia galanga (0.28), where the values in
the brackets indicate the similarity scores. Understanding the bio-
function similarity between herbs is an important first step for
drug repositioning, discussed in the following subsection.

3.3.4 Drug Repurposing
Drug repurposing (or repositioning) aims to discover an existing
drug’s new medical indications outside of the scope of its original
usage (Zhu et al., 2020). KG-based drug repurposing aims to

TABLE 9 | Case study: herbal-molecular knowledge extracted from an abstract (PMID27882228).

Entity [Type] Entity [Type] Relation Evidence

Sophora
flavescens [Herb]

Oxymatrine (OMT) [Chemical] HHC Oxymatrine (OMT) is an alkaloid extracted from Sophora
flavescens...

OMT [Chemical] HSP60 [Gene] CAG Western blot analysis and ELISA showed that OMT decreased the
expression and release of HSP60 by LPS-activated BV2 cells

OMT [Chemical] neurodegenerative diseases [Disease] CAD OMTmay therefore offer substantial therapeutic potential for treating
neurodegenerative diseases ...

OMT [Chemical] TLR-4 [Gene] CAG Flow cytometric analysis demonstrated that LPS treatment induced
apoptosis of BV2 cells, which was inhibited by OMT in parallel with
inhibition of LPS-induced expression of TLR-4

OMT [Chemical] caspase-3 [Gene], inducible nitric oxide synthase [Gene], tumor
necrosis factor-α [Gene], interleukin (IL)-1β [Gene], IL-6 [Gene]

CAG OMT was shown to suppress the levels of myeloid differentiation
factor (MYD)88, nuclear factor (NF)-κB, caspase-3, inducible nitric
oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β and IL-6
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discover potential drug-target or drug-disease relations that do
not currently exist in the KG (Boudin, 2020). Existing efforts have
leveraged KGs to identify drugs for the treatment of Covid-19
(Al-Saleem et al., 2021) and rare diseases (Sosa et al., 2019). It is
also noted that a drug-disease relation may be either direct or
indirect, investigated in (Zhu et al., 2020), where different types of
path between a drug and a disease are considered. On HerbKG,
drug repositioning can be transformed to a link prediction
problem that predicts a potential association between a
chemical and a disease, which are not previously connected.
We could use the following steps. First, a disease, say, the
Parkinson’s disease is selected. Second, we locate the
Parkinson’s disease in HerbKG as well as the its related herbs,
chemicals, and genes. Third, the identified genes serve as starting
point to find the associated chemicals that are not directly
connected to the disease in HerbKG. These chemicals may be
considered as drug candidates. However, if no such chemicals can
be found, a signature matching process can be employed by
comparing the biological profile (including information about
structure, genetic and disease association, adverse effect, and
graph properties, etc.) of a drug with that of another drug that
is known to be used for treating the disease. In fact, matching is an
operation that measures the similarity between chemicals, which
can be done via machine learning. Specifically, such a learning
model takes as input a chemical’s biological profile and the
disease name and predicts a score that indicates the likelihood
that the chemical can treat the disease. The current version of
HerbKG has only encoded the knowledge of genetic and disease
association, whereas more profile information for chemicals is
needed to build an accurate model. In addition to the chemical-
disease association, a more effective approach is to predict the
chemical-gene interaction, given that most diseases are known to
be caused by specific genes with aberrant expression patterns.
Therefore, the top-ranked chemical-gene pairs can be generated
by the predictive model and used for further validation to support
the new usage of a drug.

4 DISCUSSION

Recent advances have witnessed the prosperity of KGs, which
can effectively represent knowledge in the physical world.
Each KG is a semantic network that stores a collection of
triplets, each of which encodes the relation between a pair of
entities. KGs can support a wide range of applications, such as
knowledge reasoning, information retrieval, question
answering, and visualization. Also, domain specific KGs
have received numerous interests from domain
professionals and practitioners. A typical example is a
biomedical KG, which allows doctors and researchers to
mine and discover interplay between bio-entities,
potentially accelerating the efficiency and improving the
accuracy of current clinical practice.

Traditional medicine that uses herbs for health care has
been existing for over five thousand years. However, herbalism
has been criticized for its insufficiently verified efficacy and
safety in modern medicine research. Current herbal KGs

mainly focus on the diagnosis and treatment side of
herbalism that explore relations between herbs, symptoms,
and treatments, rather than investigate it from the view point
of molecular medicine. In the past decades, more researchers
adopt modern approaches in molecular medicine to study how
herbs and their extracted contents affect the biological
functions of human body. Our investigation shows that this
type of researches have not been extensively utilized in the KG
community, opening a promising research direction.

Our study aims to construct a KG to bridge herbal and molecular
medicine. We propose HerbKG with four entities, namely, herbs,
chemicals that are extracted from the herbs, diseases that can be
treated by herb contents, and genes that are affected by the chemicals.
Six relation types are defined to model the interplay between the
entities. We develop a systematic framework to automate the
construction of HerbKG by extracting relational triplets from
PubMed abstracts. The proposed framework adopts an existing
NER (i.e., PTC) model and a custom BERT-based RE model. The
RE model is validated on a self-created herb RE dataset and
demonstrates superior performance. The resulting HerbKG, after
analyzing over 516K abstracts, is populated with 53,754 relations,
offering valuable domain knowledge in herbalism from the molecular
perspective.

A key challenge for supervised learning in a domain-specific
task is the lack of abundant training resource. This challenge is
addressed with two unsupervised strategies in our work. The
first strategy, fine-tuning on domain resources, is to encourage
the BERT model to learn more domain knowledge. The second
strategy, substitution-based generative augmentation, aims to
generate synthetic training samples based on the existing
expert-annotated ones. The mixing of supervised and
unsupervised learning paradigms brings new opportunities
to tackle the problem of KG construction.

This study has the following limitations that will be
addressed in future work. First, the RE task can be made
more fine-grained. For example, the role of a chemical played
in regulating a gene’s activity or function can be divided into
several subclasses such as inhibitor, activator, antagonist, and
agonist, etc. Fine-grained relations can enhance the
knowledge granularity encoded by HerbKG and better
support the downstream applications. Another direction is
to explore existing data resources. After all, several well-
known benchmarks that model either drug-drug, chemical-
protein, or chemical-disease relations have been studied and
can be utilized in model training. Lastly, more advanced
downstream applications in drug discovery can be
developed. Opportunities are twofold. One idea is to adopt
a GNN model to better encode a wider spectrum of data
properties, such as multi-omics, molecular structural, and
graph properties, for entities and relations in HerbKG and
facilitate the link prediction tasks like drug repurposing and
target inference. Also, predicting the effect of drug
combination could be a significant task that comes with a
unique advantage in herbal medicine since drug compound
has been a typical way of prescription in traditional herblism.
As such, abundant training data can be gathered to train
learning models.
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