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Clear cell renal cell carcinoma (ccRCC), the major histopathological subtype of renal cancer, is sensitive to ferroptosis. MIT-
domain containing protein 1 (MITD1) has been reported to play an important role in hepatocellular carcinoma, while it
remains unclear whether MITD1 is involved in ccRCC. Based on available data in The Cancer Genome Atlas, we found the
expression of MITD1 increased through bioinformatics analysis and high MITD1 expression suggests a poor prognosis. And
we validated that MITD1 expressed significantly in ccRCC through Western blot analysis. Then, we further compared the
proliferation and migration capacity of ccRCC before and after MITD1 knockdown and further explored the effect of MITD1
knockdown on ferroptosis. The results indicated that MITD1 knockdown inhibited ccRCC cell proliferation and migration and
induced ferroptosis in ccRCC. Furthermore, we found and analyzed the key molecule TAZ which was involved in ferroptosis
caused by MITD1 knockdown. Subsequent overexpression experiments demonstrated that MITD1 knockdown induced
ferroptosis and suppressed tumor growth and migration through the TAZ/SLC7A11 pathway. In summary, our study revealed
the role of MITD1 in the ferroptosis of ccRCC and provided a novel target for ccRCC treatment.

1. Introduction

Renal cell carcinoma (RCC) originates from renal tubular
epithelial cells and is one of the most common malignant
tumors of the urinary system, of which the incidence is still
increasing year by year [1]. Clear cell renal cell carcinoma
(ccRCC) is the most common and aggressive type of RCC,
which accounts for approximately more than 85% of RCC
[2]. For the lack of clinical symptoms in the early stage of
ccRCC, a considerable number of patients are diagnosed
with locally advanced and even have distant metastases at
the first-time consultancy. Localized ccRCC is generally
cured by surgery, whereas patients with advanced ccRCC
still have a poor prognosis due to the inability to undergo
radical surgery [3]. Despite a variety of treatments including
radiotherapy, chemotherapy, vascular endothelial growth
factor (VEGF) receptor tyrosine kinase inhibitors, and
immune-checkpoint inhibitors to delay the progress of the

disease, it is hard to select treatment strategies for patients
with advanced cancer due to the frequently occurring severe
side effects and intrinsic or acquired drug resistance of each
treatment [4, 5]. Therefore, it is necessary to further explore
the mechanism of occurrence and development of ccRCC
and to find more novel diagnostic markers and therapeutic
targets.

MITD1 encodes MIT-domain containing protein 1 and
participates in the process of cell division in the form of
ESCRT-III dependence. MITD1 is able to be recruited to
the midbody through the intermediate of MIT-domain of
the N-terminus and ESCRT-III and coordinates abscission
with earlier stages of cytokinesis [6, 7]. A study [8] found
that MITD1 was able to serve as a predictor for human
hepatocellular carcinoma prognosis and correlated with
immune infiltrating cells around the carcinoma. In another
research [9], the researchers identified MITD1 as one of
the most important survival-related genes in bladder cancer,
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which was able to influence the migration ability of tumor
cells by knocking down or overexpressing it. Despite some
studies having found an abnormal expression of MITD1 in
ccRCC, the role of MITD1 in the progression of ccRCC
remains largely unknown.

Ferroptosis is a novel nonapoptotic form of death char-
acterized by accumulation of intracellular reactive oxygen
species (ROS), depletion of reduced glutathione (GSH),
resulting in iron dependent accumulation of lipid hydroper-
oxides reaching cell-lethal levels [10]. It is generally accepted
that ferroptosis is involved in a variety of physiological and
pathological processes, including cancer, ischemia reperfu-
sion injury, and neurodegeneration [11]. At present, ferrop-
tosis has been considered to be closely related to tumor
progression, indicating a potential means of cancer therapy
[12]. Solute carrier family 7 membrane 11 (SLC7A11) is
the major subunit of the cystine/glutamate antiporter (Sys-
tem Xc−), which is the key enzyme in the synthesis of GSH
and resistance to ferroptosis [13]. Li et al. [14] found that
inhibition of SLC7A11 induced ferroptosis in renal cancer.
Therefore, ferroptosis may be a novel strategy for the treat-
ment of RCC, and SLC7A11 is likely to be an extremely vital
target.

In this study, we conducted a systematic bioinformatics
analysis and found that MITD1 expression was significantly
increased in ccRCC, of which the difference suggested differ-
ent clinical prognoses. Further studies have shown that
MITD1 knockdown of RCC cell lines with high expression
of MITD1 decreased cell proliferation and migration ability.
Notably, it was first observed that knockdown of MITD1
induced ferroptosis in ccRCC. Moreover, we confirmed that
knockdown of MITD1 was able to regulate TAZ and reduce
the expression of SLC7A11 to induce ferroptosis and
decrease cell proliferation and migration ability. Our study
provides a detailed analysis of the relationship between
MITD1 and ferroptosis in ccRCC, which will aid in the treat-
ment of ccRCC.

2. Materials and Methods

2.1. Bioinformatics Analysis. The expression of the target
gene MITD1 in various malignant tumors was analyzed in
the GEPIA (http://gepia.cancer-pku.cn/), a web-based tool
to deliver fast and customizable functionalities based on
TCGA and GTEx data. We utilized the TCGA (https://
cancergenome.nih.gov/) database to obtain RCC data, con-
taining all data of 611 ccRCC samples. We retained both pri-
mary RNA sequencing (RNA-seq) data and corresponding
clinical information, which we used for comprehensive anal-
ysis of MITD1.

2.2. Cell Lines and Cell Culture. All cell lines were acquired
from ATCC. HK-2 cell line was cultured with Dulbecco’s
modified eagle medium/10% fetal bovine serum
(A3160901, Gibco) media while RCC cell lines (786-O,
ACHN, A498, 769-P, Caki-1) were cultured with RPMI
1640/10% fetal bovine serum media. All cells were cultured
in an incubator with 5% CO2 at 37

°C.

2.3. Transfection. MITD1 siRNA, negative control siRNA,
SLC7A11 plasmid, TAZ plasmid, and vector plasmid were
synthesized by Sangon Biotech (Shanghai). RCC cells were
seeded in 6-well plates at an appropriate density. After
12 h, transfection was then carried out using Lipofectamine
3000 (L3000001, Thermo Fisher Scientific) according to
the manufacturer’s instructions.

2.4. Cell Counting Kit-8-Based Cell Viability Assay. RCC cells
were first seeded into 96-well plates at the density of 2 × 103
cells/well. 10μL of CCK-8 solution (C0037, Beyotime Bio-
technology) was added to each well and incubated for 1 h;
the absorbance measurements at 450 nm were determined
at 24 h, 48 h, 72 h, and 96h.

2.5. Tumor Cell Colony Formation Assay. RCC cells were
seeded into 6-well plates at approximately 200 cells per well
and cultured for 14 days. Before counting, cells were fixed
with 3.7% paraformaldehyde for 15min and then stained
with 0.1% crystal violet for 30min. Colonies with
>0.05mm diameter were recorded and analyzed.

2.6. Wound Healing Assay. RCC cells were inoculated into 6-
well plates at an appropriate density. When the cell density
reached 90% to 95%, the surface of cells was scratched with
a straight gap. Washed 3 times with phosphate buffer saline
(PBS), the width of the gap was recorded 24 h later.

2.7. Western Blot Analysis. HK-2 cells and RCC cells were
homogenized in RIPA lysis buffer containing protease inhib-
itors. We measured the protein concentration of each sam-
ple by bicinchoninic acid (BCA) assay and then were
separated by SDS-PAGE. Transferred onto a piece of polyvi-
nylidene difluoride transfer membrane, proteins of each
sample were blocked with 5% nonfat milk for 1 h. The mem-
branes were incubated with antibodies against MITD1
(PA5-116854, Cell Signaling Technology), SLC7A11
(ab37185, Abcam), glutathione peroxidase 4 (GPX4;
ab125066, Abcam), cyclooxygenase 2 (COX2; ab62331,
Abcam), acyl-CoA synthetase long-chain family member 4
(ACSL4; ab155282, Abcam), and glyceraldehyde 3-
phosphate dehydrogenase (GAPDH; ab8245, Abcam). After
incubation with primary antibodies for one night, the mem-
branes were washed and incubated with secondary anti-
bodies. The protein bands were visualized using enhanced
chemiluminescence reagents (WP20005, Thermo Fisher Sci-
entific). Finally, using ImageJ software performed the densi-
tometric analysis to quantify differences in protein levels.

2.8. Measurement of ROS Level. After different treatments,
RCC cells were incubated with 10μM dichlorodihydrofluor-
escein diacetate (DCFH-DA, S0033S-1, Beyotime Biotech-
nology) at 37°C for 20min in the dark. Then, cell nuclei
were labeled by using DAPI dihydrochloride (C1002, Beyo-
time Biotechnology) for 5min. Finally, the cells were
observed and photographed under a fluorescence micro-
scope after washing with PBS three times.

2.9. Lipid Peroxidation Measurements. Malondialdehyde
(MDA) is one of the end products of lipid peroxidation,
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Figure 1: Continued.
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which is widely accepted as a biomarker of lipid peroxida-
tion. The level of MDA was detected by MDA assay kit
(S0131S, Beyotime Biotechnology). After different treat-
ments, the supernatant was collected and added to the assay
kit. Then, the absorbance measurements at 450nm were
determined by a microplate reader.

2.10. Reduced Glutathione and Superoxide Dismutase.
Reduced glutathione (GSH) and superoxide dismutase (SOD)
were detected using Glutathione Detection Kit (S0053, Beyo-
time Biotechnology) and SOD assay kit (S0109, Beyotime Bio-
technology) according to the manufacturer’s instruction.

2.11. Statistical Analysis. All the data was expressed by
mean value ± standard error and analyzed by SPSS 25.0.
The differences between groups were analyzed through
one-way analysis of variance (ANOVA) and the Student–
Newman–Keuls test. P < 0 :05 was considered to be statisti-
cally significant.

3. Results

3.1. MITD1 Expression Is Upregulated in ccRCC Tumors and
Correlated with the Progression and Prognosis. To assess the
role of MITD1 in malignant tumors, we first investigated the
expression of MITD1 in various malignant tumors in the
GEPIA. As shown in Figure 1(a), MITD1 was generally
highly expressed in tumors. Then, we further analyzed pub-
licly available data of ccRCC from TCGA and found that the
expression of MITD1 was significantly higher in tumor cases
compared with normal cases in paired or unpaired ccRCC
tissues (Figures 1(b) and 1(c)). What is more, the expression
of MITD1 gradually increased with the increase of stage and
depth of invasion (Figures 1(d) and 1(e)). And patients with
high MITD1 expression had a lower overall survival rate
than those with low expression (Figure 1(f)), suggesting that
MITD1 was associated with the progression and prognosis.
Finally, we verified that the expression of MITD1 in RCC
cell lines was generally higher than that of HK2 cell lines
and selected 786-O and A498 cell lines in subsequent exper-
iments (Figure 1(g)).

3.2. MITD1 Knockdown Inhibits ccRCC Cell Proliferation
and Migration. To explore the functional role of MITD1 in
ccRCC, MITD1 siRNA was used to knock down the expres-
sion of MITD1. As shown in Figures 2(a) and 2(b), the
expression of MITD1 in 786-O and A498 cells significantly
reduced after MITD1 transient knockdown. CCK-8 and
clone formation experiments indicated that MITD1 knock-
down inhibited the proliferation (Figures 2(c) and 2(d))
and clonogenic capacity (Figure 2(e) and Supplementary
Figure 1A) of ccRCC cells compared to the NC group. And
the results of wound healing assays demonstrated that
silencing of MITD1 prolonged the wound healing time,
indicating that MITD1 knockdown was able to reduce the
migration ability of ccRCC (Figure 2(f) and Supplementary
Figure 1B).

3.3. MITD1 Deficiency Induces Ferroptosis in ccRCC. In
order to determine howMITD1 depletion inhibits the prolif-
eration and migration of ccRCC, KEGG pathway enrich-
ment analyses were used to explore the potential pathway
of MITD1. GSEA was used to reveal the significantly
enriched (FDR < 0:05, P value < 0.05) KEGG pathways with
high or low MITD1 expression. As shown in Figure 3(a), the
top 3 KEGG pathways significantly correlated with MITD1
high expression were alpha-linolenic acid metabolism, ara-
chidonic acid metabolism, and linoleic acid metabolism.
And the top 3 pathways significantly correlated with MITD1
low expression were as follows: citrate cycle TCA cycle, pen-
tose phosphate pathway, and steroid-biosynthesis
(Figure 3(b)). In addition, we found that the remaining path-
way significantly correlated with MITD1 low expression was
not directly related to proliferation and migration. These
results suggested that MITD1 might be associated with lipid
and energy metabolism to regulate cell proliferation and
migration. Therefore, we further explored whether MITD1
was involved in ferroptosis and found that MITD1 low
expression was significantly associated with ferroptosis
through the GSEA platform with the WikiPathways
(c2.cp.wikipathways.v7.5.1.symbols.gmt) (Figure 3(c)). Sub-
sequently, ROS levels of 786-O cells were detected by ROS
assay kit. Figure 3(d) showed that ROS levels obviously
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Figure 1: MITD1 was generally highly expressed in ccRRC. (a) Analysis from the GEPIA showing the expression of MITD1 in common
malignant tumors. (b) The expression of MITD1 in ccRCC tissues was higher compared to the normal tissues through TCGA dataset
analysis. (c) The expression of MITD1 in paired ccRCC tissues was also higher compared to the paracancerous tissues. (d, e)
Relationship between MITD1 expression and tumor stage as well as that between MITD1 expression and T stage. (f) Based on the
median values of MITD1 expression, patients were divided into the low-expression or high-expression group. Kaplan-Meier’s survival
curve of two groups through the analysis of clinical information of ccRCC in TCGA. (g) Representative blotting of MITD1 in different
cell lines, and quantification of MITD1 proteins levels relative to HK-2 cells. Values are expressed as the mean ± SEM, n = 3. ∗P < 0:05
and ∗∗∗P < 0:001.
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Figure 2: MITD1 knockdown inhibits ccRCC cell proliferation and migration. (a, b) 786-O cells or A498 cells were transfected with negative
control or different si-RNA (SiMITD1-1 or SiMITD1-2). Western blot of MITD1 to test the effect of si-RNA transfection. (c, d) Knockdown
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scratched with a straight gap. Scratches at 0 and 24 hours were photographed and recorded under the microscope (magnification ×40;
scale bars = 200μm). Values are expressed as the mean ± SEM, n = 3.
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Figure 3: MITD1 knockdown induces ferroptosis in ccRCC. (a) KEGG pathway showed top three positively correlated groups. (b) KEGG
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SEM, n = 3. ∗P < 0:05, relative to the control group; #P < 0:05, relative to the SiMITD1.
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increased after knockdown of MITD1 while ROS levels of
MITD1knockdown ccRCC cells recovered to some extent
after Ferrostatin-1 (Fer-1, a potent ferroptosis inhibitor)
treatment [15]. In addition, we assessed MDA, GSH, and
SOD levels in ccRCC cells. As expected, MITD1 knockdown
increased the level of MDA and reduced the level of antiox-
idant GSH and SOD in ccRCC cells; these changes were par-
tially reversed by Fer-1 treatment (Figures 3(e)–3(g)).
Moreover, we treated ccRCC cells with another potent
inhibitor of ferroptosis (liproxstatin-1, Lip-1), and the
results were consistent with Fer-1 treatment (Supplementary

Figure 2), indicating that MITD1 was involved in
ferroptosis.

3.4. MITD1 Deficiency Induces Ferroptosis through
Downregulating SLC7A11. To further confirm the impact
of MITD1 on ferroptosis in ccRCC, ferroptosis-related pro-
teins were detected in 786-O and A498 cells after MITD1
knockdown. As revealed in Figure 4(a), the expression of
GPX4 and SLC7A11 was decreased and COX2 and ACSL4
were upregulated, further suggesting that silencing MITD1
induced ferroptosis. More specifically, the downregulation
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of SLC7A11 was the most significant, indicating that MITD1
deficiency might induce ferroptosis through SLC7A11. Sub-
sequently, ccRCC cells were transfected with SLC7A11 plas-
mid or vector control after MITD1 knockdown or not.
Figures 4(b) and 4(c) showed the expression level of MITD1
and SLC7A11 to demonstrate the effect of silence and over-
expression in different ccRCC cells. We then examined the
levels of MDA, GSH, and SOD in ccRCC with different
treatments, which cloud reflect the degree of ferroptosis.
Similarly, it was found that MDA increased significantly
and GSH and SOD decreased significantly in ccRCC cells
after MITD1 silencing. Furthermore, overexpression of
SLC7A11 restored the levels of MDA, GSH, and SOD chan-
ged by MITD1 silencing (Figures 4(d)–4(f)), which demon-
strated that MITD1 deficiency induced ferroptosis through
SLC7A11.

3.5. MITD1 Knockdown Induces Ferroptosis through TAZ/
SLC7A11 Pathway. To further investigate how MITD1
knockdown regulates ferroptosis in ccRCC, we screened
coexpressed genes of MITD1 and discovered that the corre-
lation between MITD1 and TAZ was extraordinarily strong
(Figure 5(a)). And we further found that TAZ showed high
expression in ccRCC and patients with high TAZ expression
had a lower overall survival rate (Figures 5(b)–5(d)), which
was consistent with MITD1. Furthermore, a recent study
[16] found that YAP/TAZ induced the expression of
SLC7A11 to enable HCC cells to overcome sorafenib-
induced ferroptosis. Therefore, we proposed the idea that
whether MITD1 knockdown promoted ferroptosis through
regulating the TAZ/SLC7A11 pathway in ccRCC cells.

In order to explore whether TAZ participated in the fer-
roptosis process induced by MITD1 knockdown, we carried
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Figure 5: TAZ was highly correlated with MITD1 and high expressed in ccRRC. (a) A positive correlation between the MITD1 and TAZ
expressions through bioinformatics analysis. (b) Based on the median values of TAZ expression, patients were divided into the low-
expression or high-expression group. Kaplan-Meier’s survival curve of two groups through the analysis of clinical information of ccRCC
in TCGA. (c) The expression of TAZ in ccRCC tissues was higher compared to the normal tissues through TCGA dataset analysis. (d)
The expression of TAZ in paired ccRCC tissues was also higher compared to the paracancerous tissues. Values are expressed as the
mean ± SEM, n = 3. ∗P < 0:05 and ∗∗∗P < 0:001. relative to the control group.
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out a series of experiments. In subsequent experiments, we
found that the expression of TAZwas significantly reducedwith
downregulation of SLC7A11 after MITD1 knockdown in 786-
O and A498 cells. What is more, overexpression of TAZ mark-
edly increased the expression of SLC7A11 and also partially
restored the down-regulation of SLC7A11 caused by MITD1
knockdown in different ccRCC cells (Figures 6(a) and 6(b)).
Moreover, overexpression of TAZ reduced the levels of ROS
which were obviously increased by MITD1 knockdown in

ccRCC cells (Figure 6(c) and Supplementary Figure 1C). In
addition, we also measured the level of MDA, GSH, and SOD.
As shown in Figures 6(d)–6(f), MITD1 knockdown
aggravated oxidative stress and ferroptosis which could be
rescued by TAZ overexpression treatment.

3.6. MITD1 Knockdown Suppresses Growth and Migration
through TAZ/SLC7A11 Pathway. To explore the role of
SLC7A11 and TAZ expression changes caused by MITD1
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Figure 6: MITD1 knockdown induces ferroptosis through the TAZ/SLC7A11 pathway. (a, b) 786-O cells or A498 cells were transfected
with negative control or si-RNA for MITD1 (SiMITD1) and then were transfected with TAZ plasmid. Western blot of MITD1,
SLC7A11, and TAZ. (c) Representative images of 786-O cells with DCFH-DA staining (magnification ×100; scale bars = 100μm) after
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knockdown in cell proliferation and migration, we per-
formed a further series of experiments. The CCK-8 assay
showed that the cell viability of the MITD1 knockdown
group was significantly lower than that of the control group.
After treatment with TAZ overexpression, the expression of
TAZ and SLC7A11 increased and cell viability was partially
restored (Figures 7(a) and 7(b)). Cell colony formation assay
also demonstrated that TAZ overexpression rescued the
reduction of cell proliferation caused by MITD1 knockdown
(Figures 7(c) and 7(d)). Moreover, the wound-healing assay
(Figures 7(e) abd 7(f)) showed that the change of cell migra-
tion ability caused by MITD1 knockdown could be rescued
after TAZ overexpression treatment. These results indicated
that MITD1 knockdown induced ferroptosis through down-

regulating SLC7A11and TAZ and inhibited the proliferation
and migration ability of ccRCC. Therefore, MITD1 defi-
ciency suppresses ccRCC growth and migration by inducing
ferroptosis through the TAZ/SLC7A11 pathway.

4. Discussion

MITD1, an MIT-domain containing protein 1, recognizes
subunits of ESCRT-III through a typical MIT-MIM1 read-
out in the dimer of MITD1. And the interaction of each
other made the MITD1 recruit to the midbody during cell
division [6]. Depletion of MITD1 is able to cause cytokinesis
failure, which affects cell proliferation [17]. Previous studies
[8, 9] revealed that MITD1 was abnormally expressed in
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Figure 7: MITD1 knockdown suppresses growth and migration through the TAZ/SLC7A11 pathway. (a, b) 786-O cells or A498 cells were
transfected with negative control or si-RNA for MITD1 (SiMITD1) and then were transfected with TAZ plasmid. Cell viability of each group
was detected at 24 h, 48 h, 72 h, and 96 h, respectively. (c, d) Colony formation assay was performed on ccRCC cells with different
treatments. The quantification data are also indicated. (e, f) When ccRCC cells with different treatments grew to 90%-95% density, the
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(magnification ×40; scale bars = 200 μm). The quantification data are also indicated. Values are expressed as the mean ± SEM, n = 3. ∗P <
0:05, relative to the control group; #P < 0:05, relative to the SiMITD1.
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patients with liver cancer and bladder cancer and had a sig-
nificant correlation with prognosis. In addition, MITD1 reg-
ulated proliferation and invasion of tumor cells and was able
to alter the tumor microenvironment by recruiting and reg-
ulating immune infiltrating cells [8, 18]. In our study, we
analyzed public databases and found that MITD1 was highly
expressed in ccRCC and the expression level was related to
tumor stage and clinical T stage. In the subsequent survival
analysis, patients in the MITD1 high expression group had
a lower survival rate. In vitro experiment, it was verified that
MITD1 was highly expressed in ccRCC through Western
blot analysis of MITD1 expression in common RCC cell
lines and HK2 cell lines. Furthermore, it was found that
the growth, proliferation, and migration of ccRCC cells were
inhibited after MITD1 knockdown treatment.

Ferroptosis has been identified as a nonapoptotic form of
cell death, of which the two most important features are iron
accumulation and lipid peroxidation. And lipid peroxidation
has many manifestations, including an increase in ROS and
a decrease in antioxidants [19]. Ferroptosis is involved in the
development of many diseases, especially cancer [11, 20].
Therefore, inducing ferroptosis by destroying the redox bal-
ance in tumor cells may be an effective means of cancer
treatment [21]. Although scholars have searched for key
molecules that induce ferroptosis in ccRCC, related research
is still rare. Wang et al. [22] found that SUV39H1 expression
is frequently upregulated in ccRCC tumors and SUV39H1
knockdown induced iron accumulation and lipid peroxida-
tion, leading to ferroptosis that disrupted ccRCC cell growth.
Another study [23] showed that KLF2 inhibited the migra-
tion and invasion abilities of ccRCC cells by regulating fer-
roptosis through the GPX4 pathway. In this study, we
found that MITD1was mainly related to the pathways of
energy metabolism and lipid metabolism and could be
enriched to the ferroptosis-related pathways through path-
way enrichment analysis. We subsequently found that
MITD1 deficiency increased ROS and MDA in ccRCC cells
and decreased cellular GSH and SOD levels. However, the
effects of MITD1 knockdown on these indicators were par-
tially abolished by Fer-1 treatment. The above results dem-
onstrated that MITD1 knockdown could induce ferroptosis
in ccRCC.

The regulation of ferroptosis is a complex process that is
affected by many factors, the two most important of which
are transporter-dependent and enzyme-dependent [24]. Sys-
tem Xc- is an amino acid transporter widely distributed on
phospholipid bilayer membranes, mainly containing 2 sub-
units SLC7A11 and SLC3A2, which plays a key role in a
transporter-dependent pathway [25]. System Xc- is responsi-
ble for the transport of cystine into the cell and the transport
of glutamate out of the cell. Cystine is reduced to cysteine
after being transported into cells, which is the raw material
for the synthesis of GSH. GSH is able to reduce intracellular
ROS and lipid peroxidation through glutathione peroxidase
(GPXs), the most typical of which is glutathione peroxidase
4 (GPX4) [25]. Inhibition of SLC7A11 reduces cystine
absorption and glutathione synthesis, ultimately leading to
oxidative damage and ferroptosis [26]. Therefore, targeting
SLC7A11 is an important means to induce ferroptosis for

cancer therapy. Inhibition of PARP downregulated the
expression of SLC7A11 in a p53-dependent manner to pro-
mote ferroptosis in ovarian cancer cells, revealing a previ-
ously unrecognized mechanism of PARP inhibitor therapy
for ovarian cancer [27]. Another study [14] in ccRCC found
that SLC16A1-AS1 served as a sponge of miR-143-3p and
knockdown of SLC16A1-AS1 could induce ferroptosis
through the miR-143-3p/SLC7A11 pathway. In the present
study, MITD1 deficiency could significantly affect the
expression levels of ferroptosis proteins, such as GPX4,
SLC7A11, ACSL4, and COX2. The downregulation of
SLC7A11 was the most significant, indicating that MITD1
deficiency was most likely to induce ferroptosis by regulating
SLC7A11. In addition, ROS, MDA, GSH, and SOD affected
by MITD1 knockdown could be restored by overexpression
of SLC7A11, further confirming the regulatory effect of
MITD1 deficiency on SLC7A11.

Transcriptional coactivator with PDZ-binding motif
(TAZ), which is also named as WW domain-containing
transcriptional coregulatory 1 (WWTR1), is a key down-
stream effector of the Hippo signaling pathway [28]. Hippo
signaling pathway is a potent tumor-suppressing mechanism
and has been established as a novel determinant of ferropto-
sis [29]. Previous research [30] indicated that the expression
of TAZ generally increased in kidney cancer tissue and cells
and TAZ knockdown inhibited the proliferation, migration,
and invasion of ccRCC in vitro and in vivo. Another study
[31] found that the changes in cell density affect the expres-
sion of TAZ, which could regulate the sensitivity of renal cell
carcinoma to ferroptosis through the EMP1-NOX4 pathway.
Nevertheless, a latest study [16] demonstrated that YAP/
TAZ could induce the expression of SLC7A11 to inhibit fer-
roptosis and maintain the resistance of liver cell carcinoma
to sorafini. Based on correlation analysis, we found that
MITD1 was highly correlated with TAZ. In addition, TAZ
was highly expressed in ccRCC and TAZ high expression
indicated a lower survival rate, same as MITD1. In the sub-
sequent experiments, we found that MITD1 knockdown
downregulated TAZ expression and a corresponding down-
regulation of SLC7A11 expression. In addition, overexpres-
sion of TAZ partially restored cellular ROS, MDA, GSH,
and SOD changes caused by MITD1knockdown. Moreover,
overexpression of TAZ also restored the proliferation and
migration of ccRCC which were inhibited by MITD1 knock-
down. These results suggested that MITD1 knockdown sup-
pressed ccRCC growth and migration by inducing
ferroptosis through the TAZ/SLC7A11 pathway.

5. Conclusion

In conclusion, our study firstly proposed that MITD1 could
change the proliferative and migratory capacity of ccRCC
and affect prognosis by regulating ferroptosis. What is more,
we further explored that MITD1 deficiency could increase
the ferroptosis of ccRCC through the TAZ/SLC7A11 path-
way. Therefore, MITD1 is expected to be a prognostic bio-
marker of ccRCC and a new therapeutic target for tumor
ferroptosis.
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